

Illinois Environmental Protection Agency

Bureau of Water	• 1021 N. Grand Avenue E.	 P.O. Box 19276 Spring 	ield • Illinois • 62794-9276
-----------------	---------------------------	--	------------------------------

Division of Water Pollution Control

ANNUAL FACILITY INSPECTION REPORT

for NPDES Permit for Storm Water Discharges from Separate Storm Sewer Systems (MS4)

This fillable form may be completed online, a copy saved locally, printed and signed before it is submitted to the Compliance Assurance Section at the above address. Complete each section of this report.

Report Period: From March, 2017	To Marc	h,2	018	Permit No. ILR40 0227
MS4 OPERATOR INFORMATION: (As it ap	pears on	the	e current permit)	
Name: VILLAGE OF ADDISON			Mailing Address 1: 1 FRIE	NDSHIP PLAZA
Mailing Address 2:				County: DuPage
City: ADDISON	Sta	te:	IL Zip: 60101	Telephone: 630-543-4100
Contact Person: KAI LIU (Person responsible for Annual Report)		_	Email Address: Kliu@addisc	on-il.org
Name(s) of governmental entity(ies) in which	MS4 is I	oca	ated: (As it appears on the cu	ırrent permit)
DUPAGE COUNTY - COPERMITTEE				
-				
THE FOLLOWING ITEMS MUST BE ADDRES	SED.			
A. Changes to best management practices (che regarding change(s) to BMP and measurable		oria	te BMP change(s) and attach i	nformation
1. Public Education and Outreach		4.	Construction Site Runoff Cont	irol 🗌
2. Public Participation/Involvement		5.	Post-Construction Runoff Con	itrol 🗌
3. Illicit Discharge Detection & Elimination		6.	Pollution Prevention/Good Ho	usekeeping
B. Attach the status of compliance with permit or management practices and progress towards MEP, and your identified measurable goals for	achieving	g th	e statutory goal of reducing the	
C. Attach results of information collected and an	alyzed, in	iclu	ding monitoring data, if any du	ring the reporting period.
D. Attach a summary of the storm water activitie implementation schedule.)	s you pla	n to	o undertake during the next rep	orting cycle (including an
E. Attach notice that you are relying on another	governme	ent	entity to satisfy some of your pe	ermit obligations (if applicable).
F. Attach a list of construction projects that your	entity has	s pa	aid for during the reporting perio	od.
Any person who knowingly makes a false, fictition commits a Class 4 felony. A second or subseque	is, or frau nt offense	dul aft	ent material statement, orally or ter conviction is a Class 3 felony	in writing, to the Illinois EPA 4. (415 ILCS 5/44(h))
Ah Owner Signature:		_	4/30/1	8
Kai Liu			Village Engineer	2.
Printed Name:	¥5	-	Title	· · · · · · · · · · · · · · · · · · ·
EMAIL COMPLETED FORM TO: epa.ms4annuali	nen@illin/	nie (•
or Mail to: ILLINOIS ENVIRONMENTAL PROTECTION	5 (C750)		90 v	
WATER POLLUTION CONTROL COMPLIANCE ASSURANCE SECTION #19 1021 NORTH GRAND AVENUE EAST POST OFFICE BOX 19276 SPRINGFIELD, ILLINOIS 62794-9276				

IL 532 2585

This Agency is authorized to require this information under Section 4 and Title X of the Environmental Protection Act (415 ILCS 5/4, 5/39). Failure to disclose this information may result in: a civil penalty of not to exceed \$50,000 for the violation and an additional civil penalty of not to exceed \$50,000 for the violation and and difficult of to exceed \$50,000 for each day during which the violation continues (415 ILCS 5/42) and may also prevent this form from being processed and could result in your application being denied. This form WPC 691 Rev 6/10 has been approved by the Forms Management Center.

March 2017 – March 2018

Page 1 of 14

Village of Addison Annual Report Year 15

- A. Public Education and Outreach
- A.1 Distributed Paper Material
- **A.2** Speaking Engagement
- **A.3** Public Service Announcement
- A.4 Community Event
 - **A.5** Classroom Education Material
 - **A.6** Other Public Education
- **B.** Public Participation/Involvement
 - **B.1** Public Panel
 - **B.2** Educational Volunteer
- **B.3** Stakeholder Meeting
- **B.4** Public Hearing
- **B.5** Volunteer Monitoring
- **B.6** Program Coordination
- **B.7** Other Public Involvement
- C. Illicit Discharge Detection and ____Elimination
- C.1 Storm Sewer Map Preparation
- C.2 Regulatory Control Program
- C.3 Detection/Elimination Prioritization Plan
- C.4 Illicit Discharge Tracing Procedures
- C.5 Illicit Source Removal Procedures
- C.6 Program Evaluation and Assessment
- C.7 Visual Dry Weather Screening
- C.8 Pollutant Field Testing
 - **C.9 Public Notification**
 - **C.10 Other Illicit Discharge Controls**

- **D.** Construction Site Runoff Control
- **D.1** Regulatory Control Program
- D.2 Erosion and Sediment Control BMPs
- **D.3** Other Waste Control Program
- **D.4** Site Plan Review Procedures
- D.5 Public Information Handling Procedures
- D.6 Site Inspection/Enforcement Procedures
- D.7 Other Construction Site Runoff Controls
- E. Post-Construction Runoff Control
- **E.1** Community Control Strategy
- **E.2** Regulatory Control Program
- **E.3** Long Term O&M Procedures
- **E.4** Pre-Const Review of BMP Designs
- E.5 Site Inspections during Construction
- **E.6** Post-Construction Inspections
- **E.7** Other Post-Const Runoff Controls

F. Pollution Prevention/Good Housekeeping

- **F.1** Employee Training Program
- **F.2** Inspection and Maintenance Program
- **F.3** Municipal Operations Storm Water Control
- **F.4** Municipal Operations Waste Disposal
- **F.5** Flood Management/Assess Guidelines
- **F.6** Other Municipal Operations Control

SECTION B: Attach the status of compliance with permit conditions, an assessment of the appropriateness of your identified Best Management Practices and progress towards achieving the statutory goal of reducing the discharge of pollutants to the MEP, and your identified measurable goals for each of the minimum control measures.

- A. Public Education and Outreach
- A.1 Distributed Paper Material
 - **A.2 Speaking Engagement**
 - **A.3 Public Service Announcement**
- A.4 Community Event
 - A.5 Classroom Education Material
- A.6 Other Public Education

ADDITIONAL VILLAGE COMPLETED TASKS:

The Village of Addison continues to distribute our own educational brochures. They are titled, "Guide to Storm Water Management," "Guide to Protecting Our Water Quality," "Guide to Best Management Practices," and "Guide to Drainage Easements." Additional brochures related to storm water management and water quality are currently being developed. Materials related to recycling, storm sewer stenciling, and dumping are distributed.

The Village of Addison also distributes various brochures produced by DuPage County, the Conservation Foundation and other agencies. The Village's electronic monthly newsletter also periodically includes educational information released by the County, the Conservation Foundation and the Midwest Pesticide Action Center. In addition, the Village posts informational videos distributed by the County on the Village's local cable station.

The Village of Addison sent an informational FAQ sheet to homeowners along drainage swales in May of 2010 regarding proper maintenance and landscaping. The sheet provided instruction on maintaining stream banks, preventing blockages, and controlling erosion.

B. Public Participation/Involvement

- **B.1** Public Panel
- **B.2 Educational Volunteer**
- B.3 Stakeholder Meeting
- **B.4 Public Hearing**
- **B.5** Volunteer Monitoring
- **B.6 Program Coordination**
- **B.7 Other Public Involvement**

ADDITIONAL VILLAGE COMPLETED TASKS:

The Village of Addison has a regular attendee of the Municipal Engineer's Meeting Group and has continued to assist in crafting Countywide ordinance revisions pertaining to protecting water quality with revised best management practice and illicit detection and discharge elimination requirements. The Village in conjunction with the rest of the group will continue its efforts on Water Quality improvement such as NPDES Phase II requirements, Soil and Erosion Control and Floodplain Ordinance revisions, Best Management Practices Manual and NPDES Outfall mapping, and Illicit Discharge and Detection Elimination.

The Village also continues to attend The DuPage River Salt Creek Workgroup (DRSCW) regular meetings, fund its annual fee, and offer available expertise as necessary.

Village staff made a presentation in March of 2017 about the MS4 program at a Village Board meeting to inform and allow for input from the community and public officials.

The Village of Addison, in conjunction with Boy Scout Troop 410, coordinated a local River Sweep in Westwood Creek on August 7, 2017. We collected approximately 10, 30 gallon trash bags of debris, totaling about 50 pounds, from Westwood Creek. The Village of Addison Environmental Services Division assisted in the coordination of the event as well as the removal of debris. The Village of Addison Public Works Division disposed of all refuse.

- C. Illicit Discharge Detection and Elimination
- C.1 Storm Sewer Map Preparation
- C.2 Regulatory Control Program
- **C.3 Detection/Elimination Prioritization Plan**
- C.4 Illicit Discharge Tracing Procedures
- **C.5 Illicit Source Removal Procedures**
- **C.6 Program Evaluation and Assessment**
- C.7 Visual Dry Weather Screening
- C.8 Pollutant Field Testing
 - **C.9 Public Notification**
- **C.10 Other Illicit Discharge Controls**

ADDITIONAL VILLAGE COMPLETED TASKS:

The Village of Addison continues to revise its storm sewer atlases and provide updates on its GIS. Creek outfalls have been located with GPS equipment and have been inputted into the GIS.

The development of an illicit discharge detection and elimination (IDDE) program has been completed and a local IDDE manual has been submitted with the 2008 Notice of Intent. The IDDE program was fully implemented in March 2008. The IDDE program includes a prioritization plan, outfall visual screening, monitoring program, tracing, enforcement, and reporting. The IDDE manual was revised in March of 2016.

The Village of Addison had identified 61 outfalls, and each was visually inspected and the conditions recorded during the reporting period. All outfalls were normal, and records of the inspections are available for review in our office.

There were several investigations performed over the past year related to pollution in the storm sewer system and local streams:

- 1) A diesel spill was reported to our department on 2/13/18 at approximately 2pm. The company, MidWest Graphics at 150 S. Church Street reported that a semi-tractor trailer was leaking diesel fuel from one of its saddle tanks into their docking bay. The truck belongs to Amerifreight out of Bensenville and they had Hazchem cleanup the affected area.
- 2) On 2/16 at 4N430 Mill Rd. our Dept. was made aware of a possible stormwater laundry detergent discharge over the sidewalk and into a Village storm-drain. The County was informed of our findings and has proceeded to address the violation.
- 3) On 1/24/18, a semi-tractor trailer ran over a large decorative rock at 120 W Factory Rd. Hazchem was called out and cleaned up the oil. No storm drains were impacted but oil booms were placed in the surrounding drains to be safe.
- 4) On 11/30/17, one of our inspectors noticed potential stormwater violations at 1130 W National. The inspector informed the owner of the oily swarf leaking from their dumpster and asked that they clean the area as well as invest in a sealed dumpster. We will continue to monitor.
- 5) On 11/07/17, one of our inspectors noticed potential stormwater violations at 1213 Capitol, Hi-Tech Machining. Our inspector informed the company that the swarf from their CNC machining was leaking onto the pavement and could cause potential stormwater violations. The owner has since cleaned the area and is looking into getting a sealed container.
- 6) On 10/25/17, a call from the IEPA was received by our dept. Krages Mobil Service Center at 191 E Lake St was found to have allowed an illegal discharge to our stormwater system. However our sewer dept. was able to determine that the affected line was a combined sewer and storm water line. No fine was issued but Krages was informed that only stormwater may be discharged into the stormwater system. We will continue to monitor.
- 7) On 10/10/17, our inspectors discovered an illegal discharge into our stormwater system. The apartments at 413/419 Stevens had a blocked sewer line that was fed by an ejector pit. The result of the blockage was an overflow of sewage from the ejector pit to a nearby sump pit that drains to storm. The blocked line has been repaired and hence sewage is no longer being pumped to storm.
- On 10/06/17, a fish kill was reported at Lake Manor Pond. Testing on site indicated the presence of chlorine. We were unable to locate the responsible party. We will continue to monitor.
- 9) On 10/03/17, visual inspection of Granny's Restaurant at 190 N Swift, indicated stormwater violations. The company was contacted and asked to correct the problems. An environmental cleanup company was hired to clean up the grease from the storm water drain. We issued fines for the violation.
- 10) On 9/20/17, Mistica Foods, 50 W Commercial Ave., was found to have had some stormwater issues after a visual inspection by our dept. Mistica has since addressed these issues. We will continue to monitor.
- 11) On 9/13/17, The Countertop Factory and Chicago Custom Powder Coating were found guilty of violating Village code, Unlawful Deposition of Waste in an administrative adjudication hearing.

- 12) On 9/12/17, visual inspection of Grind Lap Services, Inc., 1045 National Ave, indicated stormwater violations. The company was contacted and asked to correct the problems. We will continue to monitor.
- 13) On 8/28/17, our dept. responded to a call from Addison PD concerning car fluids leaking into a storm drain on Lake St following a car accident. The affected drain was cleaned. No other connected drains were affected.
- 14) On 8/16/17, our dept. noticed that Windy City Countertops had been letting their process waste get into Addison storm drains. The owner was contacted and warned of future violations, fines and citations. The waste has since been cleaned up and we will continue to monitor.
- 15) On Aug. 8th, Armor Tech, 41 W Fullerton Ave, was found to have washed off organic solvents and paint waste off of their unfinished product outside of their facility and into the alley. This was their second offense and a citation was issued.
- 16) The Village conducted a River Sweep of Westwood Creek on 8/7/17. Approximately 10 bags of garbage were collected by Boy Scout Troops and our Dept.
- 17) On 8/2/17, The Countertop Factory, 869 S Rohlwing Rd, was found to have discharged their process waste outside of their facility after they had cleaned up a previous overland discharge from the weekend before. The company has been issued a citation.
- 18) On 6/30/17 we received a call from our Water Dept. concerning a failed septic system at 4N014 Lombard Rd. We were unable to make contact with the homeowner but informed DuPage Co. Health Dept. of the situation. We will continue to monitor.
- 19) On 6/21/17 a call was received from AFD concerning a business on Vista Ave washing oil and grease down into the storm drains near the AFD fire station at 666 Vista. The business was power washing the underside of a semi-truck and the oily water was collecting on the nearby curbs. Booms were placed near the drains and the oil was cleaned up by the business, TGL Logistics at 500 S Vista.
- 20) On 5/25/17, our dept. responded to a call from the Cary Company concerning their fire suppressant system. The system was discharged by accident and the AFD was on-site to assist. Some of the suppressant was found in the storm system and the majority was pumped into 55 gal drums and hauled off for proper disposal.
- 21) On 5/17/17, a blockage was found in the docking bay of Plastisol Products, 1002 Republic Dr. The owner was informed that he needed to clean the clog out and any other affected storm lines. Plastisol cleaned all affected lines and have sent us the waste manifest for the recovered polluted water.
- 22) On 5/10/17 while inspecting storm lines in un-incorporated Addison at 3N460 Lombard Rd., our inspector questioned the resident and informed him that we were looking for illegal hook-ups to our storm lines. After our visit and a visit by DuPage County the owner informed us that their laundry line was hooked up to our storm system. The resident has since disconnected. We will continue to monitor.
- 23) On 5/6/17, we received a call about laundry waste entering a storm drain at 232 W Lake St. The problem tuned out to be a collapsed line at the intersection of JFK Dr. and the entrance to Jewel. The lateral belonged to Leisure Time Laundromat. The owner of the building was notified and the line repaired on May 10th.
- 24) On 4/24/17, our sewer dept. called in to report heavy oil build-up in the inspection manhole belonging to CNC Swiss Machining, 761a W Racquet Club Dr, Addison, IL 60101. The company was notified and found the problem to be with their clean-up routine. The used mop water bucket, containing the heavy oil, will now be hauled off according to the manager. We will continue to monitor the situation.

Illinois Environmental Protection Agency – Annual Facility Inspection Report – NPDES Permit for Stormwater Discharges from Municipal Separate Storm Sewer Systems (MS4) March 2017 – March 2018 Page 6 of 14

- 25) On 4/20/17, an oil sheen was reported on Westwood Creek near Lincoln Court. Upon further investigation we found no evidence of anyone dumping into the creek. We will continue to monitor this area.
- 26) On 4/19/17, pellets of an unknown substance were found by Fullerton Creek near U.S Tool & Manufacturing Co. The manager was notified and cleaned the area.
- 27) On 4/11/17, oil and grease was noticed in the storm drain of Popeye's Chicken, 691 W Lake St. The owner was notified and the drain was washed and pumped out. Surrounding area of the drain was also cleaned.
- 28) On 4/7/17, construction site stormwater violations were observed at Clyde's Donuts, 1120 W Fullerton. Clyde's manager was notified as was Addison Community Development. They have since rectified the problems with the help of our Com. Dev inspector.

Finally, the Village also performed periodic grab sampling and analysis at 21 of the 61 outfall points. A total of 61 screening samples were collected and 367 different field analyses were performed. Parameters tested included Metals, D.O., Temperature, Ammonia, Nitrate, Phosphate and pH. A summary of the monitoring data collected is attached in Section C. There were no high levels reported during the testing.

- **D.** Construction Site Runoff Control
- **D.1 Regulatory Control Program**
- D.2 Erosion and Sediment Control BMPs
- **D.3 Other Waste Control Program**
- **D.4 Site Plan Review Procedures**
- **D.5 Public Information Handling Procedures**
- **D.6 Site Inspection/Enforcement Procedures**
- **D.7 Other Construction Site Runoff Controls**

ADDITIONAL VILLAGE COMPLETED TASKS:

Village of Addison staff continues to be a regular attendee of the Municipal Engineer's Meeting Group and continues to assist in crafting Countywide ordinance revisions pertaining to protecting water quality with revised Best Management Practices and Illicit Discharge and Detection Elimination. The Village in conjunction with the rest of the group will continue its efforts on Water Quality improvement such as NPDES Phase II requirements, Soil and Erosion Control and Floodplain Ordinance revisions, Best Management Practices Manual and NPDES Outfall mapping.

Site plan reviews greater than one acre and under NPDES Phase II are not only required to meet the County and the Village's ordinance, but also reviewed to satisfy many state requirements of the state ILR10 permit. These sites are required to pass an erosion and sediment controls inspection prior to disturbing the earth and are checked regularly by the engineering inspector.

Site plan reviews less than one acre are also required to meet the County and the Village's ordinance. Those permits receive attached details indicating how erosion and sediment controls are to be installed for small sites. Small sites are required to pass erosion and sediment controls inspection prior to disturbing the earth and are checked by building inspectors during most of the construction.

The Village issued Eighteen (18) stormwater permits during the 2017-2018 reporting year.

- E. Post-Construction Runoff Control
- **E.1** Community Control Strategy
- **E.2 Regulatory Control Program**
- **E.3 Long Term O&M Procedures**
- **E.4 Pre-Const Review of BMP Designs**
- **E.5** Site Inspections during Construction
- **E.6 Post-Construction Inspections**
- **E.7 Other Post-Const Runoff Controls**

ADDITIONAL VILLAGE COMPLETED TASKS:

Village of Addison staff is a regular attendee of the Municipal Engineer's Meeting Group and continues to assist in crafting Countywide ordinance revisions pertaining to protecting water quality with Post Construction Best Management Practices. The Village in conjunction with the rest of the group will continue its efforts on Water Quality improvement such as NPDES Phase II requirements, Soil and Erosion Control and Floodplain Ordinance revisions, Best Management Practices Manual and NPDES Outfall mapping.

Site plan reviews greater than one acre and under NPDES Phase II are required not only to meet the County and the Village's ordinance, but also reviewed to satisfy many state requirements of the state ILR10 permit.

The BMP manual developed by a private consultant for the Countywide ordinance was adopted in 2008. The manual includes educational narratives, a BMP selection guidance, and technical specifications that appropriately reflect the county's urban setting, winter season, poorly draining soils, and flat topography. The Village has since required applicable sites to incorporate BMP's into the proposed plans. References are provided to developers for implementation of permanent, post-construction BMP's.

The DuPage County Stormwater and Floodplain Ordinance adopted in 2012 requires Post Construction Best Management Practices (PCBMP) for all sites where the Net New Impervious Area is 2,500 square feet or greater. The Village requires all applicable sites (residential, commercial and industrial) to implement PCBMP's to provide water quality and volume control.

Before accepting a completed project the Village requires record drawings to be approved and an environmental report, as necessary, be submitted. Final inspections are also performed to determine whether installed structures perform as designed and within Village parameters. Small sites also are required to provide post construction erosion and sediment controls such as sod or blanket in the parkway and swales prior to occupancy.

F. Pollution Prevention/Good Housekeeping

- **F.1 Employee Training Program**
- **F.2 Inspection and Maintenance Program**
- **F.3 Municipal Operations Storm Water Control**
- **F.4 Municipal Operations Waste Disposal**
- **F.5** Flood Management/Assess Guidelines
- **F.6** Other Municipal Operations Controls

ADDITIONAL VILLAGE COMPLETED TASKS:

Catch basin cleaning continues approximately every four years for storm sewer systems and every year for combined sewer systems. Street sweeping continues on a regular basis with all streets sweep at least six times a year.

A training session on storm water pollution prevention was held with all Public Works employees on April 5, 2017. The training focused on Pollution Prevention training for MS4 communities.

A training session was held at DuPage County Department of Transportations on 10/12/17 for the Village's street department. This session was focused on the deicing of public roads and chloride reduction in our streams.

The Village also continues to attend The DuPage River Salt Creek Workgroup (DRSCW) regular meetings, fund its annual fee, and offer available expertise as necessary.

A summary of the reportable data for several of the municipal activities is as follows:

ANNUAL MS4 REPORT – MUNICIPAL OPERATIONS REPORT TIME PERIOD: MARCH 1, 2017 TO MARCH 1, 2018

Street Sweeping (Minimum Control F.3):

2,745 Curb miles cleaned

3,071 Tons of debris removed from street	S
--	---

Salt Usage (Minimum Control F.3):

	1,787	Tons of salt used
--	-------	-------------------

- 5 Number of snow events (2" or greater)
- <u>27</u> Number of ice events
- <u>66</u> Tons of salt used per event

Sewer Catch Basin Cleaning (Minimum Control F.3):

- 640 # of Storm Sewer Catch Basins/Inlets cleaned and pumped (out of approx. 2200)
- <u>160</u> # of Combined Sewer Catch Basins/Inlets cleaned and pumped (out of approx. 160)

Training (Minimum Control F.1):

- $\sqrt{}$ Completed Pollution Prevention training for MS4 communities Employees (Date: 4/5/17)
- $\sqrt{}$ Completed annual Salt Usage/Salt Loading training (Date: 10/31/17)
- $\sqrt{}$ Completed annual Public Meeting (Date: 3/13/17)

SECTION C: Attach results of information collected and analyzed, including monitoring data, if any, during the reporting period.

See Attached Data.

SECTION D: Attach a summary of the stormwater activities you plan to undertake during the next reporting cycle (including an implementation schedule).

A. Public Education and Outreach

The Village, as time and knowledge allows, will continue to develop educational handouts related to storm water discharges and protecting and maintaining water quality discharged into the waterways. Community events will be offered to local groups from time to time.

The Village of Addison also distributes various brochures produced by DuPage County, the Conservation Foundation and other relevant organizations. The Village's electronic newsletter also periodically includes educational information released by the County, the Conservation Foundation, the Midwest Pesticide Action Center and other organizations. In addition, the Village posts informational videos distributed by DuPage County on the Village's local cable station along with links on the Village's facebook page.

B. Public Participation/Involvement

The Village of Addison, in conjunction with the Conservation Foundation and local Boy Scout Troops, will continue to coordinate and participate in local River Sweeps.

The Village will continue to meet and participate in the Municipal Engineer's Meeting Group and the DuPage County Water Quality Stakeholder Committee. Both groups meet on a regular basis to review and discuss program development as it pertains to storm water discharges and water quality. Discussions will include best management practices, illicit discharge detection and elimination, or other relevant discussions.

In the next reporting year, the BMP manual revision to the Ordinance and Technical Guidance Document to the Stormwater Management Committee will continue to be implemented.

C. Illicit Discharge Detection and Elimination

The development of an illicit discharge detection and elimination (IDDE) program has been completed and a local IDDE manual has been submitted with the 2008 Notice of Intent. The IDDE program was fully implemented in March 2008. The IDDE program includes a

Illinois Environmental Protection Agency – Annual Facility Inspection Report – NPDES Permit for Stormwater Discharges from Municipal Separate Storm Sewer Systems (MS4) March 2017 – March 2018 Page 11 of 14

prioritization plan, outfall screening/monitoring program, tracing, enforcement, and reporting. The IDDE manual was revised in March of 2016.

The Village will continue to inspect and monitor the 21 primary storm sewer/waterway locations on a continuous basis. In addition, the Village of Addison had identified 61 outfalls, and each was visually inspected and the conditions recorded during the reporting period. All outfalls were normal, and records of the inspections are available for review in our office.

There were several investigations performed over the past year related to pollution in the storm sewer system and local streams.

D. Construction Site Runoff Control

The BMP related Ordinance changes have been adopted and Village staff has attended training workshops as offered by the DuPage County Water Quality Education Program. The Village will continue to conduct a minimum of two inspections for construction runoff site control per storm water permit issued.

E. Post-Construction Runoff Control

The Village will continue to use the Water Quality Stakeholder committee and Municipal Engineers Meeting Group to evaluate problematic areas of the post construction BMPs being utilized in DuPage County and make recommendations where necessary.

F. Pollution Prevention/Good Housekeeping

Training will be provided at least annually with the entire Public Works staff to review storm water impacts from each of the divisions' municipal operations. Training typically covers an overview of Addison's "Storm Water Pollution Prevention and Good Housekeeping Manual" and review of our chloride reduction programs. Training is typically held in the fall.

SECTION E: The 40 co-permittees listed in the cover letter rely on **DuPage County to satisfy some of their permit obligations as applicable.**

SECTION F: Attach a list of construction projects that your entity has paid for during the reporting period.

Village of Addison (ILR 40 MS4 Permit # 0227)

Location/Project Name	Category	Start Date – End Date
Storm Sewer Improvements – Various	Utility	Apr '17 – Nov '17
Motor Fuel Tax - Resurfacing	Transportation	May '17 – Oct '17
Village Green Improvements – Permeable	Utility &	September '16 – May '17
Pavers, Drainage, Walkways, Lighting	Transportation	

ATTACHMENT

SECTION C

Ö
ā
5
4
Ξ.
\underline{O}
Z
<u> </u>
8
1
3
Õ
~
н
ΞŤ.
-
0
т.
0
Ť.
m.
Ï.
Ĩ.
2
1

MIN	AVG.	MAX							8/10/17	6/13/17	5/25/17	4/18/17	DATE	
					T				Z	Ę	Ę	z	COND.*	PHYS.
									9:25AM	8:35AM	1:00PM	2:10PM	TIME	
7.19	7.19	7.19										7.19	рĦ	
63.0	63.0	63.0										63.0	(C°)	TEMP
8.90	8.90	8.90										8.90	(Ma/L)	DIS. OXY. COPPER ZINC
0.01	0.01	0.01										0.01	(Mg/L)	COPPER
0.06	0.06	0.06										0.06	(Mg/L)	ZINC
0.43	0.43	0.43										0.43	(Mg/L)	AMMONIA
0.71	0.71	0.71										0.71	(Mg/L)	PHOS
													(Mg/L)	CHROME
69.0	79.8	88.0							84.0	88.0	69.0	78.0	HIGH TEMP.	AMMONIA PHOS CHROME Last 24 hrs
32.0	50.0	68.0							32.0	68.0	52.0	48.0	LOW TEMP.	Last 24 hrs
0.00	0.01	0.03							0.03	0.00	0.00	0.00	PRECIP.	Last 24 hrs

NF- No Flow S-Sheen

N-Normal

F-Foam C-Colored

LOCATION: 24" LAKE STREET

MIN	AVG.	MAX							8/8/17	6/12/17	5/22/17	4/18/17	DATE	
									Ϋ́	ł	N	z	COND.*	PHYS.
									10:55AM	11:00AM	11:00AM	10:45AM	TIME	
6.82	6.82	6.82										6.82	рH	
59.7	59.7	59.7										59.7	(C°)	TEMP
7.53	7.53	7.53			-							7.53	(Mg/L)	DIS. OXY.
0.30	0.30	0.30										0.30	(Mg/L)	COPPER
0.01	0.01	0.01										0.01	(Mg/L)	ZINC
							 						(Mg/L)	DIS. OXY. COPPER ZINC NITRATE
1.20	1.20	1.20										1.20	(Mg/L)	PHOS CHR
													(Mg/L)	CHROME
73.0	82.5	95.0							84.0	95.0	73.0	78.0	HIGH TEMP. LOW TEMP.	COME Last 24 hrs
48.0	56.8	73.0							58.0	73.0	48.0	48.0	LOW TEMP.	Last 24 hrs
0.00	0.00	0.01							0.00	0.00	0.01	0.00	PRECIP.	Last 24 hrs

* N-Normal NF- No Flow S-Sheen F-Foam C-Colored

LOCATION: 36"@PALMER (AJL)

MIN	AVG.	MAX							8/10/17	6/13/17	5/22/17	4/18/17	DATE	
									z	z	z	Ę	COND.*	PHYS.
									10:30AM	9:05AM		2:05PM	TIME	
7.02	7.13	7.33							7.05	7.33	7.02		PH	
58.6	70.7	76.8							76.6	76.8	58.6		(င°)	IEMT
5.57	6.71	7.62							6.94	5.57	7.62		(Mg/L)	UIS. OXY. COPPER ZINC NITRATE
0.06	0.09	0.10							0.10	0.06	0.10		(Mg/L)	COPPER
0.01	0.11	0.29							0.02	0.01	0.29		(Mg/L)	ZINC
													(Mg/L)	NITRATE
0.03	2.12-	5.80							5.80	0.52	0.03		(Mg/L)	PHOS
													(Mg/L)	CHROME
73.0	80.8	88.0							84.0	88.0	73.0	78.0	HIGH TEMP. LOW TEMP	PHOS CHROMELast 24 hrs
48.0	56.5	68.0							62.0	68.0	48.0	48.0	LOW TEMP.	Last 24 hrs
0.00	0.01	0.03							0.03	0.00	0.01	0.00	PRECIP.	Last 24 hrs

NF- No Flow S-Sheen F-Foam

* N-Normal

C-Colored

_
6
X
ž
4
0
ž
-
5
. *
S
2
5
Ŧ
0
¥
ä
¥.
ī
λ
고
-

MIN	AVG.	MAX							8/10/17	6/13/17	5/25/17	4/19/17	DATE	
									Z	z	z	z	COND.*	PHYS.
									9:15AM	8:45AM	2:20PM	10:10AM	TIME	
7.40	7.59	7.87								7.87	7.40	7.49	PH	
55.7	60.7	68.1								68.1	58.2	55.7	(ငူ	TEMP
7.83	8.53	9.22									7.83	9.22	(Mg/L)	DIS. OXY.
0.11	0.19	0.27									0.11	0.27	(Mg/L)	COPPER
0.01	0.29	0.57									0.57	0.01	(Mg/L)	ZINC
0.02	0.09	0.17								0.02	0.17	0.09	(Mg/L)	DIS. OXY. COPPER ZINC AMMONIA PHOS CH
1.58	1.58	1.58										1.58	(Mg/L)	PHOS
0.01	0.01	0.01										0.01	(Mg/L)	CHROME
50.0	72.8	88.0							84.0	88.0	69.0	50.0	HIGH TEMP.	ROMELast 24 hrs
43.0	56.3	68.0	-						62.0	68.0	52.0	43.0	LOW TEMP.	Last 24 hrs
0.00	0.07	0.23							0.03	0.00	0.00	0.23	PRECIP.	Last 24 hrs

* N-Normal NF- No Flow S-Sheen F-Foam C-Colored

4/25/17 Zinc No color change

6/13/17 Nitrate 1.0 Nitrite less than 0.15

LOCATION: 48
3"ADDISON
& LORRAINE

MIN	AVG.	MAX							8/9/17	6/14/17	5/22/17	4/19/17	DATE	
									z	z	z	z	COND.*	PHYS.
									9:35AM	9:15AM	10:00AM	10:00AM	TIME	
7.01	7.18	7.28							7.16	7.28	7.01	7.27	면	
55.9	59.7	63.7							63.7	61.9	57.1	55.9	င့	TEMP
4.30	6.92	8.39							7.15	4.30	7.83	8.39	(Mg/L)	DIS. OXY. COPPER ZINC
0.03	0.29	0.81							0.81		0.04	0.03	(Mg/L)	COPPER
0.01	0.33	0.68							0.01	0.02	0.60	0.68	(Mg/L)	ZINC
11.60	11.60	11.60								11.60			(Mg/L)	NH3
0.03	1.49	4.80							0.90	4.80	0.03	0.24	(Mg/L)	PHOS
0.02	0.15	0.35							0.05	0.02	0.18	0.35	(Mg/L)	CHROME
50.0	74.5	92.0							83.0	92.0	73.0	50.0	HIGH TEMP.	PHOS CHROME Last 24 hrs
43.0	55.0	68.0							61.0	68.0	48.0	43.0	HIGH TEMP. LOW TEMP.	Last 24 hrs
0 00	0.15	0.59							0.00	0.59	0.01	0.00	PRECIP.	Last 24 hrs

* N-Normal NF- No Flow S-Sheen F-Foam

C-Colored

8/9/17 0.81 COPPER NO COLOR CHANGE PRECIPITATION

LOCATION: 54" ADDISON & ARMITAGE

MIN	AVG.	MAX							8/9/17	6/14/17	5/22/17	4/19/17	DATE	
									Z FI	Ę	z	z	COND.*	PHYS.
									9:45AM	9:30AM	2:30PM	9:30AM	TIME	
6.97	7.05	7.13									7.13	6.97	PH	
54.2	56.6	58.9									58.9	54.2	(င့	TEMP
8.55	8.55	8.55									8.55		(Mg/L)	DIS. OXY.
0.08	0.11	0.14									0.08	0.14	(Mg/L)	COPPER
0.01	0.03	0.05									0.01	0.05	(Mg/L)	ZINC
													(Mg/L)	NITRATE
0.81	1.14	1.46									0.81	1.46	(Mg/L)	PHOS
0.03	0.03	0.03										0.03	(Mg/L)	CHROME
50.0	74.5	92.0							83.0	92.0	73.0	50.0	HIGH TEMP.	DIS. OXY. COPPER ZINC NITRATE PHOS CHROMELast 24 hrs
43.0	55.0	68.0							61.0	68.0	48.0	43.0	HIGH TEMP. LOW TEMP.	Last 24 hrs
0.00	0.21	0.59							0.00	0.59	0.01	0.23		Last 24 hrs

* N-Normal NF- No Flow S-Sheen F-Foam C-Colored

LOCATION: 72" ODEUM

MIN	AVG.	MAX							8/8/17	6/13/17	5/22/17	4/19/17	DATE	
			T						Ч	N.	NF	z	COND.*	PHYS.
									2:25PM	1:15PM	1:30PM	10:40AM	TIME	
7.40	7.40	7.40										7.40	PH	
59.6	59.6	59.6										59.6	ြိ	TEMP
8.02	8.02	8.02			-							8.02	(Mg/L)	DIS. OXY.
0.03	0.03	0.03										0.03	(Mg/L)	COPPER
0.17	0.17	0.17										0.17	(Mg/L)	ZINC
													 (Mg/L)	DIS. OXY. COPPER ZINC NITRATE
96.0	0.96	0.96										0.96	(Mg/L)	PHOS
													(Mg/L)	CHROME
50.0	73.8	88.0							84.0	88.0	73.0	50.0	HIGH TEMP.	PHOS CHROME Last 24 hrs
43.0	54.3	68.0							58.0	68.0	48.0	43.0	Ig/L) HIGH TEMP. LOW TEMP.	Last 24 hrs
0.00	0.06	0.23							0.00	0.00	0.01	0.23	 PRECIP.	Last 24 hrs

* N-Normal NF- No Flow S-Sheen

F-Foam C-Colored

LOCATION: CENTENNIAL POND

MIN	AVG.	MAX						8/10/17	6/13/17	5/23/17	4/20/17		DATE	
								z	z	z	z		COND.*	PHYS.
								2:20PM	2:40PM	1:25PM	10:10AM 7.00		TIME	
7.00	7.44	7.91						7.57	7.91	7.26	7.00		рн	
61.1	73.2	84.4						78.9	84.4	61.1	68.4		(င၅	TEMP
7.32	9,09	11.21						9.37	11.21	7.32	8.47		(Mg/L)	DIS. OXY.
0.06	0.12	0.25						0.07	0.06	0.25	0.10		(Mg/L)	COPPER
0.01	0.04	0.08						0.01	0.07	0.01	0.08		(Mg/L)	ZINC
0.00	1.00	2.00						2.00	1.00		0.00		(Mg/L)	NITRATE
0.54	0.80	1.24						0.54	0.76	0.64	1.24	Τ	(Mg/L)	PHOS
													(Mg/L)	CHROME
62.0	74.5	88.0						84.0	88.0	62.0	64.0		HIGH TEMP. LOW TEMP	DIS. OXY. COPPER ZINC NITRATE PHOS CHROMELast 24 hrs
48.0	58.3	68.0						62.0	68.0	55.0	48.0		LOW TEMP	Last 24 hrs
0.00	0.18	0.34						0.03	0.00	0.33	0.34	T	PRECIP.	Last 24 hrs

* N-Normal NF- No Flow S-Sheen F-Foam C-Colored

LOCATION: DAVEA POND

MIN	AVG.	MAX							8/9/17	6/13/17	5/23/17	4/17/17	DATE	
									z	Ν	z	z	COND.*	PHYS.
									10:25AM	1:30PM	3:05PM	2:20PM	TIME	
7.28	7.98	8.72							7.94		8.72	7.28	рH	
60.6	68.0	75.1							75.1		60.6	68.2	(C°)	TEMP
9.49	10.49	11.66							10.3		11.66	9.49	(Mg/L)	DIS. OXY. COPPER ZINC INITRATE PHOS CHR
0.01	0.07	0.18							0.18		0.01	0.02	(Mg/L)	COPPER
0.07	0.08	0.10							0.07		0.07	0.10	(Mg/L)	ZINC
0.00	0.00	0.00							2.00		0.00		(Mg/L)	NITRATE
0.42	0.66	0.84							0.84		0.72	0.42	(Mg/L)	PHOS
													(Mg/L)	CHROME
62.0	76.5	88.0							83.0	88.0	62.0	73.0	HIGH TEMP.	OME Last 24 hrs
55.0	61.5	68.0							61.0	68.0	55.0	62.0	HIGH TEMP, LOW TEMP.	Last 24 hrs
0.00	0.18	0.37							0.00	0.00	0.33	0.37	PRECIP.	Last 24 hrs

* N-Normal NF- No Flow S-Sheen C-Colored

F-Foam

LOCATION: DIVERSEY AVE PUMP STATION

MIN	AVG.	MAX								8/8/17	6/12/17	5/22/17	4/18/17	DATE	
										NF	NF	z	z	COND.*	PHYS.
										10:40AM	10:50AM		10:30AM 7.28	TIME	
7.02	7.15	7.28										7.02	7.28	면	
58 <u>.</u> 6	59.4	60.2										58.6	60.2	(င၅	TEMP
7.62	8.21	8.80										7.62	8.80	(Mg/L)	DIS. OXY. COPPER ZINC
0.10	0.11	0.12										0.10	0.12	(Mg/L)	COPPER
0.01	0.15	0.29										0.29	0.01	(Mg/L)	ZINC
														(Mg/L)	
0.03	0.30	0.56										0.03	0.56	(Mg/L)	PHOS
														(Mg/L)	CHROME
73.0	82.5	95.0								84.0	95.0	73.0	78.0	HIGH TEMP.	NITRATE PHOS CHROMELast 24 hrs
48.0	56.8	73.0								58.0	73.0	48.0	48.0	HIGH TEMP. LOW TEMP.	Last 24 hrs
0.00	0.00	0.01	-							0.00	0.00	0.01	0.00	PRECIP.	Last 24 hrs

* N-Normal NF- No Flow S-Sheen

F-Foam C-Colored

LOCATION: FULLERTON AT FAIRBANKS

MIN	AVG.	MAX						8/10/17	6/14/17	5/23/17	4/20/17	DATE	
								z	z	z	z	COND.*	PHYS.
								2:35PM	9:50AM	11:00AM	2:45PM	TIME	
6.58	7.25	7.86						7.42	7.15	6.58	7.86	면	
58.1	67.4	77.8						70.5	77.8	58.1	63.0	(ငူ	TEMP
7.83	10.60	12.82						7.83	12.80	8.95	12.82	(Mg/L)	DIS. OXY.
0.01	0.09	0.20						0.20	0.01	0.05	0.09	(Mg/L)	DIS. OXY. COPPER ZINC Ammonia PHOS CHI
0.01	0.06	0.12						0.03	0.01	0.12	0.06	(Mg/L)	ZINC
0.07	0.35	0.63							0.63		0.07	(Mg/L)	Ammonia
0.83	0.93	1.20						0.83	0.86	0.83	1.20	(Mg/L)	PHOS
								Γ					CHROME
62.0	75.5	92.0						84.0	92.0	62.0	64.0	HIGH TEMP.	ROMELast 24 hrs
48.0	58.3	68.0						62.0	68,0	55.0	48.0	HIGH TEMP. LOW TEMP.	Last 24 hrs
0.03	0.32	0.59						0.03	0.59	0.33	0.34	PRECIP.	Last 24 hrs

* N-Normal NF- No Flow C-Colored

S-Sheen F-Foam

LOCATION:
FULLERTON
@STEWART

MIN	AVG.	MAX							8/8/17	6/15/17	5/17/17	4/20/17	DATE	
									z	z	z	z	COND.*	PHYS.
									2:10PM 7.17	2:30PM 7.52	10:00AM	2:20AM	TIME	
6.93	7.31	7.62							7.17	7.52		7.62	PH	
57.8	69.4	75.5							72.3	75.5	57.8	71.8	ິດ	IEMP
6.35	7.62	9.04							9.04	6.90	6.35	8.20	(Mg/L)	DIS. OXY
0.04	0.08	0.14							0.04	0.04	0.14	0.09	(Mg/L)	COPPER
0.00	0.02	0.06							0.01	0.00	0.01	0.06	(Mg/L)	ZINC
													(Mg/L)	DIS. OXY. COPPER ZINC AMMONIA
0.30	0.68	1.20							0.30	0.72	0.51	1.20	(Mg/L)	PHOS C
													(Mg/L)	
64.0	80.8	91.0							84.0	0.16	84.0	64.0	HIGH TEMP .	HROME Last 24 hrs
48.0	61.8	73.0							58.0	68.0	73.0	48.0	HIGH TEMP. LOW TEMP.	Last 24 hrs
0.00	0.20	0.37		_	-				0.00	0.07	0.37	0.34		Last 24 hrs

* N-Normal NF- No Flow C-Colored

S-Sheen F-Foam

LOCATION: HAMPTON INN

MIN	AVG.	MAX							8/10/17	6/13/17	5/23/17	4/20/17	DATE	
									z	z	z	z	COND.*	PHYS.
									10:50AM	1:55PM	1:15PM	9:45AM	TIME	
6.74	7.37	8.10							7.31	7.32	8.10	6.74	РĦ	
60.4	70.3	82.1							74.5	82.1	64.2	60.4	(င°	TEMP
2.96	5.63	6.92							6.71	2.96	5.91	6.92	(Mg/L)	DIS. OXY.
0.01	0.02	0.02							0.01	0.01	0.02	0.02	(Mg/L)	COPPER
0.01	0.01	0.01							0.01	0.01	0.01	0.01	(Mg/L)	ZINC
0.00	0.50	1.00								1.00		0.00	(Mg/L)	NITRATE
0.01	1.10	2.10							2.10	0.86	0.01	1.44	(Mg/L)	PHOS
													(Mg/L)	CHROME
62.0	74.5	88.0	1						84.0	88.0	62.0	64.0	g/L) HIGH TEMP. LOW TEMP.	DIS. OXY. COPPER ZINC NITRATE PHOS CHROMELast 24 hrs
48.0	58.3	68.0							62.0	68.0	55.0	48.0	LOW TEMP.	Last 24 hrs
0.00	0.18	0.34			,				0.03	0.00	0.33	0.34	PRECIP.	Last 24 hrs

* N-Normal **NF- No Flow** S-Sheen F-Foam C-Colored

LOCATION: LAKE MANOR POND

MIN	AVG.	MAX							8/9/17	6/15/17	5/23/17	4/18/17	DATE	
									z	z	z	z	COND.*	PHYS.
									2:45PM	1:10PM	10:30AM	2:40PM	TIME	
6.90	7.20	7.64							6.92	7.64	6.90	7.34	모	
56.9	69.4	82.1							74.2	82.1	56.9	64.5	(င°	TEMP
5.74	8.58	13.25							5.74	8.70	6.61	13.25	(Mg/L)	DIS. OXY. COPPER ZINC
0.01	0.08	0.22							0.06	0.01	0.03	0.22	(Mg/L)	COPPER
0.01	0.03	0.06							0.03	0.01	0.01	0.06	(Mg/L)	ZINC
0.039	0.144	0.314								0.080	0.314	0.039	(Mg/L)	AMMONIA
0.11	0.68	1.65							0.25	1.65	0.11	0.71	(Mg/L)	PHOS N
													(Mg/L)	
62.0	78.5	91.0							83.0	91.0	62.0	78.0	HIGH TEMP.	TRATE Last 24 hrs
48.0	58.0	68.0							61.0	68.0	55.0	48.0	HIGH TEMP. LOW TEMP.	Last 24 hrs
0.00	0.10	0.33							0.00	0.07	0.33	0.00	PRECIP.	Last 24 hrs

NF- No Flow S-Sheen C-Colored

* N-Normal

F-Foam

LOCATION: MYRIC AVE. PUMP STATION

MîN	AVG.	MAX							8/8/17	6/12/17	5/17/17	4/18/17	DATE	
									Z			NF	COND.*	PHYS.
									10:45AM	11:05AM	9:20AM	10:20AM	TIME	
													PH	
													(ငူ	IEMP
				Ĩ									(Mg/L)	DIS. OXY. COPPER ZINC NITRATE PHOS CHR
													(Mg/L)	COPPER
													(Mg/L)	ZINC
													(Mg/L)	NITRATE
													(Mg/L)	PHOS
													(Mg/L)	CHROME
78.0	85.3	95.0							84.0	95.0	84.0	78.0	HIGH TEMP.	OMELast 24 hrs
48.0	63.0	73.0							58.0	73.0	73.0	48.0	HIGH TEMP. LOW TEMP.	Last 24 hrs
0.00	0.09	0.37							0.00	0.00	0.37	0.00	PRECIP.	Last 24 hrs

NF- No Flow S-Sheen F-Foam

* N-Normal

C-Colored

LOCATION: OPUS POND EFFLUENT

NIN	AVG.	MAX						:	8/9/17	6/13/17	5/23/17	4/17/17	DATE	
									 z	N	z	z	COND.*	PHYS.
									10:10AM	1:25PM	2:25PM	2:00PM	TIME	
6.70	7.19	7.80							7.80		6.70	7.06	면	
62.9	71.0	78.2							78.2		62.9	72.0	(ငူ	TEMP
9.42	11.38	13.21	1						9.42		11.51	13.21	(Mg/L)	DIS. OXY.
0.01	0.08	0.12							0.12		0.01	0.10	(Mg/L)	DIS. OXY. COPPER ZINC NITRATE
0.02	0.11	0.26							0.02		0.04	0.26	(Mg/L)	ZINC
0.00	1.00	2.00							2.00		0.00		(Mg/L)	NITRATE
0.84	1.23	1.44							0.84		1.40	1.44	(Mg/L)	PHOS
													(Mg/L)	CHROME
62.0	76.5	88.0							0.58	0.88	62.0	73.0	HIGH TEMP.	PHOS CHROMELast 24 hrs
55.0	61.5	68.0							61.0	68.0	55.0	62.0	HIGH TEMP. LOW TEMP.	Last 24 hrs
0.00	0.18	0.37							0.00	0.00	0.33	0.37	PRECIP.	Last 24 hrs

* N-Normal NF- No Flow S-Sheen C-Colored

F-Foam

LOCATION: REPUBLIC CURVE

MIN	AVG.	MAX							8/8/17	6/15/17	5/25/17	4/20/17	DATE	
									z	z	z	ი	COND.*	PHYS.
									1:35PM	1:55PM	2:00PM	1:10PM	TIME	
6.84	6.96	7.25							6.89	7.25	6.87	6.84	모	
59.6	<u>65.6</u>	73.4							68.7	73.4	59.6	60.6	(င့	IEMT
3.65	5.33	6.57							5.48	5.60	6.57	3.65	(Mg/L)	DIS. OXY. COPPER ZINC NITRATE
0.05	0.16	0.23							0.23	0.18	0.05	0.17	(Mg/L)	COPPER
0.05	0.24	0.53							0.27	0.05	0.09	0.53	(Mg/L)	ZINC
													(Mg/L)	NITRATE
0.06	0.50	1.66							0.11	1.66	0.06	0.16	(Mg/L)	
													(Mg/L)	CHROME
64.0	77.0	91.0							84.0	91.0	69.0	64.0	HIGH TEMP.	PHOS CHROMELast 24 hrs
48.0	56.5	68.0							58.0	68.0	52.0	48.0	HIGH TEMP. LOW TEMP.	Last 24 hrs
0.00	0.10	0.34							0.00	0.07	0.00	0.34	PRECIP.	Last 24 hrs

* N-Normal NF- No Flow S-Sheen C-Colored

F-Foam

LOCATION: STEWART POND EFFLUENT

MIN	AVG.	MAX						8/8/17	6/15/17	5/25/17	4/20/17	DATE	
								z	z	z	z	COND.*	PHYS.
								1:10PM			1:45PM	TIME	
6.96	7.20	7.79						7.79	7.02	6.96	7.03	PH	
62.9	70.7	78.2						75.9	78.2	62.9	65.7	(င°	TEMP
5.45	8.15	9.59						9.59	5.45	9.50	8.05	(Mg/L)	DIS. OXY. COPPER ZINC
0.04	0.10	0.17						0.10	0.07	0.17	0.04	(Mg/L)	COPPER
0.01	0.04	0.07						0.01	0.04	0.02	0.07	(Mg/L)	ZINC
												(Mg/L)	NITRATE
0.28	0.62	1.26						0.55	1.26	0.28	0.40	(Mg/L)	PHOS
												(Mg/L)	CHROME
64.0	77.0	91.0						84.0	91.0	69.0	64.0	HIGH TEMP.	NITRATE PHOS CHROME Last 24 hrs
48.0	56.5	68.0						58.0	68.0	52.0	48.0	HIGH TEMP. LOW TEMP.	Last 24 hrs
0.00	0.10	0.34						0.00	0.07	0.00	0.34	PRECIP.	Last 24 hrs

* N-Normal NF- No Flow

S-Sheen F-Foam C-Colored

LOCATION: WESTWOOD @ LENORE

NIN	AVG.	MAX		-						8/9/17	6/13/17	5/23/17	4/18/17	DATE	
										z	z	z	z	COND.*	PHYS.
										2:30PM	8:20AM	9:30AM	1:30PM	TIME	
6.68	7.02	7.38								7.00		6.68	7.38	PH	
58.5	66.6	75.5							:	75.5		58.5	65.7	ິດ	EMIC
7.41	8.31	10.03								7.41		7.48	10.03	(Mg/L)	DIS. UXY. COPPER
0.01	0.03	0.07								0.07		0.02	0.01	(Mg/L)	COPPER
0.01	0.05	0.09								 0.06		0.01	0.09	(Mg/L)	
0.04	0.25	0.62								0.10		0.62	0.04	(Mg/L)	ZINC AMMONIA PHOS CH
0.20	0.20	0.20	-										0.20	(Mg/L)	PHOS
0.00	0.00	0.00									0.00			(Mg/L)	CHROME
62.0	77.8	88.0								83.0	88.0	62.0	78.0	HIGH TEMP.	ROME Last 24 hrs
48.0	58.0	68.0								61.0	68.0	55.0	48.0	HIGH TEMP. LOW TEMP.	Last 24 hrs
0.00	0.08	0.33							·	0.00	0.00	0.33	0.00	PRECIP.	Last 24 hrs

* N-Normal NF- No Flow S-Sheen C-Colored

F-Foam

LOCATION: WESTWOOD @ HOLTZ

MIN	AVG.	MAX							8/10/17	6/13/17	5/25/17	4/20/17	DATE	
				ľ		ſ			z	z	z	z	COND.*	PHYS.
									10:40AM	3:00PM	2:10PM	10:45AM	TIME	
6.82	7.29	7.50							7.44	7.50	7.40	6.82	PH	
59.4	66.7	73.1							73.1	72.0	62.1	59.4	ိုင	TEMP
4.10	6.97	8.24							7.43	4.10	8.11	8.24	(Mg/L)	DIS. OXY. COPPER
0.06	0.13	0.26							0.07		0.26	0.06	(Mg/L)	COPPER
0.02	0.06	0.10							0.10		0.06	0.02	(Mg/L)	ZINC
0.00	0.00	0.00							0.00		0.00		(Mg/L)	NITRATE
0.01	0.28	0.77							0.07		0.77	0.01	(Mg/L)	PHOS
0.22	0.22	0.22							0.22				(Mg/L)	NH3
64.0	76.3	88.0				1			84.0	88.0	69.0	64.0	HIGH TEMP.	Last 24 hrs
48.0	57.5	68.0							62.0	68.0	52.0	48.0	HIGH TEMP. LOW TEMP.	Last 24 hrs
0.00	0.09	0.34							0.03	0.00	0.00	0.34	PRECIP.	Last 24 hrs

* N-Normal NF- No Flow S-Sheen C-Colored

F-Foam

LOCATION: PUMP & DAM

MIN	AVG.	MAX							8/10/17	6/12/17	5/25/17	4/19/17	DATE	
									N.	NE	z	z	COND.*	PHYS.
									3:05PM	10:50AM		2:45PM	TIME	
7.32	7.33	7.34								-	7.32	7.34	PH	
58.1	59.6	61.0									61.0	58.1	(ငူ	TEMP
7.32	7.46	7.60						-			7.32	7.60	(Mg/L)	DIS. OXY.
0.09	0.09	0.09										0.09	(Mg/L)	COPPER
0.09	0.09	0.09										0.09	(Mg/L)	ZINC
0.24	0.24	0.24										0.24	(Mg/L)	COPPER ZINC NITRATE
													(Mg/L)	1
													(Mg/L)	CHROME
50.0	74.5	95.0							84.0	95.0	69.0	50.0	HIGH TEMP.	PHOS CHROME Last 24 hrs
43.0	57.5	73.0							62.0	73.0	52.0	43.0	HIGH TEMP. LOW TEMP.	Last 24 hrs
0.00	0.07	0.23							0.03	0.00	0.00	0.23	. PRECIP.	Last 24 hrs

* N-Normal NF- No Flow S-Sheen F-Foam C-Colored

ATTACHMENT

STREAM MONITORING

Min	Max	Avg	Sum	2/22/2018	1/18/2018	12/7/2017	11/9/2017	10/16/2017	9/21/2017	8/24/2017	6/1/2017	4/20/2017	3/16/2017	9	Lab 3/ 2/2
)18)18)17	117	017)17)17	7	710)17		Lab Streams Daily 3/1/2017 - 2/28/2018
<2.00	4.30	<3.03	<30.25	2.70	3.63	2.96	2.52	2.76	<2.00	4.30	4.06	3.32	<2.00		UPSTREAM I CBOD [MG/L
6.08	11.81	9.13	91.25	11.81	11.41	10.50	9.67	7.97	6.08	7.10	7.35	8.35	11.01		NTP UPSTREAM Diss Oxygen MG/L
>108.0	TNTC	>322.5	>3,899.0	1,500.0	TNTC	230.0	220.0	TNTC	230.0	108.0	121.0	540.0	950.0		NTP UPSTREAM Fecal Coliform #/100ML
0.11	0.55	0.35	1.38		0.55			0.11				0.31	0.42		NTP Fluoride MG/L
<1.0	2.1	<1.3	<12.9	1.9	1.0	2.1	1.3	<1.0	<1.0	<1.0	<1.0	1.6	<1.0		NTP UPSTREAM FOGS Total MG/L
118.0	410.0	289.0	2,890.0	194.0	342.0	410.0	270.0	118.0	250.0	216.0	404.0	346.0	340.0		NTP UPSTREAM Hardness MG/L
0.07	0.62	0.18	1.77	0.62	0.14	0.08	0.07	0.12	0.16	0.16	0.26	0.07	0.08		NTP UPSTREAM Ammonia MG/L
6.64	7.94	7.17	71.69	7.04	7.34	7.48	7.17	6.79	6.89	7.94	7.29	6.64	7.11		UPSTREAM SU
0.14	2.83	1.44	14.39	0.35	1.70	1.36	2.15	0.14	2.83	2.53	1.07	0.93	1.33		NTP UPSTREAM Phosphorus Total MG/L
36.14	73.04	54.30	542.96	38.12	36.14	40.82	66.60	59.50	73.04	68.54	62.40	58.10	39.70		NTP UPSTREAM Water Temp P DEG F
6.0	28.0	13.4	133.8	28.0	6.0	10.0	8.0	13.2	19.6	7.0	10.8	23.2	8.0		NTP UPSTREAM Solids TSS MG/L
0.024	0.310	0.059	0.593	0.036	0.030	0.027	0.043	0.024	0.310	0.027	0.034	0.027	0.035		NTP UPSTREAM Banum MG/L

Min	Max	Avg	Sum	2/22/2018	1/18/2018	12/7/2017	11/9/2017	10/16/2017	9/21/2017	8/24/2017	6/1/2017	4/20/2017	3/16/2017	-	Lab Streams Daily 3/1/2017 - 2/28/2018
															ams 7 - 118
<0.005	0.005	<0.005	<0.050	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.005	<0.005	<0.005		UPSTREAM Berylium MG/L
<0.001	0.001	<0.001	<0.010	<0.001	0.001	0.001	<0.001	<0.001	<0.001	0.001	<0.001	<0.001	<0.001		UPSTREAM Cadmium MG/L
<0.006	0.031	<0.014	<0.138	0.008	0.011	0.025	<0.006	0.008	<0.006	0.017	0.012	0.014	0.031	MG/L	UPSTREAM Chromium (total)
<0.005	0.012	<0.007	<0.068	0.008	0.007	0.005	<0.005	<0.005	0.012	0.005	0.007	0.006	0.008		UPSTREAM Copper MG/L
0.088	1.531	0.530	5.304	1.531	0.321	0.305	0.184	0.675	0.088	0.637	0.548	0.761	0.254		UPSTREAM Iron MG/L
0.004	0.186	<0.048	<0.484	0.004	<0.018	0.019	0.024	0.048	0.077	0.032	0.049	0.027	0.186		UPSTREAM Lead MG/L
0.013	0.062	0.040	0.396	0.051	0.040	0.026	0.028	0.027	0.013	0.052	0.062	0.060	0.037		NTP UPSTREAM Manganese MG/L
0.011	0.020	0.016	0.162	0.016	0.014	0.020	0.019	0.012	0.020	0.020	0.011	0.019	0.011		UPSTREAM Molybdenum UG/L
0.003	0.015	0.007	0.074	0.003	0.007	0.006	0.010	0.011	0.015	0.008	0.004	0.006	0.004		NTP UPSTREAM Nickel MG/L
<0.0030	0.0680	<0.0132	<0.1320	<0.0030	0.0680	<0.0030	0.0120	0.0090	<0.0030	0.0040	0.0030	0.0190	0.0080		UPSTREAM Silver MG/L
0.015	0.033	0.024	0.244	0.016	0.033	0.021	0.028	0.022	0.031	0.026	0.015	0.030	0.022		NTP UPSTREAM Zinc MG/L

Min	Max	Avg	Sum	2/22/2018	1/18/2018	12/7/2017	11/9/2017	10/16/2017	9/21/2017	8/24/2017	6/1/2017	4/20/2017	3/16/2017	2	Daily 3/1/2017 - 2/28/2018
120.0	275.0	181.0	1,810.0	275.0	215.0	160.0	165.0	120.0	165.0	175.0	175.0	175.0	185.0		UPSTREAM Alkalinity MG/L
144.0	425.0	222.6	2,225.5	144.0	307.5	152.0	165.0	191.0	206.0	206.0	210.0	219.0	425.0		UPSTREAM Chloride MG/L
2.12	2.12	2.12	2.12					2.12							UPSTREAM Total Nitrogen MG/L
<0.0005	<0.0005	<0.0005	<0.0005			a seda a da manananda mara sananan da sa a sa sa		<0.0005							Mercury MG/L
<0.0005	<0.0005	<0.0005	<0.0005			and a share of the second se	And an answers my draffic anti-monotalismonomous. Acros	<0.0005							UPSTREAM Arodor 1016 MG/L
<0.0005	<0.0005	<0.0005	<0.0005					<0.0005							UPSTREAM Aroclor 1221 MG/L
<0.0005	<0.0005	<0.0005	<0.0005					<0.0005							UPSTREAM Aroclor 1232 MG/L
<0.0005	<0.0005	<0.0005	<0.0005			AND DESCRIPTION OF A DE		<0.0005							UPSTREAM Aroclor 1242 MG/L
<0.0005	<0.0005	<0.0005	<0.0005				a series and the series of the	<0.0005							UPSTREAM Aroclor 1248 MG/L

Min	Max	Avg	Sum	2/22/2018	1/18/2018	12/7/2017	11/9/2017	10/16/2017	9/21/2017	8/24/2017	6/1/2017	4/20/2017	3/16/2017	2	Lat 2/
				018	018	017	017	2017	017	017	17	017	017		ab Streams Daily 3/1/2017 - 2/28/2018
<0.0005	<0.0005	<0.0005	<0.0005					<0.0005						6	NTP UPSTREAM Araclor 1254 MG/L
<0.0005	<0.0005	<0.0005	<0.0005					<0.0005							UPSTREAM Aroclor 1260 MG/L
<0.0001	<0.0001	<0.0001	<0.0001					<0.0001							UPSTREAM DDT MG/L
<0.00005	<0.00005	<0.00005	<0.00005					<0.00005							NTP UPSTREAM Heptachlor MG/L
<2.0	3.8	<2.6	<26.3	2.9	3.3	3.2	<2.0	2.2	<2.0	2.5	3.8	2.5	<2.0		AJL UPSTREAM CBOD MG/L
6.04		9.18	91.84		12.18		9.65		6.04		7.09	8.31	11.53		AJL UPSTREAM Diss Oxygen MG/L
>73.0	TNTC	>644.1	>9,908.0	1,500.0	TNTC	2,800.0	2,100.0	TNTC	85.0	73.0	470.0	480.0	2,400.0		UPSTREAM Fecal Coliform #/100ML
0.11	0.57	0.34	1.37		0.57			0.11				0.30	0.40		AJL UPSTREAM Fluoride MG/L
<1.0	4.1	<1.5	<15.0	<1.0	2.7	<1.0	<1.0	<1.0	1.2	<1.0	<1.0	4.1	<1.0		AJL AM UPSTREAM FOGS Total MG/L
122.0	420.0	284.8	2,848.0	190.0	314.0	420.0	270.0	122.0	242.0	224.0	378.0	348.0	340.0		AJL UPSTREAM Hardness MG/L

Min	Max	Avg	Sum	2/22/2018	1/18/2018	12/7/2017	11/9/2017	10/16/2017	9/21/2017	8/24/2017	6/1/2017	4/20/2017	3/16/2017	Lab Streams Daily 3/1/2017 - 2/28/2018
0.05	0.42	0.15	1.52	0.42	0.12	0.05	0.09	0.14	0.16	0.15	0.18	0.08	0.14	Aut Ammonia MG/L
6.69	8.07				7.56			7.70		8.07	7.54	6.69	7.26	UPSTREAM SU SU
0.15	2.64	1.42	14.17	0.21	1.65	1.27		0.15	2.64	2.64	1,40	0.99	1.23	UPSTREAM Phosphorus Total MG/L
34.52	74.12	54.21	542.08	37.58	34.52	40.10	65.80	58.80	74.12	69.26	63.00	57.90	41.00	UPSTREAM Water Temp P DEG F
8.0	46.0	18.5	184.8	46.0	12.4	14.0	8.0	11.6	19.6	20.0	20.0	23.6	9.6	UPSTREAM Solids TSS MG/L
0.022	0.050	0.033	0.331	0.038	0.030	0.027	0.050	0.022	0.029	0.027	0.043	0.027	0.038	UPSTREAM Barium MG/L
<0.005	0.005	<0.005	<0.050	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.005	<0.005	<0.005	M UPSTREAM Berylium MG/L
<0.001	0.001	<0.001	<0.010	<0.001	0.001	0.001	<0.001	<0.001	<0.001	0.001	<0.001	<0.001	<0.001	UPSTREAM Cadmium MG/L
0.002	0.029	<0.013	<0.129	0.005	0.017	0.017	0.010	0.010	<0.006	0.002	0.019	0.014	0.029	UPSTREAM Chromium (total) MG/L
0.004	0.013	<0.007	<0.066	0.013	0.007	0.006	0.005	<0.005	0.006	0.004	0.009	. 0.005	0.006	UPSTREAM Copper MG/L
0.212	1.727	0.676	6.755	1.727	0.584	0.390	0.212	0.575	0.678	0.618	0.896	0.758	0.317	UPSTREAM Iron MG/L
0.017	0.185	<0.042	<0.423	<0.018	<0.018	0.023	0.027	0.044	<0.018	0.021	0.052	0.017	0.185	UPSTREAM Lead MG/L

Min	Max	Avg	Sum	2/22/2018	1/18/2018	12/7/2017	11/9/2017	10/16/2017	9/21/2017	8/24/2017	6/1/2017	4/20/2017	3/16/2017	Daily 3/1/2017 - 2/28/2018	Lab Stream
0.021	0.073	0.046	0.462	0.051	0.041	0.027	0.032	0.021	0.069	0.047	0.073	0.060	0.041	UPSTREAM Manganese MG/L	
0.0	0.0	0.0			0.0			0.0	and the second se		0.0			UPSTREAM Molybdenum UG/L	_
0.003		0.007		0.003									0.004	UPSTREAM Nickel MG/L	_
<0.0030	0.0180	<0.0051	<0.0510	<0.0030	0.0050	0.0030	0.0180	0.0070	<0.0030	0.0030	<0.0030	<0.0030	<0.0030	UPSTREAM Silver MG/L	1
0.020		0.029		0.025	0.048	0.022	0.033	0.022	0.034	0.033	0.020	0.032	0.024	UPSTREAM Zinc MG/L	AJL
100.0	225.0	181.5	1,815.0	225.0	165.0	175.0	200.0	100.0	200.0	205.0	185.0	185.0	175.0	UPSTREAM Alkalinity MG/L	
153.0	410.0	228.9	2,289.3	166.0	336.3		176.0	202.0	213.0	218.0	206.0	209.0	410.0	UPSTREAM Chloride MG/L	AL
2.12	2.12	2.12	2.12					2.12						UPSTREAM Total Nitrogen MG/L	AIL
<0.0005	<0.0005	<0.0005	<0.0005			and the state of the property of the state o		<0.0005						UPSTREAM Mercury MG/L	AJI
<0.0005	<0.0005	<0.0005	<0.0005					<0.0005						UPSTREAM Aroclor 1016 MG/L	A.I

Min	Max	Avg	Sum	2/22/2018	1/18/2018	12/7/2017	11/9/2017	10/16/2017	9/21/2017	8/24/2017	6/1/2017	4/20/2017	3/16/2017	Lab Stream Daily 3/1/2017 - 2/28/2018
	E			0	60	7	7	17	7	7		7	7	Lab Streams Daily 3/1/2017 - 2/28/2018
<0.0	<0.(<0.0	<0.(<0.0						AJL UPSTREAM Aroclor 1221 MG/L
<0.0005	<0.0005	<0.0005	<0.0005		. <u>.</u>			<0.0005					6 Par 1	
<0.0005	<0.0005	<0.0005	<0.0005					<0.0005						AJL UPSTREAM Aroclor 1232 MG/L
<0.0005	<0.0005	<0.0005	<0.0005					<0.0005						AJL UPSTREAM Aroclor 1242 MG/L
<0,0005	<0.0005	<0.0005	<0.0005					<0.0005		And a second of the second				UPSTREAM Aroclor 1248 MG/L
<0.0005	<0.0005	<0.0005	<0.0005				And	<0.0005		And				AJL UPSTREAM Aroclor 1254 MG/L
<0.0005	<0.0005	<0.0005	<0.0005					<0.0005						AJL UPSTREAM Arodor 1260 MG/L
<0.0001	<0.0001	<0.0001	<0.0001					<0.0001						AJL UPSTREAM DDT MG/L
<0.00005	<0.00005	<0.00005	<0.00005				and a second	<0.00005	h				e	UPSTREAM Heptachlor MG/L
<2.0	3.8	<2.6	<26.4	2.7	3.3	3.1	<2.0	2.6	<2.0	2.9	3.8	<2.0	<2.0	AJL DOWNSTREAM CBOD MG/L

34 70	0.16	6.79	0.05	128.0	<1.0	0.13	>120.0	6.10	Min
73.58	2.77	8.48	1.58	460.0	10.0	0.45	TNTC	12.28	Max
54.57	1.42	7.52	0.29	286.2	<1.9	0.32	>706.5	9.17	Avg
545.68	14.24	75.22	2.87	2,862.0	<19.0	1.29	>7,955.0	91.71	Sum
37.94	0.33	7.00	0.38	198.0	<1.0		1,000.0	11.55	2/22/2018
34.70	1.61	7.78	0.14	308.0	<1.0	0.45	TNTC	12.28	1/18/2018
40.82	1.17	7.62	0.05	460.0	<1.0		2,700.0	11.17	12/7/2017
66.40	1.95	7.71	0.08	260.0	<1.0		1,100.0	9.69	11/9/2017
59.00	0.16	7.43	0.14	128.0	<1.0	0.13	TNTC	7.42	10/16/2017
73.58	2.77	7.43	1.58	242.0	<1.0		290.0	6.10	9/21/2017
71.24	2.70	8.48	0.14	220.0	<1.0		120.0	6.48	8/24/2017
63.50	1.24	7.89	0.16	370.0	10.0		460.0	7.20	6/1/2017
57.90	0.97	6.79	0.08	352.0	<1.0	0.29	1,135.0	8.09	4/20/2017
40.60	1.34	7.09	0.11	324.0	<1.0	0.42	1,150.0	11.73	3/16/2017
								- Los A Laborar - Contractor	
AJL D DOWNSTREAM Water Temp F DEG F	AJL DOWNSTREAM DO Phosphorus V Total MG/L	DOWNSTREAM SU	AJL DOWNSTREAM Ammonia MG/L	DOWNSTREAM Hardness MG/L	AM DOWNSTREAM FOGS Total MG/L	DOWNSTREAM Fluoride MG/L	Fecal Coliform #/100ML	DOWNSTREAM Diss Oxygen MG/L	2/28/2018

	0.006	0.569	0.569 <0.046 1.625 0.199
	0.009	1.625	1.625 <0.018 5.694 <0.455
	<0.005	0.325	0.325 0.019
	0.005	0.189	0.189 0.026
	<0.005	0.624	0.624 0.057
	0.009	0.195	0.195 <0.018
	<0.005	0.858	0.858 0.028
	0.005	0.552	0.552 0.050
	0.007	0.679	0.679
and the second	0.006	0.321	
DOWNSTREAM Copper MG/L		DOWNSTREAM Iron MG/L	DOWNSTREAM DOW
7		201	

MIN	Max	Avg	Sum	2/22/2018	1/18/2018	12/7/2017	11/9/2017	10/16/2017	9/21/2017	8/24/2017	6/1/2017	4/20/2017	3/16/2017	Lab Streems Daily 3/1/2017 - 2/28/2018
														B DOWNSTREAM Silver MG/L
<0.0030	0.0100	<0.0061	<0.0610	<0.0030	0.0100	<0.0030	0.0090	0.0090	<0.0030	0.0100	0.0050	0.0040	0.0050	AJL ISTREAM IIver IG/L
0.016	0.038	0.025	0.250	0.021	0.026	0.017	0.033	0.026	0.034	0.038	0.016	0.016	0.023	AJL DOWNSTREAM Zinc MG/L
19.0	235.0	165.9	1,659.0	235.0	180.0	185.0	180.0	90.0	205.0	210.0	190.0	19.0	165.0	AJL DOWNSTREAM Alkalinity MG/L
151.0	395.0	226.4	2,263.5	170.0	312.5	151.0	168.0	194.0	223.0		211.0	212.0	395.0	AJL DOWNSTREAM Chloride MG/L
2.08	2.08	2.08	2.08		4 - 194 -			2.08					in 2 mar - mar (nimmir 2,2,2,2) ar dain at disso a	AJL DOWNSTREAM Total Nitrogen MG/L
<0.0005	<0.0005		<0.0005					<0.0005				***		AJL DOWNSTREAM Mercury MG/L
<0.0005	<0.0005	<0.0005	<0.0005					<0.0005						AJL DOWNSTREAM Arodor 1016 MG/L
<0.0005	<0.0005	<0.0005	<0.0005				المحمد المحمد التي من المحمد التي من المحمد التي التي المحمد التي التي المحمد التي التي المحمد التي ا	<0.0005						AJL DOWNSTREAM Aroclor 1221 MG/L
<0.0005	<0.0005	<0.0005	<0.0005					<0.0005						AJL DOWNSTREAM Aroclor 1232 MG/L

Min	Max	Avg	Sum	2/22/2018	1/18/2018	12/7/2017	11/9/2017	10/16/2017	9/21/2017	8/24/2017	6/1/2017	4/20/2017	3/16/2017	2	Lab streams Daily 3/1/2017 - 2/28/2018
<0.0005	<0.0005	<0.0005	<0.0005					<0.0005				All A STATE OF			AJL DOWNSTREAM Araclor 1242 MG/L
<0.0005	<0.0005	<0.0005						<0.0005							AJL DOWNSTREAM Aroclor 1248 MG/L
<0.0005	<0.0005	<0.0005	<0.0005					<0.0005							AJL DOWNSTREAM Arodor 1254 MG/L
<0.0005	<0.0005	<0.0005	<0.0005					<0.0005					• · · · •		AJL DOWNSTREAM Arocior 1260 MG/L
<0.0001	<0.0001	<0.0001	<0.0001				and an an an an and a second	<0.0001					A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY AND A REAL PROPERTY AND A REAL PRO		AJL DOWNSTREAM MG/L
<0.00005	<0.00005	<0.00005	<0.00005				A DESCRIPTION OF A DESC	<0.00005							AJL DOWNSTREAM Heptachlor MG/L