Appendix A: Previously Adopted Mitigation Measures

THIS PAGE INTENTIONALLY LEFT BLANK

Mitigation Measure	Description
Air Quality	
MM AIR-1	 During construction activities, the following air pollution control measures shall be implemented: Exposed surfaces (e.g., parking areas, staging areas, soil piles, graded areas, and unpaved access roads) shall be watered two times per day. All haul trucks transporting soil, sand, or other loose material off-site hall be covered. All visible mud or dirt track-out onto adjacent public roads shall be removed using wet power vacuum street sweepers at least once per day. The use of dry power sweeping is prohibited. All roadways, driveways, and sidewalks shall be paved as soon as possible. Idling times shall be minimized either by shutting equipment off when not in use or reducing the maximum idling time to 5 minutes (as required by the California airborne toxics control measure Title 13, Section 2485 of California Code of Regulations [CCR]). Clear signage shall be provided for construction workers at all access points. All construction equipment shall be maintained and properly tuned in accordance with manufacturer's specifications. All equipment shall be checked by a certified visible emissions evaluator. A publicly visible sign shall be posted with the telephone number and person to contact at the City regarding dust complaints. This person shall respond and take corrective action within 48 hours of a complaint or issue notification. The BAAQMD's phone number shall also be visible to ensure compliance with applicable regulations.
MM AIR-2:	The developer or project applicant shall ensure all off-road construction equipment in excess of 50 horsepower used on-site by the developer or contractors is equipped with engines meeting the EPA Tier IC off-road engine emission standards. The construction contractor shall maintain a log of equipment use at the construction site with make, model, serial number, and certification level of each piece of construction equipment that will be available for review by City building inspection staff.
Biological Resources	
MM BIO-1 Migratory Birds and Nesting Raptors	 If construction or tree removal is proposed during the breeding/nesting season for local avian species (typically March 1 through August 31), a focused survey for active nests of raptors and migratory birds within and in the vicinity of (no less than 250 feet outside the project boundaries, where possible) the project site shall be conducted by a qualified biologist. One survey will be conducted 30 days prior to tree removal or construction activities. If no active nests are found, tree removal or construction activities may proceed. If an active nest is located during pre-construction surveys, the United States Fish and Wildlife Service and/or the California Department of Fish and Wildlife (as appropriate) shall be notified regarding the status of the nest. Furthermore, construction activities shall be restricted to avoid disturbance of the nest until it is abandoned, or the biologist deems disturbance potential to be minimal. Restrictions may include establishment of exclusion zones or alteration of the construction schedule.
MM BIO-2: Special- status Bat Species	 To reduce construction related impacts to special-status bat species, a bat survey shall be conducted between March 1 to July 31 by a qualified wildlife biologist within the year of proposed construction start and prior to ground disturbance. If

Previously Adopted Mitigation Measures

Mitigation Measure	Description
	 no bat roosts are detected, then no further action is required. If a colony of bats is found roosting on-site, then the following mitigation will be implemented to reduce the potential disturbance: 2. If a female or maternity colony of bats are found on the project site, a wildlife biologist through coordination with CDFW shall determine what physical and timed buffer zones shall be employed to ensure the continued success of the colony. Such buffer zones may include a construction-free barrier of 200 feet from the roost and/or the timing of the construction activities outside the maternity roost season (after July 31 and before March 1).
Cultural and Tribal Cu	ltural Resources
MM CUL-1:	In the event a potentially significant cultural resource is encountered during subsurface earthwork activities, all construction activities within a 100-foot radius of the find shall cease and workers should avoid altering the materials until an Archaeologist who meets the Secretary of Interior's Professional Qualification Standards for archaeology has evaluated the resource. The Applicant shall include a standard inadvertent discovery clause in every construction contract to inform contractors of this requirement. The resource shall be recorded on appropriate Department of Parks and Recreation (DPR) forms and evaluated for significance in terms of CEQA criteria by the qualified Archaeologist. If the resource is determined significant under CEQA, the qualified Archaeologist shall prepare and implement a research design and archaeological data recovery plan that will capture those categories of data for which the site is significant in accordance with Section 15064.5 of the CEQA Guidelines. The Archaeologist shall also perform appropriate technical analyses, prepare a comprehensive report complete with methods, results, and recommendations, and provide for the permanent curation of the recovered resources. The report shall be submitted to the City of Burlingame, the Northwest Information Center, and the California Office of Historic Preservation (OHP), as required.
MM CUL-2	In the event that fossils or fossil-bearing deposits are discovered during construction activities, excavations within a 100-foot radius of the find shall be temporarily halted or diverted. The project contractor shall notify a qualified Paleontologist to examine the discovery. The applicant shall include a standard inadvertent discovery clause in every construction contract to inform contractors of this requirement. The Paleontologist shall document the discovery as needed in accordance with Society of Vertebrate Paleontology standards and assess the significance of the find under the criteria set forth in CEQA Guidelines Section 15064.5. The Paleontologist shall notify the appropriate agencies to determine procedures that would be followed before construction activities are allowed to resume at the location of the find. If the applicant determines that avoidance is not feasible, the Paleontologist shall prepare an excavation plan for mitigating the effect of construction activities on the discovery. The plan shall be submitted to the City of Burlingame for review and approval prior to implementation, and the applicant shall adhere to the recommendations in the plan.
MM CUL-3	 In the event of the accidental discovery or recognition of any human remains, CEQA Guidelines Section 15064.5, Health and Safety Code Section 7050.5, and Public Resources Code Sections 5097.94 and Section 5097.98 must be followed. If during the course of project development there is accidental discovery or recognition of any human remains, the following steps shall be taken: 1. There shall be no further excavation or disturbance within 100 feet of the remains until the County Coroner is contacted to determine if the remains are Native American and if an investigation of the cause of death is required. If the coroner

Mitigation Measure	Description
	 determines the remains to be Native American, the coroner shall contact the Native American Heritage Commission (NAHC) within 24 hours, and the NAHC shall identify the person or persons it believes to be the most likely descendant (MLD) of the deceased Native American. The MLD may make recommendations to the landowner or the person responsible for the excavation work within 48 hours, for means of treating or disposing of, with appropriate dignity, the human remains and any associated grave goods as provided in Public Resources Code Section 5097.98. 2. Where the following conditions occur, the landowner or his or her authorized representative shall rebury the Native American human remains and associated grave goods with appropriate dignity either in accordance with the recommendations of the most likely descendant or on the project site in a location not subject to further subsurface disturbance: The NAHC is unable to identify a most likely descendent or the most likely descendent failed to make a recommendation. The landowner or his authorized representative rejects the recommendation of the descendant, and mediation by the NAHC fails to provide measures acceptable to the landowner. Additionally, California Public Resources Code Section 15064.5 requires the following relative to Native American Remains: When an initial study identifies the existence of, or the probable likelihood of, Native American Remains within a project, a lead agency shall work with the appropriate Native Americans as identified by the Native American Heritage Commission as provided in Public Resources Code Section 5097.98.
Geology and Soils	
MM GEO-1	Prior to the issuance of a building permit and during the foundation phases of construction, the project applicant shall follow the recommendations of the Geotechnical Investigation, by retaining a qualified geotechnical consulting firm. Subsurface conditions may vary from those encountered at the locations of borings during the Geotechnical Investigation. The geotechnical firm retained by the project applicant shall review final engineer plans as well as observe and test during the earthwork and foundation phases of construction. This would ensure recommendations from the Geotechnical Investigation are properly incorporated into the project plan and development.
MM GEO-2	Prior to the issuance of a building permit, the project's plans shall reflect foundations that extend deep enough to penetrate more stable soils. The project applicant shall follow the recommendations of the Geotechnical Investigation, by ensuring the building be supported on conventional spread footing foundation system bearing on stiff native soils or properly compacted structural fill. All continuous footings shall have a width of at least 15 inches and shall extend at least 30 inches below exterior grade or at least 24 inches below the bottom of concrete slabs-on-grade, whichever is deeper. Footings located adjacent to utility lines shall bear below a 1:1 plane extending up from the bottom edge of the utility trench. Continuous foundations shall be designed with sufficient depth and reinforcing to tolerate the estimated differential settlement.

Mitigation Measure	Description
	The geotechnical consulting firm retained by the applicant shall observe all footing excavations prior to the placement of reinforcing steel to confirm that suitable material has been exposed and properly cleaned. If soft or loose soil is encountered in the foundation excavations, the geotechnical consulting firm may require overexcavation and/or compactive effort or a deeper footing depth below the reinforcing steel is placed. Alternative to the spread footing foundation described above, the building may be supported on a reinforced concrete mat foundation bearing on a properly prepared and compacted soil subgrade. The mat foundation shall have a thickened perimeter edge that extends at least eight inches into the soil subgrade below the bottom of the mat or at least four inches below the botten at foundation shall for map slab dampness, and increase resistance to lateral loads imposed on the mat. The mat foundation shall be reinforced to provide structural continuity and to permit spanning of local irregularities. It shall be designed with sufficient depth and reinforcing to be able to tolerate the estimated differential settlements. Prior to mat construction, the subgrade shall be proof-rolled to provide a smooth firm surface for mat support. Where dampness of the mat would be undesirable, a high quality membrane vapor barrier shall be installed.
MM GEO-3	Prior to the issuance of a building permit, the structural engineer shall consult with the membrane manufacturer for the coefficient of friction to be assumed for design. Lateral loads may be resisted by base friction between the vapor barrier or damp proofing membrane shown below the mat and the supporting subgrade and by passive soil pressure acting against the sides of the mat foundations. Lateral resistance may be provided by passive soil pressure acting against the sides of the sides of foundations cast neat in footing excavations or backfilled with compacted structural fill. The upper foot of passive soil shall not be neglected where soil adjacent to the footing or mat will be landscaped or subject to softening from rainfall and/or surface runoff.
MM GEO-4	Prior to the issuance of a building permit, the building foundations shall be designed as recommended by the Geotechnical Investigation. The 30-year post-construction differential settlement due to static loads is not expected to exceed 1 inch across the proposed building. Less differential movement would be expected across a structural mat foundation. Additional differential settlement may occur as a result of liquefaction and dynamic densification caused by severe ground shaking during a major earthquake.
Hydrology and Water	Quality
MM HYD-1	 The project applicant shall prepare and implement a stormwater pollution prevention plan (SWPPP) for all construction activities at the project site. At a minimum, the SWPPP shall include the following: A construction schedule that restricts use of heavy equipment for excavation and grading activities to periods where no rain is forecasted during the wet season (October 1 thru April 30) to reduce erosion associated intense rainfall and surface runoff. The construction schedule shall indicate a timeline for earthmoving activities and stabilization of disturbed soils; Soil stabilization techniques such as covering stockpiles, hydroseeding, or short-term biodegradable erosion control blankets; Silt fences, compost berms, wattles or some kind of sediment control measures at downstream storm drain inlets; Good site management practices to address proper management of construction materials and activities such as but not limited to cement, petroleum products, hazardous materials, litter/rubbish, and soil stockpile; and

Mitigation Measure	Description
	• The post-construction inspection of all drainage facilities and clearing of drainage structures of debris and sediment.
MM HYD-2	Prior to project approval, the project applicant shall prepare the appropriate documents consistent with San Mateo Countywide Water Pollution Prevention Program (SMCWPPP) and NPDES Provisions C.3 and C.6 requirements for post-construction treatment and control of stormwater runoff from the site. Post-construction treatment measures must be designed, installed, and hydraulically sized to treat a specified amount of runoff. Furthermore, the project plan submittals shall identify the owner and maintenance party responsible for the ongoing inspection and maintenance of the post-construction stormwater treatment measure in perpetuity. A maintenance agreement or other maintenance assurance must be submitted and approved by the City prior to the issuance of a final construction inspection.
Public Services	
MM PS-1	The project applicant would be responsible for paying all school impact fees at the time of building permit issuance.
Transportation/Traffic	2
MM TRANS-1	In order to maintain adequate sight distance, on-street parking shall be prohibited on Oak Grove Avenue between the project driveway and the western neighboring driveway.

THIS PAGE INTENTIONALLY LEFT BLANK

Appendix B: Shadow Study

THIS PAGE INTENTIONALLY LEFT BLANK

619-625 CALIFORNIA DRIVE

SHADOW STUDY

Date of Package: February 17, 2021

Project Sponsor:

For Ownership LLC (TBD) c/o Edward Duffy 625 California Drive Burlingame, CA 94010

-

www.ibadesign.com

For Ownership LLC (TBD) c/o Edward Duffy 625 California Drive Burlingame, CA 94010

SHADOW STUDY Date of Package: February 17, 2021

MARCH 21 (SPRING EQUINOX)

8:11 AM DST (1 HOUR AFTER SUNRISE)

619-625 CALIFORNIA DRIVE

For Ownership LLC (TBD) c/o Edward Duffy 625 California Drive Burlingame, CA 94010

SHADOW STUDY Date of Package: February 17, 2021

MARCH 21 (SPRING EQUINOX) 1:17 PM DST (SOLAR NOON)

619-625 CALIFORNIA DRIVE

For Ownership LLC (TBD) c/o Edward Duffy 625 California Drive Burlingame, CA 94010

SHADOW STUDY Date of Package: February 17, 2021

MARCH 21 (SPRING EQUINOX)

6:25 PM DST (1 HOUR BEFORE SUNSET)

619-625 CALIFORNIA DRIVE

For Ownership LLC (TBD) c/o Edward Duffy 625 California Drive Burlingame, CA 94010

SHADOW STUDY Date of Package: February 17, 2021

JUNE 21 (SUMMER SOLSTICE) 6:22 AM DST (1 HOUR AFTER SUNRISE)

619-625 CALIFORNIA DRIVE

For Ownership LLC (TBD) c/o Edward Duffy 625 California Drive Burlingame, CA 94010

SHADOW STUDY Date of Package: February 17, 2021

JUNE 21 (SUMMER SOLSTICE) 1:12 PM DST (SOLAR NOON)

619-625 CALIFORNIA DRIVE

For Ownership LLC (TBD) c/o Edward Duffy 625 California Drive Burlingame, CA 94010

SHADOW STUDY Date of Package: February 17, 2021

JUNE 21 (SUMMER SOLSTICE) 8:03 PM DST (1 HOUR BEFORE SUNSET)

619-625 CALIFORNIA DRIVE

For Ownership LLC (TBD) c/o Edward Duffy 625 California Drive Burlingame, CA 94010

SHADOW STUDY Date of Package: February 17, 2021

SEPTEMBER 21 (FALL EQUINOX) 7:57 AM DST (1 HOUR AFTER SUNRISE)

619-625 CALIFORNIA DRIVE

For Ownership LLC (TBD) c/o Edward Duffy 625 California Drive Burlingame, CA 94010

SHADOW STUDY Date of Package: February 17, 2021

SEPTEMBER 21 (FALL EQUINOX) 1:03 PM DST (SOLAR NOON)

619-625 CALIFORNIA DRIVE

For Ownership LLC (TBD) c/o Edward Duffy 625 California Drive Burlingame, CA 94010

SHADOW STUDY Date of Package: February 17, 2021

SEPTEMBER 21 (FALL EQUINOX) 6:09 PM DST (1 HOUR BEFORE SUNSET)

619-625 CALIFORNIA DRIVE

For Ownership LLC (TBD) c/o Edward Duffy 625 California Drive Burlingame, CA 94010

SHADOW STUDY Date of Package: February 17, 2021

DECEMBER 21 (WINTER SOLSTICE) 8:47 AM UST (1 HOUR AFTER SUNRISE)

619-625 CALIFORNIA DRIVE

For Ownership LLC (TBD) c/o Edward Duffy 625 California Drive Burlingame, CA 94010

SHADOW STUDY Date of Package: February 17, 2021

DECEMBER 21 (WINTER SOLSTICE) 12:09 PM UST (SOLAR NOON)

619-625 CALIFORNIA DRIVE

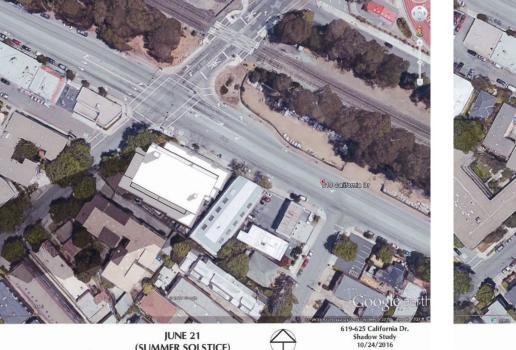
For Ownership LLC (TBD) c/o Edward Duffy 625 California Drive Burlingame, CA 94010


SHADOW STUDY Date of Package: February 17, 2021

DECEMBER 21 (WINTER SOLSTICE)

3:30 PM UST (1 HOUR BEFORE SUNSET)

619-625 CALIFORNIA DRIVE


MARCH 21 / SEPTEMBER 21 (SPRING EQUINOX / FALL EQUINOX) 1:16 PM DST (SOLAR NOON)

MARCH 21 / SEPTEMBER 21 (SPRING EQUINOX / FALL EQUINOX) MARCH 21 / SEPTEMBER 21 8:10 AM DST (1 HOUR AFTER SUNRISE)

1:11 PM DST (SOLAR NOON)

JUNE 21 (SUMMER SOLSTICE) 6:47 AM DST (1 HOUR AFTER SUNRISE)

 \bigcirc

For Ownership LLC (TBD) c/o Edward Duffy 625 California Drive Burlingame, CA 94010

SHADOW STUDY

Date of Package: February 17, 2021

ORIGINAL SHADOW STUDY COMPLETED FOR PREVIOUSLY APPROVED DESIGN (10/24/2016)

619-625 CALIFORNIA DRIVE

MARCH 21 / SEPTEMBER 21 (SPRING EQUINOX / FALL EQUINOX) 6:23 PM DST (1 HOUR BEFORE SUNSET)

619-625 California Dr. Shadow Study 10/24/2016

JUNE 21 (SUMMER SOLSTICE) 7:35 PM DST (1 HOUR BEFORE SUNSET)

Shadow Study 10/24/2016

Ian Birchall and Associates 177 Post Street, Suite 920 San Francisco, CA 94108 p: 415.512.9660 f: 415.512.9663 www.ibadesign.com

For Ownership LLC (TBD) c/o Edward Duffy 625 California Drive Burlingame, CA 94010

ORIGINAL SHADOW STUDY

COMPLETED FOR PREVIOUSLY APPROVED DESIGN (10/24/2016)

DECEMBER 21 (WINTER SOLSTICE) 3:51 PM (1 HOUR BEFORE SUNSET)

Ian Birchall and Associates 177 Post Street, Suite 920 San Francisco, CA 94108 p: 415.512.9660 f: 415.512.9663 www.ibadesign.com

THIS PAGE INTENTIONALLY LEFT BLANK

Appendix C: Air Quality Supporting Information

THIS PAGE INTENTIONALLY LEFT BLANK

Appendix C: Air Quality Modeling

Table of Contents

Emissions Summary	C-1
CalEEMod Annual Operational Output	C-3
CalEEMod Summer Operational Output	C-16
CalEEMod Winter Operational Output	C-26

Operational 2023 Emissions Summary

Proposed Project Operations - Summer and Winter Scenarios

619–625 CA Drive Development - Project Operations (Updated March 25, 2021) - San Mateo County, Summer CalEEMod Run: Summer Date: 3/25/2021 1:51 PM

			Pounds po	er Day			
Emissions Source	ROG	NO _x	PM ₁₀ (Exhaust)	PM ₁₀ (Total)	PM _{2.5} (Exhaust)	PM _{2.5} (Total)	
Area	1.62	0.17	0.03	0.03	0.03	0.03	
Energy	0.01	0.10	0.01	0.01	0.01	0.01	
Mobile	0.26	0.63	0.01	0.96	0.01	0.26	
Total	1.89	0.90	0.05	1.00	0.05	0.30	

619–625 CA Drive Development - Project Operations (Updated March 25, 2021) - San Mateo County, Winter CalEEMod Run: Winter. Date: 3/25/2021 1:52 PM

	Pounds per Day							
Emissions Source	ROG	NO _x	PM ₁₀ (Exhaust)	PM ₁₀ (Total)	PM _{2.5} (Exhaust)	PM _{2.5} (Total)		
Area	1.62	0.17	0.03	0.03	0.03	0.03		
Energy	0.01	0.10	0.01	0.01	0.01	0.01		
Mobile	0.24	0.68	0.01	0.96	0.01	0.26		
Total	1.87	0.95	0.05	1.00	0.05	0.30		

Proposed Project Operations - Maximum Daily Emissions

619–625 CA Drive Development - 2023 Operation

Maximum between Summer and Winter Scenarios

	Pounds per Day								
Emissions Source	ROG	NO _x	PM ₁₀	PM ₁₀	PM _{2.5}	PM _{2.5}			
	NOG		(Exhaust)	(Total)	(Exhaust)	(Total)			
Proposed Project	1.89	0.95	0.05	1.00	0.05	0.30			
CalEEMod Run	Summer	Winter	Winter	Winter	Winter	Winter			
BAAQMD Threshold	54	54	N/A	82	N/A	54			
Exceed Threshold?	No	No	N/A	No	N/A	No			

Annual Operational 2023 Emissions Summary

Proposed Project Operations - Annual Emissions

619-625 CA Drive Development - Project Operations (Updated March 25, 2021) - San Mateo County, Annual

CalEEMod Run:	Annual.	Date: 3/25/202	1 1:50 PM						
			Tons per	Year			IV	letric Tons per Yea	ir -
Emissions Source	ROG	NO _x	PM ₁₀ (Exhaust)	PM ₁₀ (Total)	PM _{2.5} (Exhaust)	PM _{2.5} (Total)	Total CO ₂ e	Bio-CO ₂	NBio-CO ₂ e
Area	0.28	0.00	0.00	0.00	0.00	0.00	1.4	0.0	1.4
Energy	0.00	0.02	0.00	0.00	0.00	0.00	73.2	0.0	73.2
Mobile	0.04	0.12	0.00	0.17	0.00	0.05	157.9	0.0	157.9
Waste	0.00	0.00	0.00	0.00	0.00	0.00	10.2	4.1	6.1
Water	0.00	0.00	0.00	0.00	0.00	0.00	8.8	0.9	7.9
Annual Total	0.33	0.14	0.00	0.17	0.00	0.05	251.4	5.0	246.3
Amortized Construction Emissions (30 years)							7.0		
Total Operational GHG Emissions (MTCO ₂ e/year)							253.3		

		Metric Tons			
Emissions Source	ROG	NO _x	PM ₁₀ (Total)	PM _{2.5} (Total)	CO2e per Year
Annual Total	0.33	0.14	0.17	0.05	253
BAAQMD Threshold	10	10	15	10	1,100
Exceed Threshold?	No	No	No	No	No

619–625 CA Drive Development - Project Operations (Updated March 25, 2021) - San Mateo County, Annual

619–625 CA Drive Development - Project Operations (Updated March 25, 2021) San Mateo County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Enclosed Parking with Elevator	19.00	Space	0.19	8,335.00	0
Apartments Mid Rise	44.00	Dwelling Unit	0.33	59,120.00	126

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	70
Climate Zone	5			Operational Year	2023
Utility Company	Pacific Gas & Electric Co	ompany			
CO2 Intensity (Ib/MWhr)	491.65	CH4 Intensity (Ib/MWhr)	0.022	N2O Intensity (Ib/MWhr)	0.005

1.3 User Entered Comments & Non-Default Data

Project Characteristics - 619-625 California Drive Development - Project Operations + Unmitigated Construction Adjustments made to the intensity factors based on Renewable Portfolio Standard Land Use - Based on project description and site plan 44-unit live-work building Off-road Equipment - Operation Only

Vehicle Trips - Hexagon Transportation Consultants, Inc. 2021. 619-625 California Drive Live/Work Development Draft Traffic Impact Analysis. March 12.

Woodstoves - No woodburning fireplaces

Table Name	Column Name	Default Value	New Value
tblFireplaces	FireplaceWoodMass	228.80	0.00
tblLandUse	LandUseSquareFeet	7,600.00	8,335.00
tblLandUse	LandUseSquareFeet	44,000.00	59,120.00
tblLandUse	LotAcreage	0.17	0.19
tblLandUse	LotAcreage	1.16	0.33
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblProjectCharacteristics	CH4IntensityFactor	0.029	0.022
tblProjectCharacteristics	CO2IntensityFactor	641.35	491.65
tblProjectCharacteristics	N2OIntensityFactor	0.006	0.005
tblTripsAndVMT	WorkerTripNumber	0.00	10.00
tblVehicleTrips	ST_TR	6.39	4.43
tblVehicleTrips	SU_TR	5.86	4.43
tblVehicleTrips	WD_TR	6.65	4.43
tblWoodstoves	WoodstoveWoodMass	582.40	0.00

2.0 Emissions Summary

2.1 Overall Construction

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					tons	s/yr							МТ	/yr		
2019	1.5000e- 004	1.0000e- 004	1.0700e- 003	0.0000	3.9000e- 004	0.0000	4.0000e- 004	1.0000e- 004	0.0000	1.1000e- 004	0.0000	0.3385	0.3385	1.0000e- 005	0.0000	0.3387
Maximum	1.5000e- 004	1.0000e- 004	1.0700e- 003	0.0000	3.9000e- 004	0.0000	4.0000e- 004	1.0000e- 004	0.0000	1.1000e- 004	0.0000	0.3385	0.3385	1.0000e- 005	0.0000	0.3387

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					tons	s/yr							MT	/yr		
2019	1.5000e- 004	1.0000e- 004	1.0700e- 003	0.0000	3.9000e- 004	0.0000	4.0000e- 004	1.0000e- 004	0.0000	1.1000e- 004	0.0000	0.3385	0.3385	1.0000e- 005	0.0000	0.3387
Maximum	1.5000e- 004	1.0000e- 004	1.0700e- 003	0.0000	3.9000e- 004	0.0000	4.0000e- 004	1.0000e- 004	0.0000	1.1000e- 004	0.0000	0.3385	0.3385	1.0000e- 005	0.0000	0.3387

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Quarter	St	art Date	En	d Date	Maximu	ım Unmitiga	ated ROG ·	+ NOX (tons	/quarter)	Maxi	mum Mitiga	ted ROG +	NOX (tons/c	juarter)		
1	1.	-1-2019	3-3	1-2019			0.0003					0.0003				
			Hi	ghest			0.0003					0.0003				

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Area	0.2832	4.4800e- 003	0.3273	2.0000e- 005		1.8700e- 003	1.8700e- 003		1.8700e- 003	1.8700e- 003	0.0000	1.3580	1.3580	5.3000e- 004	2.0000e- 005	1.3757
Energy	2.0700e- 003	0.0177	7.5300e- 003	1.1000e- 004		1.4300e- 003	1.4300e- 003		1.4300e- 003	1.4300e- 003	0.0000	72.8193	72.8193	2.7300e- 003	9.1000e- 004	73.1582
Mobile	0.0430	0.1207	0.4847	1.7200e- 003	0.1669	1.3800e- 003	0.1683	0.0449	1.2800e- 003	0.0461	0.0000	157.7118	157.7118	5.6400e- 003	0.0000	157.8529
Waste					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.0000	0.0000		0.0000	0.0000	4.1085	0.0000	4.1085	0.2428	0.0000	10.1787
Water						0.0000	0.0000		0.0000	0.0000	0.9095	4.8700	5.7795	0.0936	2.2600e- 003	8.7924
Total	0.3282	0.1428	0.8195	1.8500e- 003	0.1669	4.6800e- 003	0.1716	0.0449	4.5800e- 003	0.0494	5.0180	236.7591	241.7771	0.3453	3.1900e- 003	251.3579

Mitigated Operational

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exha PM2		PM2.5 Total	Bio- CO2	NBio CO:		otal CO2	CH4	N2O	CO2e
Category		1			tor	is/yr	1								MT	/yr	1	
Area	0.2830	4.4600e- 003	0.3249	2.0000e- 005		1.8500e- 003	1.8500e- 003		1.850 003	- I	.8500e- 003	0.0000	1.35	31 ′	1.3531	5.2000e- 004	2.0000e- 005	1.3707
Energy	2.0700e- 003	0.0177	7.5300e- 003	1.1000e- 004		1.4300e- 003	1.4300e- 003		1.430 003	=	4300e- 003	0.0000	72.81	93 7	2.8193	2.7300e- 003	9.1000e- 004	73.1582
Mobile	0.0430	0.1207	0.4847	1.7200e- 003	0.1669	1.3800e- 003	0.1683	0.0449	1.280 003).0461	0.0000	157.7 ⁻	118 15	57.7118	5.6400e- 003	0.0000	157.8529
Waste						0.0000	0.0000		0.00	00 0).0000	4.1085	0.000	00 4	4.1085	0.2428	0.0000	10.1787
Water						0.0000	0.0000		0.00	00 0).0000	0.9095	4.870	00 5	5.7795	0.0936	2.2600e- 003	8.7924
Total	0.3281	0.1428	0.8172	1.8500e- 003	0.1669	4.6600e- 003	0.1716	0.0449	4.560 003).0494	5.0180	236.7	543 24	41.7723	0.3453	3.1900e- 003	251.3529
	ROG	N	IOx (0		- I			ugitive PM2.5	Exhaust PM2.5			CO2 N	IBio-CO	2 Tot CC	-	14 N2	20 CO
Percent Reduction	0.04	C	0.01 0	.29	0.00 0	0.00 0	.43 0	.01	0.00	0.44	0.0	4 0	.00	0.00	0.0	0 0.	00 0.0	0.0

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	1/1/2019	1/14/2019	5	10	8 days

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 0.19

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	0	8.00	81	0.73
Demolition	Tractors/Loaders/Backhoes	0	6.00	97	0.37
Demolition	Rubber Tired Dozers	0	1.00	247	0.40

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	0	10.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

3.2 Demolition - 2019

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Fugitive Dust					0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.5000e- 004	1.0000e- 004	1.0700e- 003	0.0000	3.9000e- 004	0.0000	4.0000e- 004	1.0000e- 004	0.0000	1.1000e- 004	0.0000	0.3385	0.3385	1.0000e- 005	0.0000	0.3387
Total	1.5000e- 004	1.0000e- 004	1.0700e- 003	0.0000	3.9000e- 004	0.0000	4.0000e- 004	1.0000e- 004	0.0000	1.1000e- 004	0.0000	0.3385	0.3385	1.0000e- 005	0.0000	0.3387

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Fugitive Dust					0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT.	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.5000e- 004	1.0000e- 004	1.0700e- 003	0.0000	3.9000e- 004	0.0000	4.0000e- 004	1.0000e- 004	0.0000	1.1000e- 004	0.0000	0.3385	0.3385	1.0000e- 005	0.0000	0.3387
Total	1.5000e- 004	1.0000e- 004	1.0700e- 003	0.0000	3.9000e- 004	0.0000	4.0000e- 004	1.0000e- 004	0.0000	1.1000e- 004	0.0000	0.3385	0.3385	1.0000e- 005	0.0000	0.3387

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Mitigated	0.0430	0.1207	0.4847	1.7200e- 003	0.1669	1.3800e- 003	0.1683	0.0449	1.2800e- 003	0.0461	0.0000	157.7118	157.7118	5.6400e- 003	0.0000	157.8529
Unmitigated	0.0430	0.1207	0.4847	1.7200e- 003	0.1669	1.3800e- 003	0.1683	0.0449	1.2800e- 003	0.0461	0.0000	157.7118	157.7118	5.6400e- 003	0.0000	157.8529

4.2 Trip Summary Information

	Avera	age Daily Trip F	Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Apartments Mid Rise	194.92	194.92	194.92	450,189	450,189
Enclosed Parking with Elevator	0.00	0.00	0.00		
Total	194.92	194.92	194.92	450,189	450,189

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Apartments Mid Rise	10.80	4.80	5.70	31.00	15.00	54.00	86	11	3
Enclosed Parking with Elevator	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Apartments Mid Rise	0.470625	0.050338	0.265549	0.140745	0.017339	0.006996	0.024054	0.006595	0.004215	0.003104	0.009159	0.000488	0.000793
Enclosed Parking with Elevator	0.470625	0.050338	0.265549	0.140745	0.017339	0.006996	0.024054	0.006595	0.004215	0.003104	0.009159	0.000488	0.000793

5.1 Mitigation Measures Energy

5.0 Energy Detail

Historical Energy Use: N

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000	0.0000	52.3202	52.3202	2.3400e- 003	5.3000e- 004	52.5373
Electricity Unmitigated						0.0000	0.0000		0.0000	0.0000	0.0000	52.3202	52.3202	2.3400e- 003	5.3000e- 004	52.5373
NaturalGas Mitigated	2.0700e- 003	0.0177	7.5300e- 003	1.1000e- 004		1.4300e- 003	1.4300e- 003		1.4300e- 003	1.4300e- 003	0.0000	20.4991	20.4991	3.9000e- 004	3.8000e- 004	20.6209
NaturalGas Unmitigated	2.0700e- 003	0.0177	7.5300e- 003	1.1000e- 004		1.4300e- 003	1.4300e- 003		1.4300e- 003	1.4300e- 003	0.0000	20.4991	20.4991	3.9000e- 004	3.8000e- 004	20.6209

5.2 Energy by Land Use - NaturalGas

<u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							MT	/yr		
Apartments Mid Rise	384139	2.0700e- 003	0.0177	7.5300e- 003	1.1000e- 004		1.4300e- 003	1.4300e- 003		1.4300e- 003	1.4300e- 003	0.0000	20.4991	20.4991	3.9000e- 004	3.8000e- 004	20.6209
Enclosed Parking with Elevator	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		2.0700e- 003	0.0177	7.5300e- 003	1.1000e- 004		1.4300e- 003	1.4300e- 003		1.4300e- 003	1.4300e- 003	0.0000	20.4991	20.4991	3.9000e- 004	3.8000e- 004	20.6209

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							Π	ſ/yr		
Apartments Mid Rise	384139	2.0700e- 003	0.0177	7.5300e- 003	1.1000e- 004		1.4300e- 003	1.4300e- 003		1.4300e- 003	1.4300e- 003	0.0000	20.4991	20.4991	3.9000e- 004	3.8000e- 004	20.6209
Enclosed Parking with Elevator	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		2.0700e- 003	0.0177	7.5300e- 003	1.1000e- 004		1.4300e- 003	1.4300e- 003		1.4300e- 003	1.4300e- 003	0.0000	20.4991	20.4991	3.9000e- 004	3.8000e- 004	20.6209

5.3 Energy by Land Use - Electricity

<u>Unmitigated</u>

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MT	Г/yr	
Apartments Mid Rise	185768	41.4278	1.8500e- 003	4.2000e- 004	41.5997
Enclosed Parking with Elevator	48843.1	10.8924	4.9000e- 004	1.1000e- 004	10.9376
Total		52.3202	2.3400e- 003	5.3000e- 004	52.5373

Mitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		M	ſ/yr	
Apartments Mid Rise	185768	41.4278	1.8500e- 003	4.2000e- 004	41.5997
Enclosed Parking with Elevator	48843.1	10.8924	4.9000e- 004	1.1000e- 004	10.9376
Total		52.3202	2.3400e- 003	5.3000e- 004	52.5373

6.1 Mitigation Measures Area

Use Electric Lawnmower

Use Electric Leafblower

Use Electric Chainsaw

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Mitigated	0.2830	4.4600e- 003	0.3249	2.0000e- 005		1.8500e- 003	1.8500e- 003		1.8500e- 003	1.8500e- 003	0.0000	1.3531	1.3531	5.2000e- 004	2.0000e- 005	1.3707
Unmitigated	0.2832	4.4800e- 003	0.3273	2.0000e- 005		1.8700e- 003	1.8700e- 003		1.8700e- 003	1.8700e- 003	0.0000	1.3580	1.3580	5.3000e- 004	2.0000e- 005	1.3757

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					tons	s/yr							MT	/yr		
Architectural Coating	0.0418					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	0.2314					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Hearth	8.0000e- 005	7.1000e- 004	3.0000e- 004	0.0000	D	6.0000e- 005	6.0000e- 005		6.0000e- 005	6.0000e- 005	0.0000	0.8239	0.8239	2.0000e- 005	2.0000e- 005	0.8288
Landscaping	9.8600e- 003	3.7700e- 003	0.3270	2.0000e- 005		1.8100e- 003	1.8100e- 003		1.8100e- 003	1.8100e- 003	0.0000	0.5340	0.5340	5.1000e- 004	0.0000	0.5469
Total	0.2832	4.4800e- 003	0.3273	2.0000e- 005		1.8700e- 003	1.8700e- 003		1.8700e- 003	1.8700e- 003	0.0000	1.3580	1.3580	5.3000e- 004	2.0000e- 005	1.3757

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					tons	s/yr							MT	/yr		
Architectural Coating	0.0418					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	0.2314					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Hearth	8.0000e- 005	7.1000e- 004	3.0000e- 004	0.0000		6.0000e- 005	6.0000e- 005		6.0000e- 005	6.0000e- 005	0.0000	0.8239	0.8239	2.0000e- 005	2.0000e- 005	0.8288
Landscaping	9.7200e- 003	3.7400e- 003	0.3246	2.0000e- 005		1.8000e- 003	1.8000e- 003		1.8000e- 003	1.8000e- 003	0.0000	0.5292	0.5292	5.1000e- 004	0.0000	0.5419
Total	0.2830	4.4500e- 003	0.3249	2.0000e- 005		1.8600e- 003	1.8600e- 003		1.8600e- 003	1.8600e- 003	0.0000	1.3531	1.3531	5.3000e- 004	2.0000e- 005	1.3707

7.0 Water Detail

7.1 Mitigation Measures Water

	Total CO2	CH4	N2O	CO2e
Category		MT	/yr	
Mitigated	5.7795	0.0936	2.2600e- 003	8.7924
Unmitigated	5.7795	0.0936	2.2600e- 003	8.7924

7.2 Water by Land Use

<u>Unmitigated</u>

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		MI	ſ/yr	
Apartments Mid Rise	2.86678 / 1.80732	5.7795	0.0936	2.2600e- 003	8.7924
Enclosed Parking with Elevator	0 / 0	0.0000	0.0000	0.0000	0.0000
Total		5.7795	0.0936	2.2600e- 003	8.7924

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		M	Г/yr	
Apartments Mid Rise	2.86678 / 1.80732	5.7795	0.0936	2.2600e- 003	8.7924
Enclosed Parking with Elevator	0 / 0	0.0000	0.0000	0.0000	0.0000
Total		5.7795	0.0936	2.2600e- 003	8.7924

8.0 Waste Detail

8.1 Mitigation Measures Waste

Category/Year

	Total CO2	CH4	N2O	CO2e
		MT	/yr	
Mitigated	4.1085	0.2428	0.0000	10.1787
Unmitigated	4.1085	0.2428	0.0000	10.1787

8.2 Waste by Land Use

<u>Unmitigated</u>

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		M	ſ/yr	
Apartments Mid Rise	20.24	4.1085	0.2428	0.0000	10.1787
Enclosed Parking with Elevator	0	0.0000	0.0000	0.0000	0.0000
Total		4.1085	0.2428	0.0000	10.1787

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		MT	ſ/yr	
Apartments Mid Rise	20.24	4.1085	0.2428	0.0000	10.1787
Enclosed Parking with Elevator	0	0.0000	0.0000	0.0000	0.0000
Total		4.1085	0.2428	0.0000	10.1787

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
<u>Boilers</u>						
Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type	
User Defined Equipment						
Equipment Type	Number					

11.0 Vegetation

619–625 CA Drive Development - Project Operations (Updated March 25, 2021) - San Mateo County, Summer

619–625 CA Drive Development - Project Operations (Updated March 25, 2021) San Mateo County, Summer

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Enclosed Parking with Elevator	19.00	Space	0.19	8,335.00	0
Apartments Mid Rise	44.00	Dwelling Unit	0.33	59,120.00	126

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	70
Climate Zone	5			Operational Year	2023
Utility Company	Pacific Gas & Electric Co	ompany			
CO2 Intensity (Ib/MWhr)	491.65	CH4 Intensity (Ib/MWhr)	0.022	N2O Intensity ((Ib/MWhr)).005

1.3 User Entered Comments & Non-Default Data

Project Characteristics - 619-625 California Drive Development - Project Operations + Unmitigated Construction Adjustments made to the intensity factors based on Renewable Portfolio Standard

Land Use - Based on project description and site plan

44-unit live-work building

19 at-grade parking and 25 additional spaces in vehicle lifts

Vehicle Trips - Hexagon Transportation Consultants, Inc. 2021. 619-625 California Drive Live/Work Development Draft Traffic Impact Analysis. March 12.

Woodstoves - No woodburning fireplaces

Table Name	Column Name	Default Value	New Value
tblFireplaces	FireplaceWoodMass	228.80	0.00
tblLandUse	LandUseSquareFeet	7,600.00	8,335.00
tblLandUse	LandUseSquareFeet	44,000.00	59,120.00
tblLandUse	LotAcreage	0.17	0.19
tblLandUse	LotAcreage	1.16	0.33
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblProjectCharacteristics	CH4IntensityFactor	0.029	0.022
tblProjectCharacteristics	CO2IntensityFactor	641.35	491.65
tblProjectCharacteristics	N2OIntensityFactor	0.006	0.005
tblTripsAndVMT	WorkerTripNumber	0.00	10.00
tblVehicleTrips	ST_TR	6.39	4.43
tblVehicleTrips	SU_TR	5.86	4.43
tblVehicleTrips	WD_TR	6.65	4.43
tblWoodstoves	WoodstoveWoodMass	582.40	0.00

2.0 Emissions Summary

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/c	lay							lb/d	ay		
2019	0.0298	0.0184	0.2274	7.9000e- 004	0.0822	5.0000e- 004	0.0827	0.0218	4.7000e- 004	0.0223	0.0000	79.2318	79.2318	1.6800e- 003	0.0000	79.2737
Maximum	0.0298	0.0184	0.2274	7.9000e- 004	0.0822	5.0000e- 004	0.0827	0.0218	4.7000e- 004	0.0223	0.0000	79.2318	79.2318	1.6800e- 003	0.0000	79.2737

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/c	lay							lb/d	lay		
2019	0.0298	0.0184	0.2274	7.9000e- 004	0.0822	5.0000e- 004	0.0827	0.0218	4.7000e- 004	0.0223	0.0000	79.2318	79.2318	1.6800e- 003	0.0000	79.2737
Maximum	0.0298	0.0184	0.2274	7.9000e- 004	0.0822	5.0000e- 004	0.0827	0.0218	4.7000e- 004	0.0223	0.0000	79.2318	79.2318	1.6800e- 003	0.0000	79.2737

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		b/day											lb/c	lay		
Area	1.6216	0.1696	3.6872	1.0100e- 003		0.0304	0.0304		0.0304	0.0304	0.0000	169.5993	169.5993	9.4200e- 003	2.9900e- 003	170.7257
Energy	0.0114	0.0970	0.0413	6.2000e- 004		7.8400e- 003	7.8400e- 003		7.8400e- 003	7.8400e- 003		123.8159	123.8159	2.3700e- 003	2.2700e- 003	124.5517
Mobile	0.2604	0.6310	2.6983	9.9300e- 003	0.9564	7.5700e- 003	0.9639	0.2561	7.0500e- 003	0.2632		1,002.001 9	1,002.0019	0.0342		1,002.856 7
Total	1.8934	0.8976	6.4267	0.0116	0.9564	0.0458	1.0022	0.2561	0.0453	0.3014	0.0000	1,295.417 1	1,295.4171	0.0460	5.2600e- 003	1,298.134 0

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitiv PM2.		naust //2.5	PM2.5 Total	Bio-		NBio- CO2	Total CO2	CH4	N2	0	CO2e
Category					lb/e	day									lb/	/day			
Area	1.6201	0.1693	3.6610	1.0100e- 003		0.0303	0.0303		0.0)303	0.0303	0.0	000 16	9.5404	169.5404	9.3300 003	e- 2.990 00		170.6645
Energy	0.0114	0.0970	0.0413	6.2000e- 004		7.8400e- 003	7.8400e- 003		=	100e- 03	7.8400e- 003		12	3.8159	123.8159	2.3700 003	e- 2.27(00	=	124.5517
Mobile	0.2604	0.6310	2.6983	9.9300e- 003	0.9564	7.5700e- 003	0.9639	0.256		500e- 03	0.2632		1,0)02.001 9	1,002.001	9 0.034	2	1	,002.856 7
Total	1.8918	0.8973	6.4006	0.0116	0.9564	0.0457	1.0021	0.256	1 0.0	452	0.3013	0.0	000 1,2	295.358 2	1,295.3582	2 0.045	9 5.26 00		,298.072 9
	ROG	N	Ox (co s		-		M10 I otal	Fugitive PM2.5	Exha PM		12.5 otal	Bio- CO2	2 NBio		otal O2	CH4	N20	CO2e
Percent Reduction	0.08	0.	.03 0	.41 0	.00 0	.00 0	.33 0	0.01	0.00	0.3	33 0.	.05	0.00	0.0	00 0.	00	0.20	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Num I Week	Days Phase Description
1	Demolition	Demolition	1/1/2019	1/14/2019	5	108 days

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 0.19

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	0	8.00	81	0.73
Demolition	Tractors/Loaders/Backhoes	0	6.00	97	0.37
Demolition	Rubber Tired Dozers	0	1.00	247	0.40

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	0	10.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

3.2 Demolition - 2019

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	lay		
Fugitive Dust					0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			0.0000			0.0000
Off-Road	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay				lb/d	lay					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0298	0.0184	0.2274	7.9000e- 004	0.0822	5.0000e- 004	0.0827	0.0218	4.7000e- 004	0.0223		79.2318	79.2318	1.6800e- 003	0.	79.2737
Total	0.0298	0.0184	0.2274	7.9000e- 004	0.0822	5.0000e- 004	0.0827	0.0218	4.7000e- 004	0.0223		79.2318	79.2318	1.6800e- 003		79.2737

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	lay		
Fugitive Dust					0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			0.0000			0.0000
Off-Road	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0298	0.0184	0.2274	7.9000e- 004	0.0822	5.0000e- 004	0.0827	0.0218	4.7000e- 004	0.0223	0	79.2318	79.2318	1.6800e- 003		79.2737
Total	0.0298	0.0184	0.2274	7.9000e- 004	0.0822	5.0000e- 004	0.0827	0.0218	4.7000e- 004	0.0223		79.2318	79.2318	1.6800e- 003		79.2737

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	ay		
Mitigated	0.2604	0.6310	2.6983	9.9300e- 003	0.9564	7.5700e- 003	0.9639	0.2561	7.0500e- 003	0.2632		1,002.001 9	1,002.0019	0.0342		1,002.856 7
Unmitigated	0.2604	0.6310	2.6983	9.9300e- 003	0.9564	7.5700e- 003	0.9639	0.2561	7.0500e- 003	0.2632		1,002.001 9	1,002.0019	0.0342		1,002.856 7

4.2 Trip Summary Information

	Aver	age Daily Trip F	Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Apartments Mid Rise	194.92	194.92	194.92	450,189	450,189
Enclosed Parking with Elevator	0.00	0.00	0.00		
Total	194.92	194.92	194.92	450,189	450,189

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Apartments Mid Rise	10.80	4.80	5.70	31.00	15.00	54.00	86	11	3
Enclosed Parking with Elevator	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Apartments Mid Rise	0.470625	0.050338	0.265549	0.140745	0.017339	0.006996	0.024054	0.006595	0.004215	0.003104	0.009159	0.000488	0.000793
Enclosed Parking with Elevator	0.470625	0.050338	0.265549	0.140745	0.017339	0.006996	0.024054	0.006595	0.004215	0.003104	0.009159	0.000488	0.000793

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ау							lb/d	ay		
NaturalGas Mitigated	0.0114	0.0970	0.0413	6.2000e- 004		7.8400e- 003	7.8400e- 003		7.8400e- 003	7.8400e- 003		123.8159	123.8159	2.3700e- 003	2.2700e- 003	124.5517
NaturalGas Unmitigated	0.0114	0.0970	0.0413	6.2000e- 004		7.8400e- 003	7.8400e- 003		7.8400e- 003	7.8400e- 003		123.8159	123.8159	2.3700e- 003	2.2700e- 003	124.5517

5.2 Energy by Land Use - NaturalGas

<u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	lay							lb/d	lay		
Apartments Mid Rise	1052.44	0.0114	0.0970	0.0413	6.2000e- 004		7.8400e- 003	7.8400e- 003		7.8400e- 003	7.8400e- 003		123.8159	123.8159	2.3700e- 003	2.2700e- 003	124.5517
Enclosed Parking with Elevator	0	0.0000	0.0000	0.0000	0.0000	Dununununununununununununununununununun	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0114	0.0970	0.0413	6.2000e- 004		7.8400e- 003	7.8400e- 003		7.8400e- 003	7.8400e- 003		123.8159	123.8159	2.3700e- 003	2.2700e- 003	124.5517

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/e	day							lb/c	lay		
Apartments Mid Rise	1.05244	0.0114	0.0970	0.0413	6.2000e- 004		7.8400e- 003	7.8400e- 003		7.8400e- 003	7.8400e- 003		123.8159	123.8159	2.3700e- 003	2.2700e- 003	124.5517
Enclosed Parking with Elevator	0	0.0000	0.0000	0.0000	0.0000	D	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0114	0.0970	0.0413	6.2000e- 004		7.8400e- 003	7.8400e- 003		7.8400e- 003	7.8400e- 003		123.8159	123.8159	2.3700e- 003	2.2700e- 003	124.5517

6.1 Mitigation Measures Area

Use Electric Lawnmower

Use Electric Leafblower

Use Electric Chainsaw

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	ay		
Mitigated	1.6201	0.1693	3.6610	1.0100e- 003		0.0303	0.0303		0.0303	0.0303	0.0000	169.5404	169.5404	9.3300e- 003	2.9900e- 003	170.6645
Unmitigated	1.6216	0.1696	3.6872	1.0100e- 003		0.0304	0.0304		0.0304	0.0304	0.0000	169.5993	169.5993	9.4200e- 003	2.9900e- 003	170.7257

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/c	lay							lb/c	lay		
Architectural Coating	0.2290					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	1.2681					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Hearth	0.0150	0.1277	0.0544	8.2000e- 004		0.0103	0.0103	0.000.000.000.000.000.000.000.000	0.0103	0.0103	0.0000	163.0588	163.0588	3.1300e- 003	2.9900e- 003	164.0278
Landscaping	0.1096	0.0419	3.6328	1.9000e- 004		0.0201	0.0201		0.0201	0.0201		6.5405	6.5405	6.3000e- 003		6.6979
Total	1.6216	0.1696	3.6872	1.0100e- 003		0.0304	0.0304		0.0304	0.0304	0.0000	169.5993	169.5993	9.4300e- 003	2.9900e- 003	170.7257

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/c	lay							lb/d	ay		
Architectural Coating	0.2290					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	1.2681					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Hearth	0.0150	0.1277	0.0544	8.2000e- 004		0.0103	0.0103		0.0103	0.0103	0.0000	163.0588	163.0588	3.1300e- 003	2.9900e- 003	164.0278
Landscaping	0.1080	0.0416	3.6066	1.9000e- 004		0.0200	0.0200		0.0200	0.0200		6.4815	6.4815	6.2100e- 003		6.6367
Total	1.6201	0.1693	3.6610	1.0100e- 003		0.0303	0.0303		0.0303	0.0303	0.0000	169.5404	169.5404	9.3400e- 003	2.9900e- 003	170.6645

7.0 Water Detail

7.1 Mitigation Measures Water

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
10.0 Stationary Equipmer	nt					
Fire Pumps and Emergency G	enerators					
Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
<u>Boilers</u>						
Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type	
User Defined Equipment						-
Equipment Type	Number					
11.0 Vegetation		-				

619-625 CA Drive Development - Project Operations (Updated March 25, 2021) - San Mateo County, Winter

619–625 CA Drive Development - Project Operations (Updated March 25, 2021) San Mateo County, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Enclosed Parking with Elevator	19.00	Space	0.19	8,335.00	0
Apartments Mid Rise	44.00	Dwelling Unit	0.33	59,120.00	126

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	70
Climate Zone	5			Operational Year	2023
Utility Company	Pacific Gas & Electric Co	ompany			
CO2 Intensity (lb/MWhr)	491.65	CH4 Intensity (Ib/MWhr)	0.022	N2O Intensity (Ib/MWhr)	0.005

1.3 User Entered Comments & Non-Default Data

Project Characteristics - 619-625 California Drive Development - Project Operations + Unmitigated Construction Adjustments made to the intensity factors based on Renewable Portfolio Standard

Land Use - Based on project description and site plan

44-unit live-work building

19 at-grade parking and 25 additional spaces in vehicle lifts

Off-road Equipment - Operation Only

Vehicle Trips - Hexagon Transportation Consultants, Inc. 2021. 619-625 California Drive Live/Work Development Draft Traffic Impact Analysis. March 12.

Woodstoves - No woodburning fireplaces

Table Name	Column Name	Default Value	New Value
tblFireplaces	FireplaceWoodMass	228.80	0.00
tblLandUse	LandUseSquareFeet	7,600.00	8,335.00
tblLandUse	LandUseSquareFeet	44,000.00	59,120.00
tblLandUse	LotAcreage	0.17	0.19
tblLandUse	LotAcreage	1.16	0.33
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblProjectCharacteristics	CH4IntensityFactor	0.029	0.022
tblProjectCharacteristics	CO2IntensityFactor	641.35	491.65
tblProjectCharacteristics	N2OIntensityFactor	0.006	0.005
tblTripsAndVMT	WorkerTripNumber	0.00	10.00
tblVehicleTrips	ST_TR	6.39	4.43
tblVehicleTrips	SU_TR	5.86	4.43
tblVehicleTrips	WD_TR	6.65	4.43
tblWoodstoves	WoodstoveWoodMass	582.40	0.00

2.0 Emissions Summary

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/c	lay							lb/c	lay		
2019	0.0331	0.0227	0.2213	7.5000e- 004	0.0822	5.0000e- 004	0.0827	0.0218	4.7000e- 004	0.0223	0.0000	74.3473	74.3473	1.6100e- 003	0.0000	74.3875
Maximum	0.0331	0.0227	0.2213	7.5000e- 004	0.0822	5.0000e- 004	0.0827	0.0218	4.7000e- 004	0.0223	0.0000	74.3473	74.3473	1.6100e- 003	0.0000	74.3875

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/c	lay							lb/d	lay		
2019	0.0331	0.0227	0.2213	7.5000e- 004	0.0822	5.0000e- 004	0.0827	0.0218	4.7000e- 004	0.0223	0.0000	74.3473	74.3473	1.6100e- 003	0.0000	74.3875
Maximum	0.0331	0.0227	0.2213	7.5000e- 004	0.0822	5.0000e- 004	0.0827	0.0218	4.7000e- 004	0.0223	0.0000	74.3473	74.3473	1.6100e- 003	0.0000	74.3875

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	lay		
Area	1.6216	0.1696	3.6872	1.0100e- 003		0.0304	0.0304		0.0304	0.0304	0.0000	169.5993	169.5993	9.4200e- 003	2.9900e- 003	170.7257
Energy	0.0114	0.0970	0.0413	6.2000e- 004		7.8400e- 003	7.8400e- 003		7.8400e- 003	7.8400e- 003		123.8159	123.8159	2.3700e- 003	2.2700e- 003	124.5517
Mobile	0.2378	0.6833	2.7885	9.4400e- 003	0.9564	7.5900e- 003	0.9640	0.2561	7.0700e- 003	0.2632		952.7621	952.7621	0.0348		953.6331
Total	1.8708	0.9499	6.5169	0.0111	0.9564	0.0459	1.0022	0.2561	0.0453	0.3015	0.0000	1,246.177 3	1,246.1773	0.0466	5.2600e- 003	1,248.910 5

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugiti PM2.		naust //2.5	PM2.5 Total	Bio- CO		Bio- O2	Total CO2	CH4	N2O	CO2e
Category					lb	/day									lb/c	lay		
Area	1.6201	0.1693	3.6610	1.0100e- 003	•	0.0303	0.0303		0.0)303	0.0303	0.000	0 169.	5404	169.5404	9.3300e- 003	2.9900e- 003	170.6645
Energy	0.0114	0.0970	0.0413	6.2000e- 004	•	7.8400e- 003	7.8400e- 003		=	100e- 03	7.8400e- 003		123.	.8159	123.8159	2.3700e- 003	2.2700e- 003	124.5517
Mobile	0.2378	0.6833	2.7885	9.4400e· 003	0.9564	7.5900e- 003	0.9640	0.256		700e- 03	0.2632		952.	7621	952.7621	0.0348		953.6331
Total	1.8693	0.9496	6.4908	0.0111	0.9564	0.0457	1.0021	0.256	1 0.0	452	0.3013	0.000	,	6.118 4	1,246.1184	0.0465	5.2600e- 003	1,248.849 3
	ROG	N	Ox	co		•		M10 otal	Fugitive PM2.5	Exha PM		I2.5 Bi otal	io- CO2	NBio-	CO2 Tot CC	-	H4 N	20 CO20
Percent Reduction	0.08	0	.03 0	0.40	0.00	0.00 0	.33 (0.01	0.00	0.3	33 0.	05	0.00	0.0	0 0.0	0 0.	19 0.	00 0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Num I Week	Days Phase Description
1	Demolition	Demolition	1/1/2019	1/14/2019	5	108 days

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 0.19

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	0	8.00	81	0.73
Demolition	Tractors/Loaders/Backhoes	0	6.00	97	0.37
Demolition	Rubber Tired Dozers	0	1.00	247	0.40

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	0	10.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

3.2 Demolition - 2019

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	lay		
Fugitive Dust					0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			0.0000			0.0000
Off-Road	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/o	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0331	0.0227	0.2213	7.5000e- 004	0.0822	5.0000e- 004	0.0827	0.0218	4.7000e- 004	0.0223		74.3473	74.3473	1.6100e- 003		74.3875
Total	0.0331	0.0227	0.2213	7.5000e- 004	0.0822	5.0000e- 004	0.0827	0.0218	4.7000e- 004	0.0223		74.3473	74.3473	1.6100e- 003		74.3875

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	lay		
Fugitive Dust					0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			0.0000			0.0000
Off-Road	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0331	0.0227	0.2213	7.5000e- 004	0.0822	5.0000e- 004	0.0827	0.0218	4.7000e- 004	0.0223	0	74.3473	74.3473	1.6100e- 003		74.3875
Total	0.0331	0.0227	0.2213	7.5000e- 004	0.0822	5.0000e- 004	0.0827	0.0218	4.7000e- 004	0.0223		74.3473	74.3473	1.6100e- 003		74.3875

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	lay		
Mitigated	0.2378	0.6833	2.7885	9.4400e- 003	0.9564	7.5900e- 003	0.9640	0.2561	7.0700e- 003	0.2632		952.7621	952.7621	0.0348		953.6331
Unmitigated	0.2378	0.6833	2.7885	9.4400e- 003	0.9564	7.5900e- 003	0.9640	0.2561	7.0700e- 003	0.2632		952.7621	952.7621	0.0348		953.6331

4.2 Trip Summary Information

	Aver	age Daily Trip F	Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Apartments Mid Rise	194.92	194.92	194.92	450,189	450,189
Enclosed Parking with Elevator	0.00	0.00	0.00		
Total	194.92	194.92	194.92	450,189	450,189

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Apartments Mid Rise	10.80	4.80	5.70	31.00	15.00	54.00	86	11	3
Enclosed Parking with Elevator	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Apartments Mid Rise	0.470625	0.050338	0.265549	0.140745	0.017339	0.006996	0.024054	0.006595	0.004215	0.003104	0.009159	0.000488	0.000793
Enclosed Parking with Elevator	0.470625	0.050338	0.265549	0.140745	0.017339	0.006996	0.024054	0.006595	0.004215	0.003104	0.009159	0.000488	0.000793

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	lay		
NaturalGas Mitigated	0.0114	0.0970	0.0413	6.2000e- 004		7.8400e- 003	7.8400e- 003		7.8400e- 003	7.8400e- 003		123.8159	123.8159	2.3700e- 003	2.2700e- 003	124.5517
NaturalGas Unmitigated	0.0114	0.0970	0.0413	6.2000e- 004		7.8400e- 003	7.8400e- 003		7.8400e- 003	7.8400e- 003		123.8159	123.8159	2.3700e- 003	2.2700e- 003	124.5517

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	lay							lb/d	lay		
Apartments Mid Rise	1052.44	0.0114	0.0970	0.0413	6.2000e- 004		7.8400e- 003	7.8400e- 003		7.8400e- 003	7.8400e- 003		123.8159	123.8159	2.3700e- 003	2.2700e- 003	124.5517
Enclosed Parking with Elevator	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	Dununununununununununununununununununun	0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0114	0.0970	0.0413	6.2000e- 004		7.8400e- 003	7.8400e- 003		7.8400e- 003	7.8400e- 003		123.8159	123.8159	2.3700e- 003	2.2700e- 003	124.5517

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/e	day							lb/d	day		
Apartments Mid Rise	1.05244	0.0114	0.0970	0.0413	6.2000e- 004		7.8400e- 003	7.8400e- 003		7.8400e- 003	7.8400e- 003		123.8159	123.8159	2.3700e- 003	2.2700e- 003	124.5517
Enclosed Parking with Elevator	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0114	0.0970	0.0413	6.2000e- 004		7.8400e- 003	7.8400e- 003		7.8400e- 003	7.8400e- 003		123.8159	123.8159	2.3700e- 003	2.2700e- 003	124.5517

6.0 Area Detail

6.1 Mitigation Measures Area

Use Electric Lawnmower

Use Electric Leafblower

Use Electric Chainsaw

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	ay		
Mitigated	1.6201	0.1693	3.6610	1.0100e- 003		0.0303	0.0303		0.0303	0.0303	0.0000	169.5404	169.5404	9.3300e- 003	2.9900e- 003	170.6645
Unmitigated	1.6216	0.1696	3.6872	1.0100e- 003		0.0304	0.0304		0.0304	0.0304	0.0000	169.5993	169.5993	9.4200e- 003	2.9900e- 003	170.7257

6.2 Area by SubCategory

<u>Unmitigated</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/c	lay							lb/c	lay		
Architectural Coating	0.2290					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	1.2681					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Hearth	0.0150	0.1277	0.0544	8.2000e- 004		0.0103	0.0103		0.0103	0.0103	0.0000	163.0588	163.0588	3.1300e- 003	2.9900e- 003	164.0278
Landscaping	0.1096	0.0419	3.6328	1.9000e- 004		0.0201	0.0201		0.0201	0.0201		6.5405	6.5405	6.3000e- 003		6.6979
Total	1.6216	0.1696	3.6872	1.0100e- 003		0.0304	0.0304		0.0304	0.0304	0.0000	169.5993	169.5993	9.4300e- 003	2.9900e- 003	170.7257

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/c	lay							lb/c	lay		
Architectural Coating	0.2290					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	1.2681	0			Dununununununununununununununununununun	0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Hearth	0.0150	0.1277	0.0544	8.2000e- 004		0.0103	0.0103		0.0103	0.0103	0.0000	163.0588	163.0588	3.1300e- 003	2.9900e- 003	164.0278
Landscaping	0.1080	0.0416	3.6066	1.9000e- 004		0.0200	0.0200		0.0200	0.0200		6.4815	6.4815	6.2100e- 003		6.6367
Total	1.6201	0.1693	3.6610	1.0100e- 003		0.0303	0.0303		0.0303	0.0303	0.0000	169.5404	169.5404	9.3400e- 003	2.9900e- 003	170.6645

7.0 Water Detail

7.1 Mitigation Measures Water

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
Boilers						
Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type	
User Defined Equipment						
Equipment Type	Number					

11.0 Vegetation

Appendix D: Cultural Resources

THIS PAGE INTENTIONALLY LEFT BLANK

NWIC File No.: 20-1763

3/19/2021

Dana DePietro FirstCarbon Solutions 1350 Treat Blvd, St 380 Walnut Creek, CA 94597

Re: Addendum to the 619-625 California Drive Development Project Initial Study/Mitigated Negative Declaration

The Northwest Information Center received your record search request for the project area referenced above, located on the San Mateo USGS 7.5' quad(s). The following reflects the results of the records search for the project area and a 0.5 mi. radius:

Resources within project area:	None listed
Resources within 0.5 mi. radius: Informal Resources within radius:	[47] Please see attached list, page 3 C-335
Reports within project area:	S-48738
Reports within 0.5 mi. radius:	[30] Please see attached list, Page 4 [page count list, page 6]

Resource Database Printout (list):	\boxtimes enclosed	\Box not requested	\Box nothing listed
Resource Database Printout (details):	\boxtimes enclosed	\Box not requested	\Box nothing listed
Resource Digital Database Records:	\Box enclosed	\boxtimes not requested	\Box nothing listed
Report Database Printout (list):	\boxtimes enclosed	\Box not requested	\Box nothing listed
<u>Report Database Printout (details):</u>	\boxtimes enclosed	\Box not requested	\Box nothing listed
Report Digital Database Records:	\Box enclosed	\boxtimes not requested	\Box nothing listed
Resource Record Copies:	\boxtimes enclosed	\Box not requested	\Box nothing listed
<u>Report Copies:</u> [within Project area only]	\boxtimes enclosed	\Box not requested	\Box nothing listed
OHP Built Environment Resources Directory :	\boxtimes enclosed	\Box not requested	\boxtimes nothing listed
Archaeological Determinations of Eligibility:	\Box enclosed	\Box not requested	\boxtimes nothing listed
CA Inventory of Historic Resources (1976):	\boxtimes enclosed	\Box not requested	\Box nothing listed
Caltrans Bridge Survey:	\boxtimes enclosed	\Box not requested	\Box nothing listed

1 of 6

<u>Historical Maps:</u>	\boxtimes enclosed	\Box not requested	\Box nothing listed
Local Inventories:	\boxtimes enclosed	\Box not requested	\Box nothing listed
GLO and/or Rancho Plat Maps:	\boxtimes enclosed	\Box not requested	\Box nothing listed
Shipwreck Inventory:	\Box enclosed	\boxtimes not requested	\Box nothing listed

*Notes:

** Current versions of these resources are available on-line: Caltrans Bridge Survey: <u>http://www.dot.ca.gov/hq/structur/strmaint/historic.htm</u> Soil Survey: <u>http://www.nrcs.usda.gov/wps/portal/nrcs/surveylist/soils/survey/state/?stateld=CA</u> Shipwreck Inventory: <u>http://www.slc.ca.gov/Info/Shipwrecks.html</u>

Please forward a copy of any resulting reports from this project to the office as soon as possible. Due to the sensitive nature of archaeological site location data, we ask that you do not include resource location maps and resource location descriptions in your report if the report is for public distribution. If you have any questions regarding the results presented herein, please contact the office at the phone number listed above.

The provision of CHRIS Data via this records search response does not in any way constitute public disclosure of records otherwise exempt from disclosure under the California Public Records Act or any other law, including, but not limited to, records related to archeological site information maintained by or on behalf of, or in the possession of, the State of California, Department of Parks and Recreation, State Historic Preservation Officer, Office of Historic Preservation, or the State Historical Resources Commission.

Due to processing delays and other factors, not all of the historical resource reports and resource records that have been submitted to the Office of Historic Preservation are available via this records search. Additional information may be available through the federal, state, and local agencies that produced or paid for historical resource management work in the search area. Additionally, Native American tribes have historical resource information not in the CHRIS Inventory, and you should contact the California Native American Heritage Commission for information on local/regional tribal contacts.

Should you require any additional information for the above referenced project, reference the record search number listed above when making inquiries. Requests made after initial invoicing will result in the preparation of a separate invoice.

Thank you for using the California Historical Resources Information System (CHRIS).

Sincerely, annette Neal

Researcher

2 of 6

Resources In 0.5 mi. Buffer

PrimCo	PrimNo	
P-41	000534	
41	001919	
41	001920	
41	001942	
41	001950	
41	001982	
41	001002	
41	002071	
41	002072	
41	002080	
41	002080	
41	002081	
41	002083	
41	002083	
41	002084	
41	002085	
41	002080	
41	002087	
41	002088	
41	002191	
41	002192	
41	002285	
41	002290	
41	002400	
41	002507	
41	002508	
41	002509	
41	002505	
41	002510	
41	002511	
41	002512	
41	002513	
41	002514	
41	002515	
41		
	002517	
41	002523	
41	002526	
41	002631	
41	002632	
41	002633	
41	002634	
41	002635	
41	002636	
41	002637	
41	002638	
41	002639	

41 002640

Reports In 0.5 mi Buffer

DocCo	DocNo
S-	003147
S-	010402
S-	011396
S-	017993
S-	021879
S-	025131
S-	025133
S-	025174
S-	025498
S-	026045
S-	026297
S-	029657
S-	032038
S-	032166
S-	032250
S-	033061
S-	036274
S-	036313
S-	036845
S-	038147
S-	038684
S-	039104
S-	040313
S-	043525
S-	043959
S-	048236
S-	048343
S-	048738
S-	049125
S-	049448

\$ S-003147.pdf S-010402.pdf	Selec		Location	Size (In KB)	Туре
C 010402 - 46		11	N:\record searches\RS	722 KB	adobe a
			N:\record searches\RS	52,714 KB	adobe
S-011396.pdf			N:\record searches\RS	240,065 KB	adobe
S-017993.pdf		1623	N:\record searches\RS	611,172 KB	adobe
S-021879.pdf		297	N:\record searches\RS	146,455 KB	adobe
S-025131.pdf			N:\record searches\RS	6,868 KB	
S-025133.pdf		20	N:\record searches\RS	18,900 KB	
S-025174.pdf		68	N:\record searches\RS	38,011 KB	adobe
S-025498.pdf		14	N:\record searches\RS	12,033 KB	adobe
S-026045.pdf		115	N:\record searches\RS	4,809 KB	adobe
S-026297.pdf		210	N:\record searches\RS	214,722 KB	adobe
\$-029657.pdf			N:\record searches\RS	297,593 KB	adobe
S-032038.pdf		4	N:\record searches\RS	4,137 KB	adobe
S-032166.pdf		76	N:\record searches\RS	112,216 KB	
S-032250.pdf		157	N:\record searches\RS	201,759 KB	adobe
S-033061.pdf		673	N:\record searches\RS	338,385 KB	adobe
S-036274.pdf			N:\record searches\RS	367,151 KB	adobe
S-036313.pdf		205	N:\record searches\RS	27,774 KB	adobe
S-036845.pdf		54	N:\record searches\RS	3,890 KB	adobe
S-038147.pdf		57	N:\record searches\RS	25,335 KB	adobe
S-038684.pdf		38	N:\record searches\RS	17,145 KB	adobe
S-039104.pdf		317	N:\record searches\RS	109,983 KB	adobe
S-040313.pdf		13	N:\record searches\RS	14,356 KB	adobe
S-043525.pdf		426	N:\record searches\RS	54,130 KB	adobe
S-043959.pdf		45	N:\record searches\RS	59,617 KB	adobe
S-048236.pdf		270	N:\record searches\RS	210,968 KB	adobe
S-048343.pdf		63	N:\record searches\RS	7,598 KB	adobe
S-048738.pdf		2368	N:\record searches\RS	334,594 KB	adobe
S-049125.pdf		407	N:\record searches\RS	90,486 KB	adobe
S-049448.pdf		36	N:\record searches\RS	1,115 KB	- dela

Chairperson Laura Miranda Luiseño

VICE CHAIRPERSON Reginald Pagaling Chumash

SECRETARY Merri Lopez-Keifer Luiseño

Parliamentarian Russell Attebery Karuk

COMMISSIONER William Mungary Paiute/White Mountain Apache

COMMISSIONER Julie Tumamait-Stenslie Chumash

Commissioner [Vacant]

Commissioner [Vacant]

Commissioner [Vacant]

Executive Secretary Christina Snider Pomo

NAHC HEADQUARTERS

1550 Harbor Boulevard Suite 100 West Sacramento, California 95691 (916) 373-3710 <u>nahc@nahc.ca.gov</u> NAHC.ca.gov

NATIVE AMERICAN HERITAGE COMMISSION

March 23, 2021

Dana DePietro, PhD FirstCarbon Solutions

Via Email to: ddepietro@fcs-intl.com Cc to: mdolan@fcs-intl.com

Re: Native American Tribal Consultation, Pursuant to the Assembly Bill 52 (AB 52), Amendments to the California Environmental Quality Act (CEQA) (Chapter 532, Statutes of 2014), Public Resources Code Sections 5097.94 (m), 21073, 21074, 21080.3.1, 21080.3.2, 21082.3, 21083.09, 21084.2 and 21084.3, 619-625 California Drive Development Addendum to the IS/MND Project, San Mateo County

To Dr. DePietro:

Pursuant to Public Resources Code section 21080.3.1 (c), attached is a consultation list of tribes that are traditionally and culturally affiliated with the geographic area of the above-listed project. Please note that the intent of the AB 52 amendments to CEQA is to avoid and/or mitigate impacts to tribal cultural resources, (Pub. Resources Code §21084.3 (a)) ("Public agencies shall, when feasible, avoid damaging effects to any tribal cultural resource.")

Public Resources Code sections 21080.3.1 and 21084.3(c) require CEQA lead agencies to consult with California Native American tribes that have requested notice from such agencies of proposed projects in the geographic area that are traditionally and culturally affiliated with the tribes on projects for which a Notice of Preparation or Notice of Negative Declaration or Mitigated Negative Declaration has been filed on or after July 1, 2015. Specifically, Public Resources Code section 21080.3.1 (d) provides:

Within 14 days of determining that an application for a project is complete or a decision by a public agency to undertake a project, the lead agency shall provide formal notification to the designated contact of, or a tribal representative of, traditionally and culturally affiliated California Native American tribes that have requested notice, which shall be accomplished by means of at least one written notification that includes a brief description of the proposed project and its location, the lead agency contact information, and a notification that the California Native American tribe has 30 days to request consultation pursuant to this section.

The AB 52 amendments to CEQA law does not preclude initiating consultation with the tribes that are culturally and traditionally affiliated within your jurisdiction prior to receiving requests for notification of projects in the tribe's areas of traditional and cultural affiliation. The Native American Heritage Commission (NAHC) recommends, but does not require, early consultation as a best practice to ensure that lead agencies receive sufficient information about cultural resources in a project area to avoid damaging effects to tribal cultural resources.

The NAHC also recommends, but does not require that agencies should also include with their notification letters, information regarding any cultural resources assessment that has been completed on the area of potential effect (APE), such as:

1. The results of any record search that may have been conducted at an Information Center of the California Historical Resources Information System (CHRIS), including, but not limited to:

- A listing of any and all known cultural resources that have already been recorded on or adjacent to the APE, such as known archaeological sites;
- Copies of any and all cultural resource records and study reports that may have been provided by the Information Center as part of the records search response;
- Whether the records search indicates a low, moderate, or high probability that unrecorded cultural resources are located in the APE; and
- If a survey is recommended by the Information Center to determine whether previously unrecorded cultural resources are present.

2. The results of any archaeological inventory survey that was conducted, including:

• Any report that may contain site forms, site significance, and suggested mitigation measures.

All information regarding site locations, Native American human remains, and associated funerary objects should be in a separate confidential addendum, and not be made available for public disclosure in accordance with Government Code section 6254.10.

- 3. The result of any Sacred Lands File (SLF) check conducted through the Native American Heritage Commission was <u>negative</u>.
- 4. Any ethnographic studies conducted for any area including all or part of the APE; and
- 5. Any geotechnical reports regarding all or part of the APE.

Lead agencies should be aware that records maintained by the NAHC and CHRIS are not exhaustive and a negative response to these searches does not preclude the existence of a tribal cultural resource. A tribe may be the only source of information regarding the existence of a tribal cultural resource.

This information will aid tribes in determining whether to request formal consultation. In the event that they do, having the information beforehand will help to facilitate the consultation process.

If you receive notification of change of addresses and phone numbers from tribes, please notify the NAHC. With your assistance, we can assure that our consultation list remains current.

If you have any questions, please contact me at my email address: <u>Sarah.Fonseca@nahc.ac.gov</u>.

Sincerely,

Sarah Fonseca Cultural Resources Analyst

Attachment

Native American Heritage Commission Tribal Consultation List San Mateo County 3/23/2021

Amah MutsunTribal Band of Mission San Juan Bautista

Irene Zwierlein, Chairperson 789 Canada Road Woodside, CA, 94062 Phone: (650) 851 - 7489 Fax: (650) 332-1526 amahmutsuntribal@gmail.com

Costanoan

Costanoan Rumsen Carmel Tribe

Tony Cerda, Chairperson 244 E. 1st Street Costanoan Pomona, CA, 91766 Phone: (909) 629 - 6081 Fax: (909) 524-8041 rumsen@aol.com

Indian Canyon Mutsun Band of Costanoan

Kanyon Sayers-Roods, MLD Contact 1615 Pearson Court Costanoan San Jose, CA, 95122 Phone: (408) 673 - 0626 kanyon@kanyonkonsulting.com

Indian Canyon Mutsun Band of

CostanoanAnn Marie Sayers, ChairpersonP.O. Box 28CostanoanHollister, CA, 95024Phone: (831) 637 - 4238ams@indiancanyon.org

Muwekma Ohlone Indian Tribe

of the SF Bay Area Charlene Nijmeh, Chairperson 20885 Redwood Road, Suite 232 Costanoan Castro Valley, CA, 94546 Phone: (408) 464 - 2892 cnijmeh@muwekma.org

Muwekma Ohlone Indian Tribe

of the SF Bay Area Monica Arellano, Vice Chairwoman 20885 Redwood Road, Suite 232 Costanoan Castro Valley, CA, 94546 Phone: (408) 205 - 9714 marellano@muwekma.org

The Ohlone Indian Tribe

Andrew Galvan, P.O. Box 3388 Fremont, CA, 94539 Phone: (510) 882 - 0527 Fax: (510) 687-9393 chochenyo@AOL.com

Bay Miwok Ohlone Patwin Plains Miwok

Rumsen Am:a Tur:ataj Ohlone

Dee Dee Ybarra, Chairperson 14671 Farmington Street Hesperia, CA, 92345 Phone: (760) 403 - 1756 rumsenama@gmail.com

Costanoan

This list is current only as of the date of this document. Distribution of this list does not relieve any person of statutory responsibility as defined in Section 7050.5 of the Health and Safety Code, Section 5097.94 of the Public Resources Code and section 5097.98 of the Public Resources Code.

This list is only applicable for consultation with Native American tribes under Public Resources Code Sections 21080.3.1 for the proposed 619-625 California Drive Development Addendum to the IS/MND Project, San Mateo County.

PROJ-2021-001583 THIS PAGE INTENTIONALLY LEFT BLANK

Appendix E: Traffic Supporting Information

THIS PAGE INTENTIONALLY LEFT BLANK

•=•

619-625 California Drive Live/Work Development

Draft Traffic Impact Analysis

Prepared for:

First Carbon Solutions

March 12, 2021

Hexagon Transportation Consultants, Inc.

Hexagon Office: 4 North Second Street, Suite 400 San Jose, CA 95113 Hexagon Job Number: 20GB13 Phone: 408.971.6100 Client Name: ICF

San Jose · Gilroy · Pleasanton

www.hextrans.com

Areawide Circulation Plans Corridor Studies Pavement Delineation Plans Traffic Handling Plans Impact Fees Interchange Analysis Parking Transportation Planning Traffic Calming Traffic Control Plans Traffic Simulation Traffic Impact Analysis Traffic Signal Design Travel Demand Forecasting

Table of Contents

Evoc	cutive Summary	;
Exec	curve Summary	I
1.	Introduction	1
2.	Existing Conditions	8
3.	Background Conditions	
4.	Project Conditions	21
5.	Background Plus 2 Project Conditions	
6.	Other Transportation Issues	

Appendices

- Appendix ATraffic CountsAppendix BLevel of Service CalculationsAppendix CList of Background ProjectsAppendix DSignal Warrant Analysis
- Appendix D Signal Warrant A

List of Tables

Table ES-1	Intersection Levels of Service Summary	iii
Table 1	Signalized Intersection Level of Service Definitions Based on Control Delay	5
Table 2	Unsignalized Intersection Level of Service Definitions Based on Delay	6
Table 3	Existing Transit Services	11
Table 4	Existing Intersection Levels of Service	
Table 5	Background Intersection Levels of Service	20
Table 6	Project Trip Generation Estimates	22
Table 7	Existing Plus Project Intersection Levels of Service	27
Table 8	Background Plus Project Intersection Levels of Service	30
Table 9	601 California Drive Trip Generation Estimates	31
Table 10	Background Plus 2 Project Levels of Service Summary	34

List of Figures

Site Location and Study Intersections	2
Existing Bicycle Facilities	10
Project Trip Distribution	24
Project Trip Assignment	25
Existing Plus Project Traffic Volumes	26
Background Plus Project Traffic Volumes	29
Background Plus 2 Project Traffic Volumes	33
	Site Location and Study Intersections Existing Bicycle Facilities Existing Transit Services Existing Lane Configurations Existing Traffic Volumes Background Traffic Volumes Project Trip Distribution Project Trip Assignment Existing Plus Project Traffic Volumes Background Plus Project Traffic Volumes Background Plus 2 Project Traffic Volumes

Executive Summary

This report presents the results of the Transportation Impact Analysis (TIA) conducted for the proposed live/work development at 619-625 California Drive. The project site is located on the southwest corner of the intersection of California Drive and Oak Grove Avenue. As proposed, the project would demolish all existing structures on the project site and construct a new five-story, 44 unit live/work development. Currently one of the existing parcels is vacant and the other two are occupied by an automobile repair shop and residential houses. Access to the site would be provided via a single full-access driveway on Oak Grove Avenue across from San Mateo Avenue.

This study was conducted for the purpose of identifying the potential transportation deficiencies in accordance with the standards set forth by the City of Burlingame and the City/County Association of Governments (C/CAG) of San Mateo County. The transportation study includes an analysis of AM and PM peak hour traffic conditions for two (2) signalized intersections and two (2) unsignalized intersections in the vicinity of the project site. The study also includes an analysis of vehicle miles travelled, site access and on-site circulation, vehicle queuing, and transit, bicycle, and pedestrian access.

Because the project is located within ½ mile of the Burlingame Caltrain Station, it can be presumed to have a less-than-significant impact on VMT based on the Governor's Office of Planning and Research (OPR) guidelines.

Based on the project description and ITE trip generation rates, the proposed development would generate a total of 195 net daily vehicle trips, with 13 net trips (3 inbound and 10 outbound) occurring during the AM peak hour and 14 net trips (10 inbound and 4 outbound) occurring during the PM peak hour.

The results of the intersection level of service analysis are summarized in Table ES-1. The results determined that under all scenarios with and without the project, all of the study intersections would operate in accordance with local standards during both AM and PM peak hours.

Review of the project site plan resulted in the following recommendations. Per the California Building Code (CBC) Table 11B-6, two (2) ADA accessible spaces are required for projects with 26 to 50 parking spaces. Of the required accessible parking spaces, one van accessible space is required. The plans show only one (1) ADA accessible van parking space. Thus, the project does not provide sufficient ADA accessible parking per the CBC. Hexagon recommends converting the standard residential parking space into an additional ADA accessible parking space to meet CBC requirements.

Table ES-1Intersection Levels of Service Summary

					Existing		Existing plus Project		Background		Background plus Project			Background plus 2 Projects		•	
#	Intersection	Control*	Peak Hour	Count Date**	Avg. Delay (sec)	LOS	Avg. Delay (sec)	LOS	Incr. in Avg. Delay	Avg. Delay (sec)	LOS	Avg. Delay (sec)	LOS	Incr. in Avg. Delay	Avg. Delay (sec)	LOS	Incr. in Avg. Delay
1	Oak Grove Avenue & Carolan Avenue	AWSC	AM PM	05/23/17 05/23/17	14.5 12.3	B B	14.5 12.3	B B	0.0 0.0	15.2 12.9	C B	15.3 12.9	C B	0.1 0.0	15.4 12.9	C B	0.2 0.0
2	Oak Grove Avenue & California Drive	Signalized	AM PM	04/24/19 04/24/19	18.8 15.2	B B	18.9 15.3	B B	0.1 0.1	19.6 15.9	B B	19.7 16.0	B B	0.1 0.1	19.7 16.0	B B	0.1 0.1
3	Oak Grove Avenue & Ansel Avenue	TWSC	AM PM	01/11/18 01/11/18	11.3 10.9	B B	11.3 10.9	B B	0.0 0.0	11.5 11.0	B B	11.5 11.1	B B	0.0 0.1	11.5 11.1	B B	0.0 0.1
4	Oak Grove Avenue & El Camino Real	Signalized	AM PM	01/11/18 01/11/18	13.3 12.8	B B	13.3 12.8	B B	0.0 0.0	13.2 12.7	B B	13.2 12.6	B B	0.0 -0.1	13.2 12.6	B B	0.0 -0.1

Notes:

AWSC = All-Way Stop-Control; TWSC = Two-Way Stop-Control

*Due to limitations within the Synchro software, the intersection of Carolan Avenue and Oak Grove Avenue cannot be evaluated with three stop-controlled approaches and one free-flowing approach. Therefore, the study intersection was evaluated as an all-way stop control intersection to provide a conservative level of service analysis.

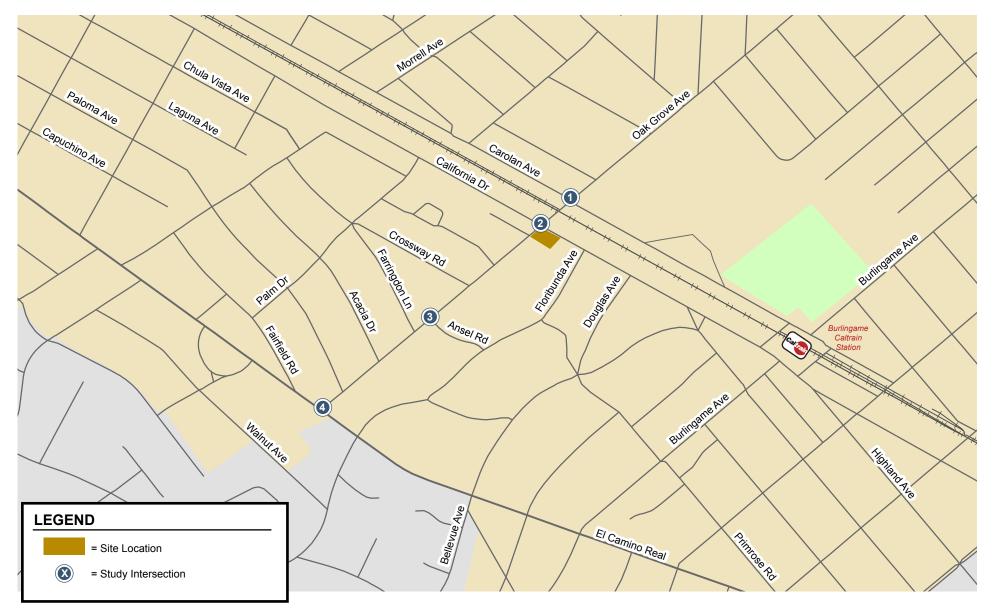
**A 1% per year growth factor was applied to escalate the counts to 2020.

1. Introduction

This report presents the results of the Transportation Impact Analysis (TIA) conducted for the proposed live/work development at 619-625 California Drive in Burlingame, CA. The project site is located on the southwest corner of the intersection of California Drive and Oak Grove Avenue (See Figure 1). As proposed, the project would demolish all existing structures on the project site and construct a new five-story, 44 unit live/work development. Currently one of the existing parcels is vacant and the other two are occupied by an automobile repair shop and residential houses. Access to the site would be provided via a single full-access driveway on Oak Grove Avenue across from San Mateo Avenue.

Scope of Study

This study was conducted for the purpose of identifying the potential transportation deficiencies related to the proposed development. The potential deficiencies caused by the project were evaluated in accordance with the standards set forth by the City of Burlingame and the City/County Association of Governments (C/CAG) of San Mateo County. The C/CAG administers the San Mateo County Congestion Management Program (CMP). Given that the project is expected to add fewer than 100 peak hour trips to CMP roadways (El Camino Real), a C/CAG trip reduction analysis was not prepared.


The traffic study includes an analysis of AM and PM peak hour traffic conditions for two (2) signalized intersections and two (2) unsignalized intersections in the vicinity of the project site. The study also includes an analysis of Vehicle Miles Traveled (VMT), site access and on-site circulation, vehicle queuing, and transit, bicycle, and pedestrian access.

Study Intersections

- 1. Carolan Avenue and Oak Grove Avenue *
- 2. California Drive and Oak Grove Avenue
- 3. Ansel Avenue and Oak Grove Avenue *
- 4. El Camino Real and Oak Grove Avenue

* Denotes Unsignalized Intersections

Figure 1 Site Location and Study Intersections

Traffic conditions at the study intersections were analyzed for both the weekday AM and PM peak hours of adjacent street traffic. The AM peak hour typically occurs between 7:00 AM and 9:00 AM and the PM peak hour typically occurs between 4:00 PM and 6:00 PM on a regular weekday. These are the peak commute hours during which most traffic congestion occurs on the roadways in the study area.

Traffic conditions were evaluated for the following scenarios:

- Scenario 1: Existing Conditions. Due to the COVID-19 pandemic, most businesses and schools are closed, and people are working at home to the extent possible. As a result, traffic volume is a fraction of what it was prior to the virus outbreak. Current traffic counts would not accurately reflect traffic conditions at the completion of the project. Therefore, it is necessary to estimate traffic volume based on older available traffic counts.. A 1% per year growth factor was applied to escalate the counts to 2021. The study intersections were evaluated with a level of service analysis using Synchro software in accordance with the 2010 Highway Capacity Manual methodology.
- Scenario 2: Background Conditions. Background traffic volumes reflect traffic added by projected volumes from approved but not yet completed developments in the project area. The approved project trips and/or approved project information were obtained from the City of Burlingame.
- Scenario 3: Existing plus Project Conditions. Existing traffic volumes with the project were estimated by adding to existing traffic volumes the additional traffic generated by the project. Existing plus project conditions were evaluated relative to existing conditions in order to determine the effects the project would have on the existing roadway network.
- Scenario 4: *Project Conditions.* Background traffic volumes with the project (hereafter called project traffic volumes) were estimated by adding to background traffic volumes the additional traffic generated by the project. Project Conditions were evaluated relative to background conditions to determine potential project impacts.
- Scenario 5: Background Plus 2 Project Conditions. A proposed live/work development is also planned at 601 California Drive. Project traffic volumes with the 601 California Drive project were estimated by adding to project traffic volumes the additional traffic generated by the 601 California Drive project. Background Plus 2 Project Conditions were evaluated relative to background conditions to determine potential impacts if both projects are built.

Methodology

This section presents the methods used to determine the traffic conditions for each scenario described above. It includes descriptions of the data requirements, the analysis methodologies, and the applicable level of service standards.

Data Requirements

The data required for the analysis were obtained from previous traffic counts, the City of Burlingame, local traffic studies and EIRs, and field observations. The following data were collected from these sources:

- historical peak-hour intersection turning-movement volumes
- lane configurations
- intersection signal timing and phasing

• approved project trips

Level of Service Standards and Analysis Methodologies

Traffic conditions at the study intersections were evaluated using level of service (LOS). *Level of Service* is a qualitative description of operating conditions ranging from LOS A, or free-flow conditions with little or no delay, to LOS F, or jammed conditions with excessive delays. The various analysis methods are described below.

Signalized Intersections

The City of Burlingame level of service standards were used to evaluate the signalized study intersections. The City of Burlingame evaluates intersection level of service based on the *Highway Capacity Manual* (HCM) *2010* method using Synchro software. The 2010 HCM method evaluates signalized intersection operations on the basis of average control delay time for all vehicles at the intersection. This average delay can then be correlated to a level of service. While the City of Burlingame does not have a Council-adopted level of service threshold, a standard of LOS D or better has typically been applied in local traffic studies and EIRs. The correlation between delay and level of service is shown in Table 1.

Level of Service	Description	Average Control Delay Per Vehicle (sec.)
A	Signal progression is extremely favorable. Most vehicles arrive during the green phase and do not stop at all. Short cycle lengths may also contribute to the very low vehicle delay.	10.0 or less
В	Operations characterized by good signal progression and/or short cycle lengths. More vehicles stop than with LOS A, causing higher levels of average vehicle delay.	10.1 to 20.0
с	Higher delays may result from fair signal progression and/or longer cycle lengths. Individual cycle failures may begin to appear at this level. The number of vehicles stopping is significant, though many still pass through the intersection without stopping.	20.1 to 35.0
D	The influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable signal progression, long cycle lengths, or high volume-to-capacity (V/C) ratios. Many vehicles stop and individual cycle failures are noticeable.	35.1 to 55.0
E	This is considered to be the limit of acceptable delay. These high delay values generally indicate poor signal progression, long cycle lengths, and high volume-to-capacity (V/C) ratios. Individual cycle failures occur frequently.	55.1 to 80.0
F	This level of delay is considered unacceptable by most drivers. This condition often occurs with oversaturation, that is, when arrival flow rates exceed the capacity of the intersection. Poor progression and long cycle lengths may also be major-contributing causes of such delay levels.	greater than 80.0
Source:	Fransportation Research Board, 2010 Highway Capacity Manual (Washington, D.C	c., 2010) p18-6.

Table 1 Signalized Intersection Level of Service Definitions Based on Control Delay

Unsignalized Intersections

Level of service analysis at unsignalized intersections is generally used to determine the need for modification in the type of intersection control (i.e., all-way stop or signalization). As part of the evaluation, traffic volumes, delays and traffic signal warrants are evaluated to determine if the existing intersection control is appropriate.

Level of service at unsignalized intersections was based on the 2010 HCM method using the Synchro software. This method is applicable for both side-street and all-way stop-controlled intersections. At side-street stop-controlled intersections, the reported levels of service are reported for the worst stop-controlled approach delay at the intersection. For all-way stop-controlled intersections, a weighted average delay of the entire intersection is presented.

The City of Burlingame does not have a formally-adopted level of service standard for unsignalized intersections. The correlation between average control delay and LOS for unsignalized intersections is shown in Table 2.

Level of Service	Description	Average Control Delay Per Vehicle (sec.)						
А	Little or no traffic delay	10.0 or less						
В	Short Traffic delays	10.1 to 15.0						
С	Average traffic delays	15.1 to 25.0						
D	Long traffic delays	25.1 to 35.0						
E	Very long traffic delays	35.1 to 50.0						
F	Extreme traffic delays	greater than 50.0						
Source: Transportation Research Board, 2010 Highway Capacity Manual (Washington, D.C., 2010) p20-3.								

Table 2Unsignalized Intersection Level of Service Definitions Based on Delay

Traffic Signal Warrant

The level of service calculations at the unsignalized intersections are supplemented with an assessment of the need for installation of a traffic signal, known as a signal warrant analysis. The need for signalization of unsignalized intersections in an urban or suburban context is typically assessed based on the Peak Hour Volume Warrant (Warrant 3) described in the *California Manual on Uniform Traffic Control Devices for Streets and Highways* (CA MUTCD), Part 4, Highway Traffic Signals. This method makes no evaluation of intersection level of service, but simply provides an indication whether vehicular peak hour volumes are, or would be, sufficiently high to justify installation of a traffic signal.

The decision to install a traffic signal should not be based purely on the warrants alone. Instead, the decision should be considered when one or more of the warrants are met, which triggers further feasibility analysis. Engineering judgment should be exercised to determine how a traffic signal could affect collision rates and traffic conditions at the subject intersection, as well as at adjacent intersections. Other options besides a traffic signal should also be considered, such as all-way stop control, new or enhanced signage, or roadway geometry changes; these measures may be more appropriate than a new traffic signal.

Significant Impact Criteria

Pursuant to SB 743, the CEQA 2019 Update Guidelines Section 15064.3, subdivision (b) states that vehicle miles travelled (VMT) will be the metric in analyzing transportation impacts for land use projects for CEQA purposes. The *Technical Advisory on Evaluating Transportation Impacts in CEQA* published by the Governor's Office of Planning and Research (OPR) in December 2018 provides recommendations regarding VMT evaluation methodology, significance thresholds and screening thresholds for land use projects. The following OPR recommendations are relevant to the project:

- OPR recommends that office or residential projects exceeding a level of 15 percent below existing VMT per capita may indicate a significant transportation impact.
- OPR recommends that projects (including office, residential, retail and mixed-use developments) proposed within ½ mile of an existing major transit stop may be presumed to have a less-than-significant impact on VMT.

• OPR recommends that 100 percent affordable residential development in infill locations be presumed to have a less-than-significant impact on VMT.

It should be noted that agencies are not required to adopt VMT analysis guidelines until July 1, 2020. The City of Burlingame, at the time of this report, is undertaking a process of updating its significance thresholds to be consistent with SB 743, but has not released draft thresholds. In the absence of an adopted, or even draft, City policy with numeric thresholds, this study utilized OPR guidelines in analyzing VMT.

Because the project is located within ½ mile of the Burlingame Caltrain Station, it can be presumed to have a less-than-significant impact on VMT based on OPR guidelines.

Intersection Operational Deficiencies

The City of Burlingame does not have Council-adopted definitions of what constitutes an operational deficiency at an intersection. The following standards typically have been used in traffic studies and EIRs. The project is said to create an operational deficiency at a signalized intersection in the City of Burlingame if for any peak-hour:

- 1. The level of service at the intersection degrades from an acceptable LOS D or better under no project conditions to an unacceptable LOS E or F under project conditions; or
- The level of service at the intersection is an unacceptable LOS E or F under no project conditions <u>and</u> the addition of project trips causes the average delay at the intersection to increase by five (5) or more seconds.

Report Organization

The remainder of this report is divided into five chapters. Chapter 2 describes the existing roadway network, pedestrian and bicycle facilities, and transit services. Chapter 3 presents the intersection operations under background conditions and describes the approved projects in the City of Burlingame that would likely add traffic to the study area. Chapter 4 describes the methods used to estimate project-generated traffic and its potential project deficiencies on the transportation system. Chapter 5 describes project conditions with the 601 California Drive project. Chapter 6 presents the analysis of other transportation related issues including transit, bicycle, and pedestrian facilities.

2. Existing Conditions

This chapter describes the existing conditions for transportation facilities in the vicinity of the site, including the roadway network, transit service, pedestrian and bicycle facilities, and the existing levels of service for the key intersections in the study area.

Existing Roadway Network

Regional access to the project site is provided via US 101 and El Camino Real (SR 82). Local access to the site is provided by Broadway, Peninsula Avenue, Carolan Avenue, California Drive, and Oak Grove Avenue. These roadways are described below.

US 101 is a north/south, eight-lane freeway in the vicinity of the site. US 101 extends northward through San Francisco and southward through San Jose. US 101 provides access to and from the project site via a full interchange at Broadway and a partial interchange at Peninsula Avenue.

El Camino Real (SR 82) is a four-lane roadway west of the project site that serves as a north-south route of travel along the Peninsula in the vicinity of the site. El Camino Real extends northward to San Francisco, and southward to San Jose. El Camino Real provides access to and from the project site via Floribunda Avenue.

Broadway is an east/west, two- to four-lane arterial that extends from west of Vancouver Avenue to Old Bayshore Highway, where it transitions into Airport Boulevard. Broadway is located north of the project site, and is one of the main gateways into the city with high volumes and access to other parts to the city. Broadway provides access to and from the project site via California Drive.

Peninsula Avenue is an east/west, two- to three-lane arterial that extends from El Camino Real east to Airport Boulevard, where it transitions into Coyote Point Drive. Peninsula Avenue is located south of the project site and acts as the southern gateway into the city, connecting the downtown Burlingame area with US 101 and El Camino Real. Peninsula Avenue provides access to and from the project site via California Drive.

Carolan Avenue is a north/south roadway that extends from Broadway to Burlingame Avenue. Carolan Avenue consists of one lane in each direction. Carolan Avenue provides access to and from the project site via Oak Grove Avenue.

California Drive is a north/south roadway that extends from Millbrae Avenue in the City of Millbrae to Peninsula Avenue in San Mateo to the south, at which point it becomes North San Mateo Drive.

California Drive consists of two lanes between Millbrae Avenue and Broadway, and four lanes south of Broadway. California Drive provides access to and from the project site via Oak Grove Avenue.

Oak Grove Avenue is an east/west roadway that extends from El Camino Real to Rollins Road. California Drive consists of one lane in each direction. Oak Grove Avenue provides direct access to and from the project site.

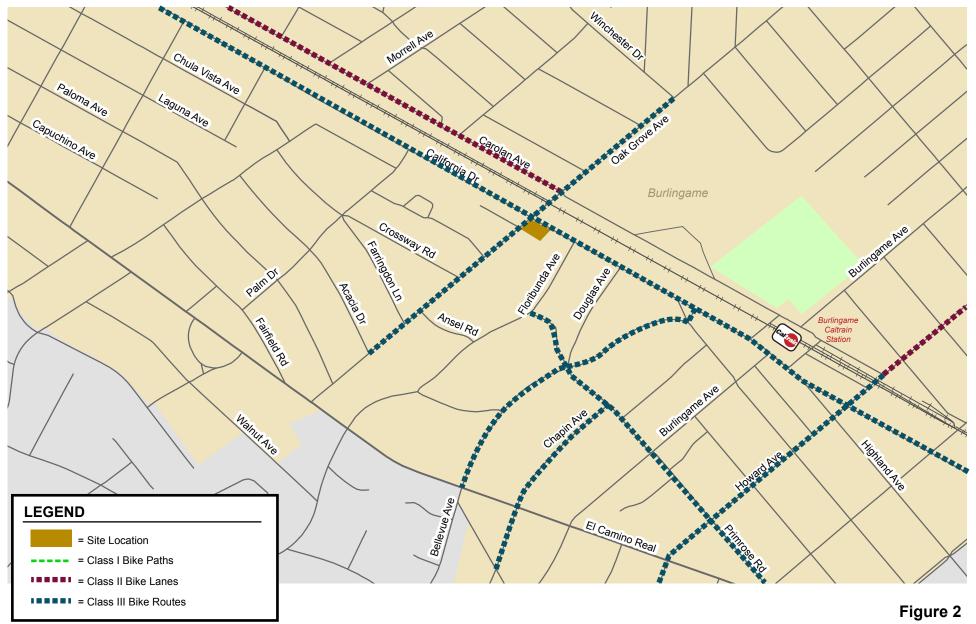
Existing Pedestrian and Bicycle Facilities

Pedestrian facilities consist of sidewalks, crosswalks, and pedestrian signals at signalized intersections. In the vicinity of the project site, existing sidewalks along the west side of California Drive and both sides of Floribunda Avenue, Ansel Avenue, and Oak Grove Avenue provide pedestrian access to and from the project site. Sidewalks also exist on both sides of El Camino Real north of Floribunda Avenue and on the east side of El Camino Real south of Floribunda Avenue. Marked crosswalks with pedestrian signal heads and push buttons are provided on all approaches of the signalized study intersection of California Avenue and Oak Grove Avenue and on the east and north approaches of the signalized study intersection of El Camino Real and Oak Grove Avenue. At the unsignalized study intersections, marked crosswalks are provided along all stop-controlled approaches. An additional marked crosswalk is provided on the west leg of the intersection of Ansel Avenue and Oak Grove Avenue

Although some sidewalk and crosswalk connections are missing, the overall network of sidewalks and crosswalks in the study area has adequate connectivity and provides pedestrians with safe routes to transit services and other points of interest in the vicinity of the project site.

Existing Bicycle Facilities

Existing bicycle facilities in the project vicinity consist of Class II bicycle lanes and Class III bike routes on some nearby streets. Class II bicycle lanes are lanes on roadways designed for use by bicycles with special lane markings, pavement legends, and signage. Class III bike routes are signed and designated roadways that provide connections to the project site, Class I and Class II bike facilities, as well as parks, schools, other community amenities such as downtown Burlingame, the Burlingame Caltrain Station, and the Millbrae Transit Center. Class II and Class III bike facilities currently exist on the roadway segments listed below and shown on Figure 2.


North-south bicycle connections in the study area include Class III bike routes along California Drive between Millbrae Avenue and Burlingame Avenue and along Primrose Road between Floribunda Avenue and El Camino Real. There are also Class II bike lanes north of the project site along Carolan Avenue between Broadway and Oak Grove Avenue.

East-west bicycle connections in the study area consist of bike routes along Oak Grove Avenue between Acacia Drive and Winchester Drive, Bellevue Avenue between California Drive and El Camino Real, Chapin Avenue between Primrose Road and Occidental Avenue, and Howard Avenue between Occidental Avenue and East Lane. There is also a Class II bike lane along Howard Avenue between East Lane and Humboldt Street.

Although few of the local streets within the project study area have designated bike lanes or are designated as bike routes, many streets in the vicinity of the project site are conducive to bicycle travel due to their low speed limits and traffic volumes.

HEXAGON

Existing Bicycle Facilties

Existing Transit Service

Existing transit service to the study area is provided by the San Mateo County Transit District (SamTrans), the City of Burlingame, and Caltrain (See Figure 3). The transit service routes that run through the study area are listed in Table 3, including their route description and commute hour headways.

Table 3Existing Transit Services

Transit Route	Route Description	Headway ¹						
Operated by SamTrans								
School-Day Only Route 46	Burlingame Intermediate School to Carolan Ave at 1060	See Footnote ²						
Express Route 292	Hillsdale Shopping Center to Downtown San Francisco	30 mins						
Express Route 397	Downtown San Francisco to Palo Alto Transit Center	60 mins ³						
Multi-City Route ECR	Daly City BART Station to Palo Alto Transit Center	15-20 mins						
Operated by the City of Bur	lingame							
Burlingame Trolley Service	Burlingame Caltrain Station to San Francisco Airport Marriott Hotel	45 mins						
 Notes: ¹ Approximate headways during peak commute periods. Headways shown reflect the schedule prior to COVID-19 reductions. ² This route operates with two buses in the Northbound direction in the AM peak hour and two buses in the southbound direction in the school PM hour. ³ This Route does not operate during the PM. 								

SamTrans Bus Service

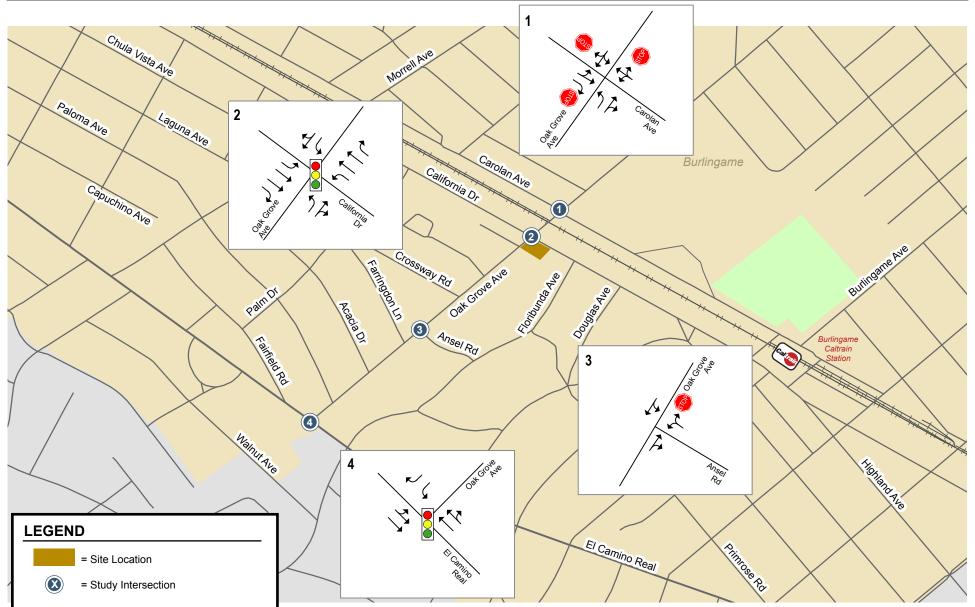
The study area is served directly by three bus routes and one school-day only bus route. The nearest bus stop for Route 46 and Route 292 is located at the California Drive/Oak Grove Avenue intersection, adjacent to the project site. The nearest bus stop for Route 397 and Route ECR is located at the El Camino Real/Oak Grove Avenue intersection, approximately 1,900 feet walking distance from the project site.

Caltrain Service

Caltrain provides frequent passenger train service between San Jose and San Francisco seven days a week. During commute hours, Caltrain provides extended service to Morgan Hill and Gilroy. The closest Caltrain station is the Burlingame Station (approximately a quarter-mile south of the project site), providing weekday and weekend service. The Burlingame Station provides local and limited stop Caltrain service. Prior to COVID-19 service reductions, trains that stop at the Burlingame Station operate at approximately 25-minute headways in both directions during the commute hours, with somewhat less frequent service midday. Service operated between about 5:30 AM and 11:35 PM in the northbound direction and between 5:20 AM and 12:35 AM (next day) in the southbound direction.

As part of the Caltrain Modernization Program, the rail service will be electrified. The electrified Caltrain system will provide increased service and is also expected to help accommodate the increase in system ridership through much improved system operations.

Burlingame Trolley Service


The Burlingame Trolley service provides weekday PM peak-hour service between the Burlingame Caltrain Station and the San Francisco Airport Marriott Hotel. The Burlingame Trolley primarily connects the hotels east of Highway 101 with downtown Burlingame. The trolley service operates between 11:50 AM and 9:45 PM, with approximately 45-minute headways. The nearest trolley stop is located near the project site at the California Drive/Burlingame Avenue intersection, approximately a quarter-mile walking distance from the project site.

Existing Intersection Lane Configurations and Traffic Volumes

The existing lane configurations at the study intersections were determined by observations in the field and are shown on Figure 4. Due to the COVID-19 pandemic, most businesses and schools are closed, and people are working at home to the extent possible. As a result, traffic volume is a fraction of what it was prior to the virus outbreak. Current traffic counts would not accurately reflect traffic conditions at the completion of the project. Therefore, it is necessary to estimate traffic volume based on older available traffic counts. Existing traffic volumes at the study intersection of Carolan Avenue & Oak Grove Avenue were obtained from traffic counts conducted in May of 2017. Existing traffic volumes at the study intersection of California Avenue & Oak Grove Avenue were obtained from traffic counts conducted in April of 2019. Existing traffic volumes at the study intersections of Ansel Avenue & Oak Grove Avenue and El Camino Real & Oak Grove Avenue were obtained from traffic counts conducted in January of 2018. A 1% per year growth factor was applied to escalate the counts to 2021. The estimated existing peak-hour intersection volumes are shown on Figure 5. Intersection turningmovement counts conducted for this analysis are presented in Appendix A.

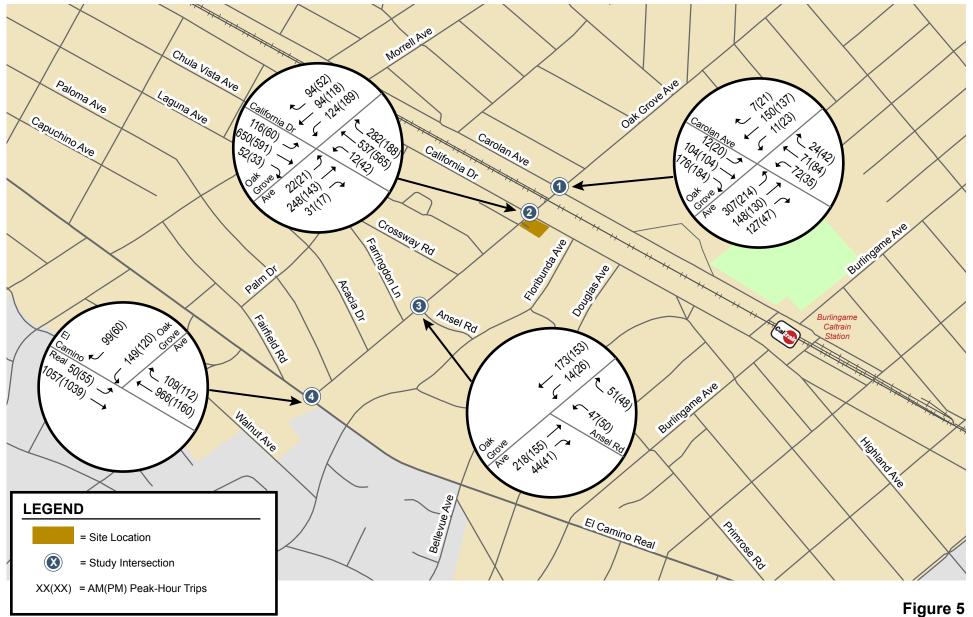


Figure 4 Existing Lane Configurations

Existing Traffic Volumes

Existing Intersection Levels of Service

The results of the analysis show that both of the signalized study intersections currently operate at an acceptable LOS B during the AM and PM peak hours (see Table 4).

The results of the analysis show that both of the unsignalized study intersections currently operate at LOS B during the AM and PM peak hours. This indicates that vehicles at the stop-controlled approaches experience only minor delays.

The intersection level of service calculation sheets are included in Appendix B.

Table 4Existing Intersection Levels of Service

#	Intersection	Control*	Peak Hour	Count Date**	Avg. Delay (sec)	Existing Avg. Delay (sec)	LOS
1	Oak Grove Avenue & Carolan Avenue	AWSC	AM PM	05/23/17 05/23/17	14.5 12.3	14.5 12.3	B B
2	Oak Grove Avenue & California Drive	Signalized	AM PM	04/24/19	18.8 15.2	18.8 15.2	B B
3	Oak Grove Avenue & Ansel Avenue	TWSC	AM PM	01/11/18	11.3 10.9	11.3 10.9	B B
4	Oak Grove Avenue & El Camino Real	Signalized	AM PM	01/11/18 01/11/18	13.3 12.8	13.3 12.8	B B

Notes:

AWSC = All-Way Stop-Control; TWSC = Two-Way Stop-Control

*Due to limitations within the Synchro software, the intersection of Carolan Avenue and Oak Grove Avenue cannot be evaluated with three stop-controlled approaches and one free-flowing approach. Therefore, the study intersection was evaluated as an all-way stop control intersection to provide a conservative level of service analysis.

**A 1% per year growth factor was applied to escalate the counts to 2020.

3. Background Conditions

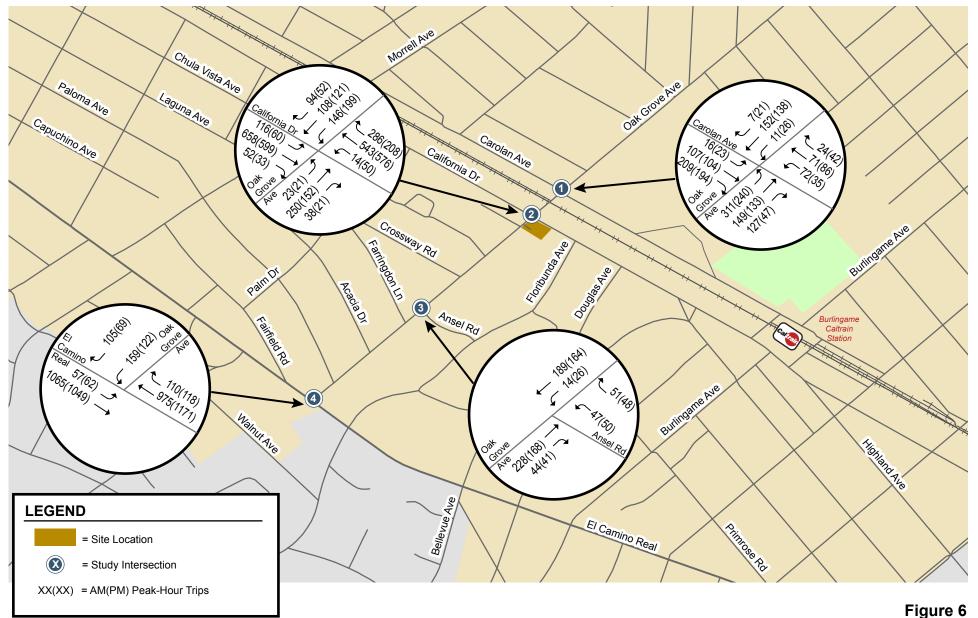
This chapter describes background traffic conditions. Background conditions are defined as conditions within the next 3-5 years (a horizon year of 2023-2025) just prior to completion/occupation of the proposed development. Traffic volumes for background conditions comprise existing traffic volumes plus traffic generated by other approved developments in the vicinity of the site. This chapter describes the procedure used to determine background traffic volumes and the resulting traffic conditions.

Roadway Network and Traffic Volumes

Under background conditions, it is assumed that the proposed Peninsula Corridor Electrification Project (PCEP), which is a key component of the Caltrain Modernization program, would be completed (projected to be operational between 2022 and 2023). According to Fehr & Peers' *Caltrain Peninsula Corridor Electrification Project Transportation Analysis* (2014), the PCEP is expected to increase service by up to six Caltrain trains per peak hour per direction. The remainder of the transportation network is assumed to be the same under background conditions as that of the existing transportation network.

Background traffic volumes for the study intersections were estimated by adding to existing traffic volumes the trips generated by nearby approved but not yet completed or occupied projects in the area. A list of approved developments was obtained from the City of Burlingame website. The list of background projects is included in Appendix C. Trip generation estimates for the approved projects were based on their respective traffic study, if available. For small projects that did not require a traffic study, trips were estimated based on ITE trip rates. The estimated trips from the approved projects were distributed and assigned throughout the study area based on the trip distribution assumptions present in the traffic studies or based on knowledge of travel patterns in the study area. Background peak hour traffic volumes are shown on Figure 6.

Background Intersection Levels of Service


The results of the analysis show that both of the signalized study intersections would continue to operate at an acceptable LOS B during the AM and PM peak hours under background conditions (see Table 5).

The results of the analysis show that both of the unsignalized study intersections would operate at LOS B or LOS C during the AM and PM peak hours under background conditions. This indicates that vehicles at the stop-controlled approaches would experience only minor or average delays.

The intersection level of service calculation sheets are provided in Appendix B.

Hexagon

Table 5Background Intersection Levels of Service

#	Intersection	Control*	Peak Hour	Count Date**	Avg. Delay (sec)	Existing Avg. Delay (sec)	LOS	Backg Avg. Delay (sec)	round LOS
1	Oak Grove Avenue & Carolan Avenue	AWSC	AM PM	05/23/17 05/23/17	14.5 12.3	14.5 12.3	B B	15.2 12.9	C B
2	Oak Grove Avenue & California Drive	Signalized	AM PM	04/24/19 04/24/19	18.8 15.2	18.8 15.2	B B	19.6 15.9	B B
3	Oak Grove Avenue & Ansel Avenue	TWSC	AM PM	01/11/18 01/11/18	11.3 10.9	11.3 10.9	B B	11.5 11.0	B B
4	Oak Grove Avenue & El Camino Real	Signalized	AM PM	01/11/18 01/11/18	13.3 12.8	13.3 12.8	B B	13.2 12.7	B B

Notes:

AWSC = All-Way Stop-Control; TWSC = Two-Way Stop-Control

*Due to limitations within the Synchro software, the intersection of Carolan Avenue and Oak Grove Avenue cannot be evaluated with three stop-controlled approaches and one free-flowing approach. Therefore, the study intersection was evaluated as an all-way stop control intersection to provide a conservative level of service analysis.

**A 1% per year growth factor was applied to escalate the counts to 2020.

4. Project Conditions

This chapter describes traffic conditions with the project and includes: (1) the method by which project traffic is estimated and (2) a level of service summary. Existing plus project conditions are represented by existing traffic conditions with the addition of traffic generated by the project. Existing plus project traffic conditions could potentially occur if the project were to be occupied prior to the other approved projects in the area. Project conditions are represented by background traffic conditions with the addition of traffic generated by background traffic conditions with the

Roadway Network

It is assumed in this analysis that the transportation network under project conditions would be the same as the background transportation network.

Project Trip Estimates

The magnitude of traffic produced by a new development and the locations where that traffic would appear were estimated using a three-step process: (1) trip generation, (2) trip distribution, and (3) trip assignment. In determining project trip generation, the magnitude of traffic traveling to and from the proposed residential development was estimated for the AM and PM peak hours. As part of the project trip distribution, the directions to and from which the project trips would travel were estimated. In the project trip assignment, the project trips were assigned to specific streets and intersections. These procedures are described below.

Trip Generation

Through empirical research, data have been collected that quantify the amount of traffic produced by many types of land uses. The research is compiled in the *Trip Generation Manual, 10th Edition (2017)* published by the Institute of Transportation Engineers' (ITE). The magnitude of traffic added to the roadway system by a particular development is estimated by multiplying the applicable trip generation rates by the size of the development. The average trip generation rates for Multi-Family Housing Mid-Rise (Land Use 221) were applied to the project. Live/work units do not operate the same as regular residential units. Some trips will be made by clients and patrons. However, the trip to work that residents normally would make during peak hours is eliminated due to the in-unit work space. These two factors offset, thus the trip behavior associated with live/work units was assumed to be comparable to that of a traditional residential unit. Based on the project description and ITE trip generation rates, the proposed development would generate a total of 239 gross daily vehicle trips, with 16 gross trips (4 inbound and 12 outbound) occurring during the AM peak hour and 19 gross trips (12 inbound and 7 outbound) occurring during the PM peak hour (see Table 6).

Existing Use Credit

The existing occupied buildings' trip generation can be credited against the proposed mixed-use development, because with the demolition of the existing land uses, their associated traffic would disappear. The trip generation for the existing automobile repair shop was estimated based on driveway counts conducted on January 11, 2018, and the existing residential houses were estimated based on published ITE rates for Single-Family Detached Housing (Land Use 210). Given that one of the residential houses is being used as an office with multiple employees, ITE rates for General Office Building (Land Use 710) were used.

Based on the driveway counts and ITE trip generation rates, it is estimated that the existing uses are generating a total of 44 daily trips, with 3 trips occurring during the AM peak hour and 5 trips occurring in the PM peak hour.

Net Project Trips

After applying the ITE trip rates and existing site trip credits, the project would generate 195 net daily vehicle trips, with 13 net trips (3 inbound and 10 outbound) occurring during the AM peak hour and 14 net trips (10 inbound and 4 outbound) occurring during the PM peak hour (See Table 6).

Table 6

Project Trip Generation Estimates

			Da	ily		AM Peak Hour			PM Peak Hour			
Land Use	Size		Rate	Trips	Rate	In	Out	Total	Rate	In	Out	Total
Proposed Project												
Live/Work Residential ¹	44	units	5.44	239	0.36	4	12	16	0.44	12	7	19
Existing Use												
Automobile Shop ² Single-Family Residential ³ General Office Building ⁴	6.00 2 3	ksf units employees	9.44 3.28	(15) (19) (10)	0.74 0.37	0 0 (1)	(1) (1) 0	(1) (1) (1)	0.99 0.40	(1) (1) 0	(1) (1) (1)	(2) (2) (1)
Total Existing Trips				(44)		(1)	(2)	(3)		(2)	(3)	(5)
Net Project Trips				195		3	10	13		10	4	14

Notes:

ksf = 1,000 square feet

¹ Multifamily Housing (Mid-Rise) (Land Use 221) average rates published in ITE's *Trip Generation Manual, 10th Edition*, 2017.

² Based on driveway counts conduted on January 11, 2018. Daily trips reductions are the average of the AM and PM peak hour rate multiplied by 10.

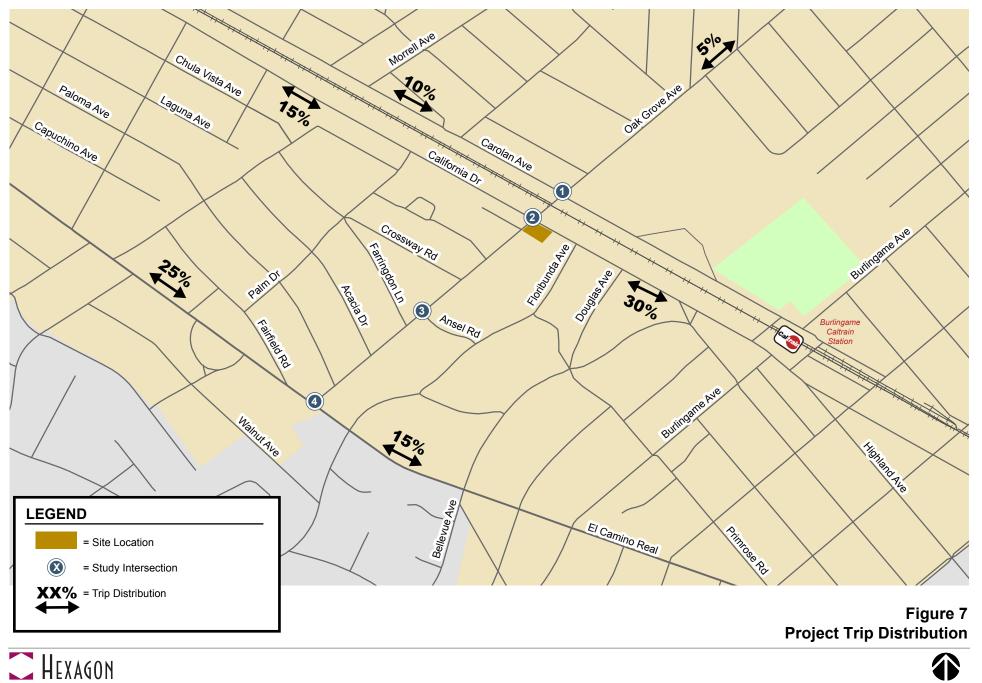
³ Single-Family Detached Housing (Land Use 210) average rates published in ITE's *Trip Generation Manual, 10th Edition,* 2017.

⁴ General Office Building (Land Use 710) average rates published in ITE's *Trip Generation Manual, 10th Edition,* 2017.

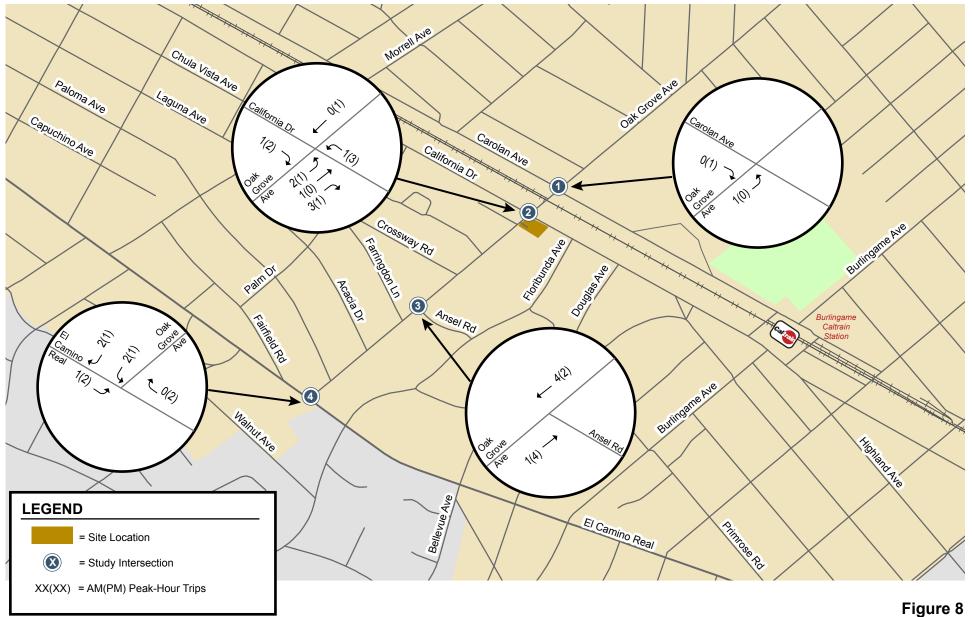
Trip Distribution and Trip Assignment

The trip distribution pattern for the project was estimated based on existing travel patterns on the surrounding roadway system and the locations of complementary land uses. The peak hour vehicle trips generated by the project were assigned to the roadway network in accordance with the trip distribution pattern. Figure 7 and Figure 8 show the trip distribution pattern and net trip assignment of project traffic on the local transportation network, respectively.

Existing Plus Project Traffic Volumes

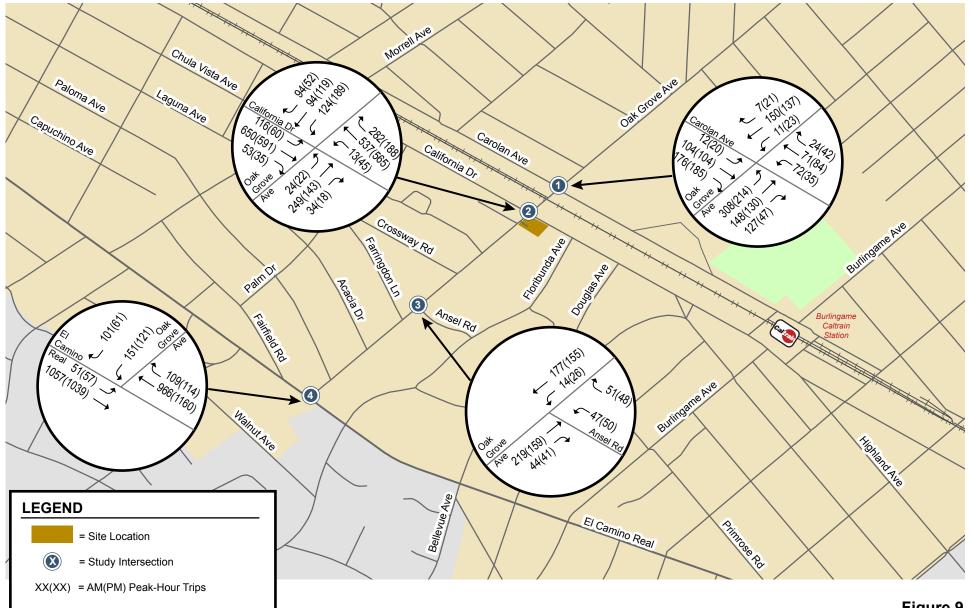

Project trips, as represented in the above project trip assignment, were added to existing traffic volumes to obtain existing plus project traffic volumes. The existing plus project traffic volumes are shown on Figure 9.

Existing Plus Project Intersection Analysis


The results of the analysis show that both of the signalized study intersections would continue to operate at an acceptable LOS B during the AM and PM peak hours under existing plus project conditions (see Table 7).

The results of the analysis show that both of the unsignalized study intersections would continue to operate at LOS B or LOS C during the AM and PM peak hours under existing plus project conditions. This indicates that, with the addition of project traffic under existing conditions, vehicles at the stop-controlled approaches are expected to continue to experience only minor delays.

The intersection level of service calculation sheets are provided in Appendix B.



Project Trip Assignment

Table 7Existing Plus Project Intersection Levels of Service

						Existing		Existin	g plus	Project
#	Intersection	Control*	Peak Hour	Count Date**	Avg. Delay (sec)	Avg. Delay (sec)	LOS	Avg. Delay (sec)	LOS	Incr. in Avg. Delay
1	Oak Grove Avenue & Carolan Avenue	AWSC	AM PM	05/23/17 05/23/17	14.5 12.3	14.5 12.3	B B	14.5 12.3	B B	0.0 0.0
2	Oak Grove Avenue & California Drive	Signalized	AM PM	04/24/19 04/24/19	18.8 15.2	18.8 15.2	B B	18.9 15.3	B B	0.1 0.1
3	Oak Grove Avenue & Ansel Avenue	TWSC	AM PM	01/11/18 01/11/18	11.3 10.9	11.3 10.9	B B	11.3 10.9	B B	0.0 0.0
4	Oak Grove Avenue & El Camino Real	Signalized	AM PM	01/11/18 01/11/18	13.3 12.8	13.3 12.8	B B	13.3 12.8	B B	0.0 0.0

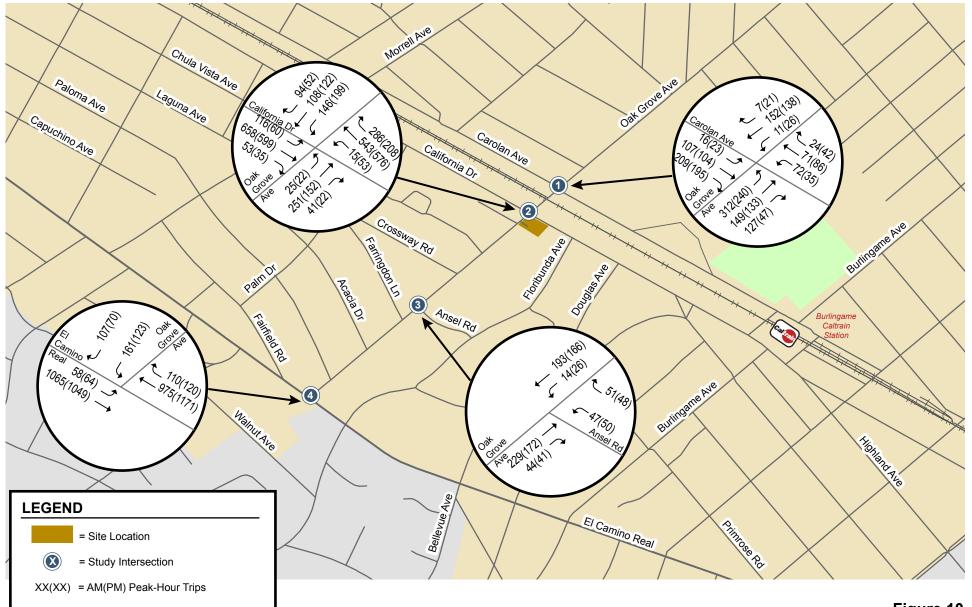
Notes:

AWSC = All-Way Stop-Control; TWSC = Two-Way Stop-Control

*Due to limitations within the Synchro software, the intersection of Carolan Avenue and Oak Grove Avenue cannot be evaluated with three stop-controlled approaches and one free-flowing approach. Therefore, the study intersection was evaluated as an all-way stop control intersection to provide a conservative level of service analysis.

**A 1% per year growth factor was applied to escalate the counts to 2020.

Project Condition Traffic Volumes


Project trips, as represented in the above project trip assignment, were added to background traffic volumes to obtain project condition traffic volumes. The project condition traffic volumes at the study intersections are shown on Figure 10.

Project Condition Intersection Analysis

The results of the analysis show that both of the signalized study intersections would continue to operate at an acceptable LOS B during the AM and PM peak hours under project conditions (see Table 8).

The results of the analysis show that both of the unsignalized study intersections would continue to operate at LOS B or LOS C during the AM and PM peak hours under project conditions. This indicates that, with the addition of project traffic under background conditions, vehicles at the stop-controlled approaches are expected to continue to experience only minor or average delays.

Intersection level of service calculation sheets are provided in Appendix B.

Table 8

Background Plus Project Intersection Levels of Service

					Existing	Backg	round		grounc Project	-
#	Intersection	Control*	Peak Hour	Count Date**	Avg. Delay (sec)	Avg. Delay (sec)	LOS	Avg. Delay (sec)	LOS	Incr. in Avg. Delay
1	Oak Grove Avenue & Carolan Avenue	AWSC	AM PM	05/23/17 05/23/17	14.5 12.3	15.2 12.9	C B	15.3 12.9	C B	0.1 0.0
2	Oak Grove Avenue & California Drive	Signalized	AM PM	04/24/19 04/24/19	18.8 15.2	19.6 15.9	B B	19.7 16.0	B B	0.1 0.1
3	Oak Grove Avenue & Ansel Avenue	TWSC	AM PM	01/11/18 01/11/18	11.3 10.9	11.5 11.0	B B	11.5 11.1	B B	0.0 0.1
4	Oak Grove Avenue & El Camino Real	Signalized	AM PM	01/11/18 01/11/18	13.3 12.8	13.2 12.7	B B	13.2 12.6	B B	0.0 -0.1

Notes:

AWSC = All-Way Stop-Control; TWSC = Two-Way Stop-Control

*Due to limitations within the Synchro software, the intersection of Carolan Avenue and Oak Grove Avenue cannot be evaluated with three stop-controlled approaches and one free-flowing approach. Therefore, the study intersection was evaluated as an all-way stop control intersection to provide a conservative level of service analysis.

**A 1% per year growth factor was applied to escalate the counts to 2020.

5. Background Plus 2 Project Conditions

This chapter presents a summary of the traffic conditions that would occur under project conditions with the completion of the adjacent 601 California Drive Project, which would consist of 25 live/work units.

Background Plus 2 Project Traffic Volumes

Project trips for the 601 California Drive project were added to the project traffic volumes to obtain background plus 2 project traffic volumes (See 601 California Drive TIA by Hexagon Transportation Consultants, June 2020). The project trip generation estimates were obtained from the trip generation table from the 601 California Drive traffic study, shown on Table 9 below. The background plus 2 project traffic volumes are shown on Figure 11.

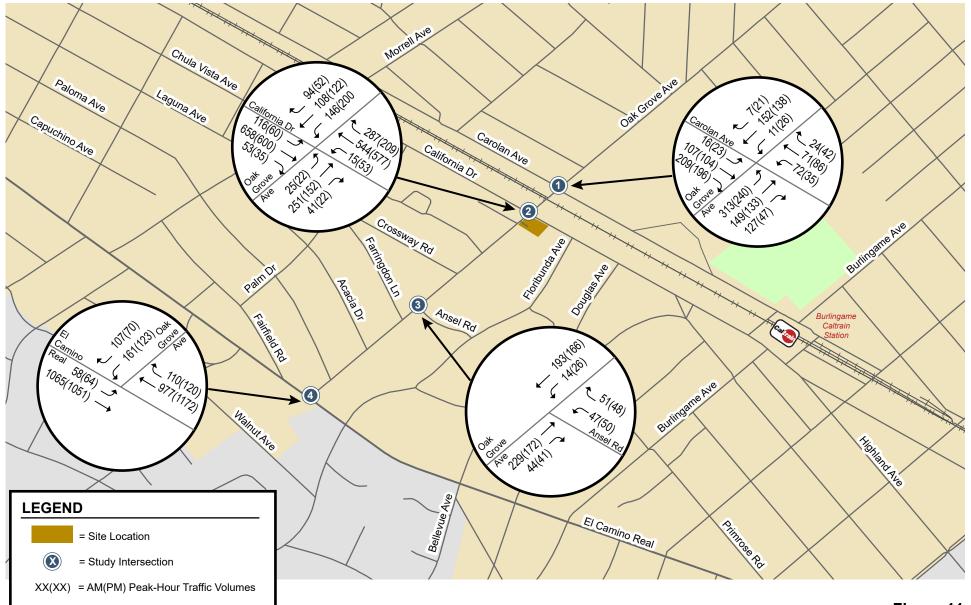
Table 9

601 California Drive Trip Generation Estimates

		Da	aily		AM P	eak Ho	ur		PM P	eak Ho	ur
Land Use	Size	Rate	Trips	Rate	In	Out	Total	Rate	In	Out	Total
Proposed Project											
Live/Work Residential ¹	25 units	5.44	136	0.36	2	7	9	0.44	7	4	11
Total Project Trips			136		2	7	9		7	4	11

Intersection Levels of Service Analysis

The results of the analysis show that both of the signalized study intersections would continue to operate at an acceptable LOS B during the AM and PM peak hours under background plus 2 project conditions (see Table 10).


The results of the analysis show that both of the unsignalized study intersections would continue to operate at LOS B or LOS C during the AM and PM peak hours under background plus 2 project conditions. This indicates that, with the addition of project traffic from both projects under background

conditions, vehicles at the stop-controlled approaches are expected to continue to experience only minor or average delays.

Level of service calculation sheets are included in Appendix B.

HEXAGON

Figure 11 Background Plus 2 Projects Traffic Volumes

Table 10

Background Plus 2 Project Levels of Service Summary

#	Intersection	Control*	Peak Hour	Count Date**	Exis Avg. Delay (sec)	ting LOS		round Projects LOS
1	Oak Grove Avenue & Carolan Avenue	AWSC	AM PM	05/23/17 05/23/17	14.5 12.3	B B	15.4 12.9	C B
2	Oak Grove Avenue & California Drive	Signalized	AM PM	04/24/19 04/24/19	18.8 15.2	B B	19.7 16.0	B B
3	Oak Grove Avenue & Ansel Avenue	TWSC	AM PM	01/11/18 01/11/18	11.3 10.9	B B	11.5 11.1	B B
4	Oak Grove Avenue & El Camino Real	Signalized	AM PM	01/11/18 01/11/18	13.3 12.8	B B	13.2 12.6	B B

Notes:

AWSC = All-Way Stop-Control; TWSC = Two-Way Stop-Control

*Due to limitations within the Synchro software, the intersection of Carolan Avenue and Oak Grove Avenue cannot be evaluated with three stop-controlled approaches and one free-flowing approach. Therefore, the study intersection was evaluated as an all-way stop control intersection to provide a conservative level of service analysis.

**A 1% per year growth factor was applied to escalate the counts to 2020.

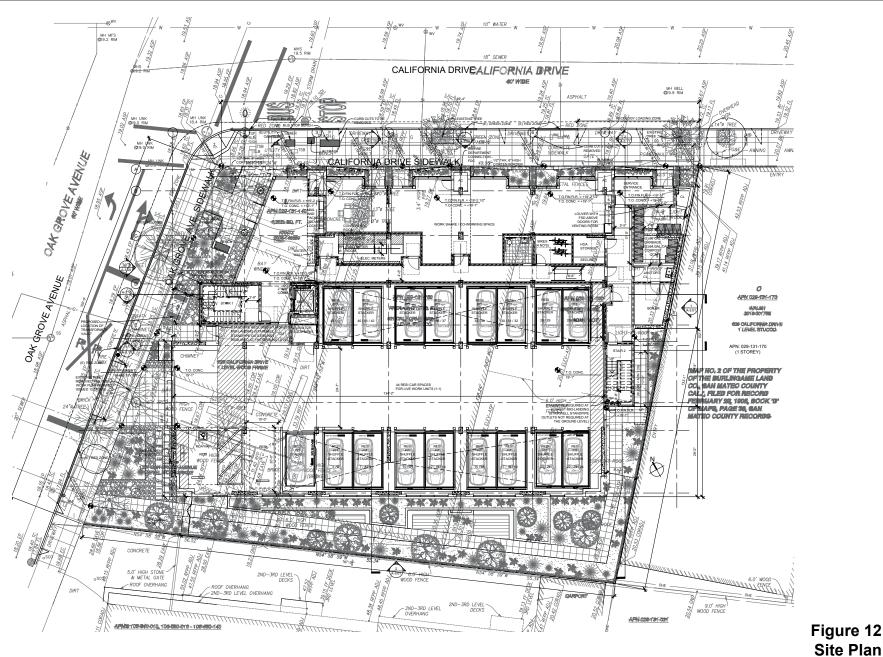
6. Other Transportation Issues

This chapter presents other transportation issues associated with the project. These include an analysis of:

- Site Access and On-Site Circulation
- Parking Analysis
- Signal warrant analysis
- Potential impacts to pedestrian, bicycle, and transit facilities

Unlike the level of service impact methodology, most of the analyses in this chapter are based on professional judgement in accordance with the standards and methods employed by traffic engineering professionals. Although operational issues are not considered CEQA impacts, they do describe traffic conditions that are relevant to describing the project environment.

Site Access and On-Site Circulation


The evaluation of the project's site access and circulation is based on the site plan prepared by IB+A Architecture dated January 25, 2021 (see Figure 12). Site access was evaluated to determine the adequacy of the site's driveway with regard to the following: traffic volume, delays, vehicle queues, geometric design, and sight distance. On-site vehicular circulation was reviewed in accordance with generally accepted traffic engineering standards and transportation planning principles.

Project Driveway Design

Site access was evaluated to determine the adequacy of the site's driveway with regard to the following: traffic volume, delays, vehicle queues, geometric design, and sight distance. Access to the project site would be provided via a single full-access driveway on Oak Grove Avenue. The project driveway is shown to be 18 feet wide and would provide access to the project's parking garage. The City of Burlingame Zoning Code requires a minimum of either two 12-foot driveways or one 18-foot driveway for parking areas of more than 30 vehicle spaces. Therefore, the project would meet the City's minimum width requirement for a two-way driveway.

C Hexagon

Nearby Driveways

The location of the project driveway was also reviewed with respect to other driveways in the vicinity of the project. While the project driveway would be close in proximity to the driveway west of the project, vehicles are expected to be able to make turns in and out of the project driveway without affecting similar operations at the adjacent driveway because of the small number of trips that the project would generate. San Mateo Avenue, located directly across the proposed project driveway location, is a very short street, more like an alley, that provides parking access for some businesses and residences. There are roughly 40 parking spaces that can be accessed from San Mateo Avenue. Traffic counts are not available, but a worst-case assumption is that one-half of those parking spaces would turn over during the peak hour, which equates to 40 peak-hour trips (20 in and 20 out). With such a small number of trips, there would not be any operational problems created by having the project driveway and San Mateo Avenue opposite each other.

Based on counts conducted in June 2018, the queue of the eastbound movement on Oak Grove Avenue at California Drive typically extends past San Mateo Avenue. This build up may momentarily delay left turns departing San Mateo Avenue and right turns exiting the project driveway. However, the level of service analysis shows that the eastbound movement at the California Drive/Oak Grove Avenue intersection operates at LOS B or better, therefore the queues clear with each green cycle. The addition of trips from the proposed project would be minimal and would not increase the eastbound queue length on Oak Grove Avenue at California Drive.

Sight Distance

Adequate sight distance should be provided at the project driveway in accordance with Caltrans stopping sight distance standards. Sight distance should be measured approximately 10 feet back from the traveled way. Providing the appropriate sight distance reduces the likelihood of a collision at a driveway or intersection and provides drivers with the ability to exit a driveway or locate sufficient gaps in traffic. The minimum acceptable sight distance is often considered the Caltrans stopping sight distance requirements vary depending on the roadway speeds. For the driveway on Oak Grove Avenue, which has a posted speed limit of 25 mph, the Caltrans stopping sight distance is 200 feet (based on a design speed of 30 mph). Thus, a driver must be able to see 200 feet in both directions along Oak Grove Avenue in order to stop and avoid a collision.

Based on the project site plan, the project driveway would have at least 200 feet of sight distance in both directions if on-street parking adjacent to the driveway is prohibited. Therefore, it is recommended that on-street parking between the project driveway and the western neighboring driveway and between the project driveway and the California Drive/Oak Grove Avenue intersection be prohibited.

Project Driveway Operations

The project-generated trips that are estimated to occur at the project driveway are 4 inbound trips and 12 outbound trips during the AM peak hour, and 12 inbound trips and 7 outbound trips during the PM peak hour.

The project driveway would provide full-access, allowing right and left inbound and outbound turns. Outbound left turns from the project driveway would require vehicles to wait for gaps in both the eastbound and westbound traffic, while inbound left turns would require vehicles to wait for a gap in the eastbound traffic flow only. Given that Oak Grove Avenue consists of only one lane in each direction with no left-turn pockets, left turns would be made from the through lane. Thus, there could be interruptions to the through traffic flow while left-turn vehicles wait for a gap in the on-coming traffic flow. Queuing due to left turning vehicles into the driveway is expected to be minimal due to the low volume of vehicles coming in and out of the driveway (at most one inbound vehicle every five minutes).

On-Site Circulation

On-site vehicular circulation was reviewed in accordance with the City of Burlingame Zoning Code and generally accepted traffic engineering standards. The project would provide 90-degree parking stalls throughout the parking garage. The City's standard minimum width for two-way drive aisles is 24 feet wide where 90-degree parking is provided. This allows sufficient room for vehicles to back out of the parking spaces. According to the site plan, the drive aisle in the parking garage would be 24 feet 7 inches wide. Thus, adequate maneuvering space would be provided in the garage.

Most of the parking spaces would consist of a mechanical-stack parking system. Comprised of two or three parking spaces, the vehicle stackers would present an open parking stall, that once occupied would automatically shift downward, presenting another open stall. This system also allows residents to retrieve vehicles without the need to move another vehicle. Therefore, vehicle queues in the parking garage are expected to be minimal and not result in backups that extend onto Oak Grove Avenue.

Parking Stall Dimensions

According to the project site plan, the project proposes standard-sized (8.5 feet wide by 18 feet long) stalls, which would meet the City's off-street parking design standard. Van accessibility would be provided at two of the ADA accessible stall locations.

The City of Burlingame Zoning Code does not include standards for mechanical-stack parking systems. However, it should also be noted that the project proposes to use the Trend Vario 4300 Klaus stacker system, which would consist of standard-size parking stall dimensions and a height of 6 feet-7 inches (per vehicle). This would allow the vehicle stackers to accommodate passenger cars, trucks, as well as SUVs and vans.

Bike and Pedestrian On-site Circulation

The project plan provides adequate pedestrian circulation on site, as well as between the site and the surrounding pedestrian facilities. The project site plan includes a publicly-accessible pedestrian plaza at the southwest corner of the California Drive/Oak Grove Avenue intersection. The plaza would be supplied with benches and landscaping, as well as easy access to the ground-floor and the residential lobby area. In addition, the project would remove four existing driveways along the project frontage on California Drive, and build additional sidewalk space connecting to the existing bus stop located on California Drive right in front of the project site. Continuous walkways would also be provided around the project building, with resident-only access gates connecting to Oak Grove Avenue and California Drive.

As shown on Figure 12, all residential bicycle parking would be located on the ground floor in the garage. This would allow bicyclists to enter and leave the project site through the garage entrance/exit and connect to the bike routes along Oak Grove Avenue and along California Drive.

Truck Access and Circulation

In accordance with the City's Zoning Code (Section 26.30.070(a)), condominium uses within a commercial district are not required to provide off-street loading/unloading spaces for delivery/service vehicles. Therefore, the proposed project is not required to provide any loading spaces.

Garbage Collection

The site plan shows one on-site trash room located at the southeast corner of the project site. Garbage collection activities for the project are not expected to occur on-site due to height and access

limitations. The trash bins would be moved into the street through the service entrance to a designated Recology Loading Zone. Given that on-street parking is permitted along California Drive, signs prohibiting parking during garbage pickup hours should be placed adjacent to the trash room. The trash bins also should be removed from the public right-of-way immediately after garbage pickup as to not impact AM or PM peak hour traffic conditions.

Parking Analysis

The City of Burlingame Zoning Code (Section 25.70.032) states that residential uses within the Burlingame Downtown Specific Plan Area are to provide parking as follows: 1.0 parking space per studio and one-bedroom unit. The project as proposed would provide up to 44 live/work units consisting of a mix of studio and one-bedroom units. Based on the City's parking requirements and the current project description, the project would be required to provide 44 parking spaces.

Based on the project site plan dated January 25, 2021, the parking garage would provide a total of 44 parking spaces consisting of 1 ADA accessible van residential park space, 1 standard parking space, and 42 mechanically stacked parking spaces. Therefore, the proposed parking supply would meet the City's Parking Code

Per the California Building Code (CBC) Table 11B-6, two (2) ADA accessible spaces are required for projects with 26 to 50 parking spaces. Of the required accessible parking spaces, one van accessible space is required. The plans show only one (1) ADA accessible van parking space. Thus, the project does not provide sufficient ADA accessible parking per the CBC. Hexagon recommends converting the standard residential parking space into an additional ADA accessible parking space to meet CBC requirements.

Bicycle Parking

The City of Burlingame municipal code does not include standards for bicycle parking. However, the project site plan shows a total of 4 bicycle parking spaces on site located in the garage.

Signal Warrant Analysis

Signal warrant checks (California *MUTCD, Section 4, Warrant 3 Part B*) were performed for the unsignalized study intersections. The results of the signal warrant analysis are described and summarized below. Signal warrant worksheets and threshold tables are included in Appendix D.

A peak hour signal warrant analysis was performed for two of the unsignalized study intersections, Carolan Avenue and Oak Grove Avenue and Ansel Avenue and Oak Grove Avenue, based on the peak-hour traffic volumes. The intersection of Ansel Avenue and Oak Grove Avenue would not warrant signalization under any traffic scenario with or without the project. The intersection of Carolan Avenue and Oak Grove Avenue would not warrant signalization in any of the PM peak hour scenarios; however, the intersection would warrant signalization in all of the AM peak hour scenarios, including existing conditions. Because the intersection would operate an acceptable LOS C or better in all scenarios during the AM and PM peak hours, and due to the intersection's proximity to the railroad, it is not recommended that a traffic signal be installed at this intersection.

Pedestrian, Bicycle, and Transit Analysis

All new development projects in the City of Burlingame should encourage multi-modal travel, consistent with the goals of the City's General Plan. It is the goal of the General Plan that all development projects accommodate and encourage the use of non-automobile transportation modes to achieve Burlingame's mobility goals. In addition, the adopted Bicycle Transportation Plan establishes goals and policies to make bicycling a daily part of life in Burlingame. The Transportation Plan includes designated bike lanes where possible, as well as designated routes for both local and regional trips, to provide a complete connection through Burlingame. In order to further the goals of the City, pedestrian and bicycle facilities should be encouraged with new development projects.

Pedestrian Facilities

Pedestrian facilities in the study area consist of sidewalks, crosswalks, and pedestrian signals at signalized intersections (see Chapter 2 for details). The project is expected to increase the number of pedestrians using the sidewalks and crosswalks. Although some sidewalk and crosswalk connections are missing in the study area, the overall network of sidewalks and crosswalks in the vicinity of the project site has adequate connectivity and provides pedestrians with safe routes to transit services and other points of interest. Note that the project would not remove any pedestrian facilities, nor would it conflict with any adopted plans or policies for new pedestrian facilities.

Bicycle Facilities

There are some bike facilities in the immediate vicinity of the project site (see Chapter 2 for details). Bicycles are also allowed on Caltrain and BART. The Burlingame Station is served by Caltrain (approximately a quarter-mile south of the project site), while the Millbrae Station is served by Caltrain and BART (located about two and a half miles from the project site). There are bicycle racks and bicycle lockers available at both transit stations.

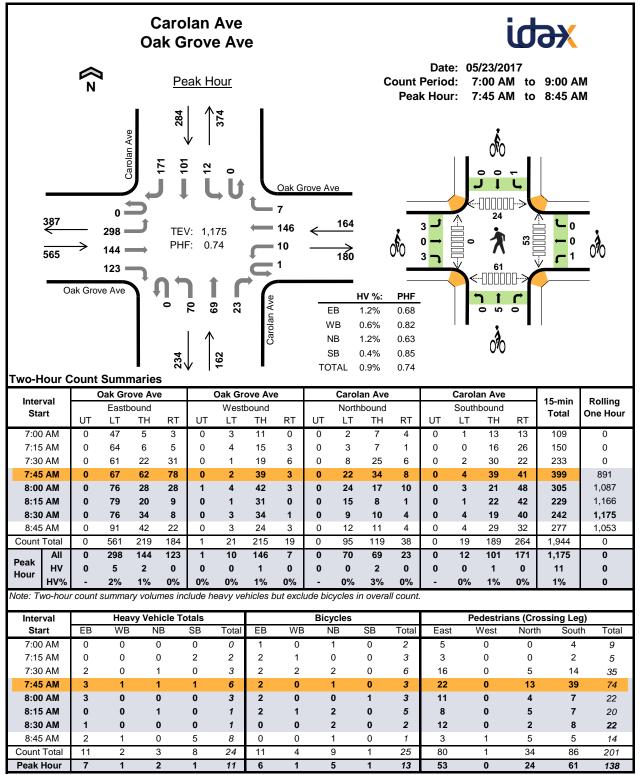
The project would not remove any bicycle facilities, nor would it conflict with any adopted plans or policies for new bicycle facilities.

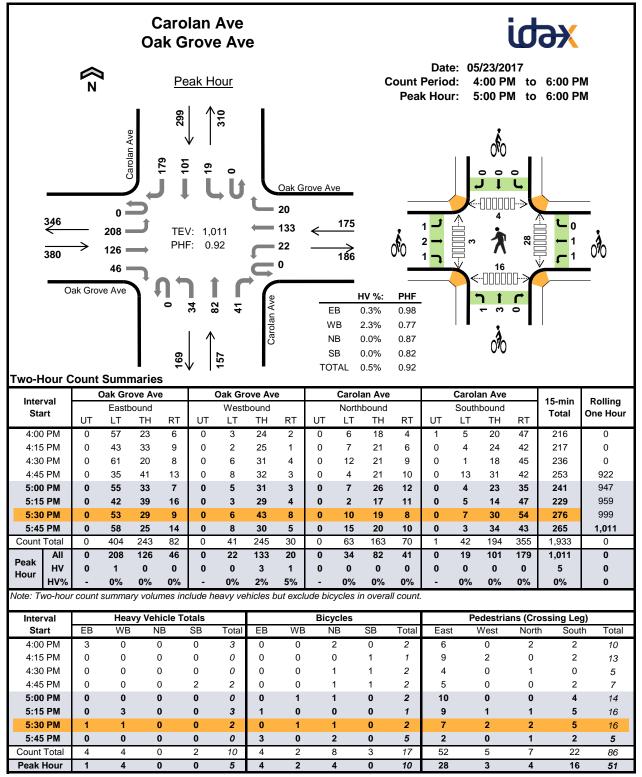
Transit Services

The project study area is well-served by SamTrans, Caltrain, and the Burlingame Trolley (see Chapter 2 for details). The project would generate about 13 person-trips during the AM peak hour and 14 person-trips during the PM peak hour. Given the project site's proximity to transit services, it could be expected that a portion of residents' trips would be made by transit. Assuming up to 10% of the total trips are made by transit, that translates into a maximum of about 1 or 2 new transit riders during the peak hours. It is assumed that the transit services in the project study area have sufficient capacity to accommodate this minor increase in ridership.

The project would not remove any transit facilities, nor would it conflict with any adopted plans or policies associated with new transit facilities.

Future Transit Services


As previously mentioned, the Peninsula Corridor Electrification Project (PCEP) is expected to increase service by up to six Caltrain trains per peak hour per direction. With the proposed electrification project, it is expected that the transit ridership at the Burlingame Station will increase. Given the nearby Caltrain station, development of this residential project would result in new transit riders, thus reducing vehicle trips. The Burlingame Station is within walking distance (approximately a quarter-mile south of the project site).

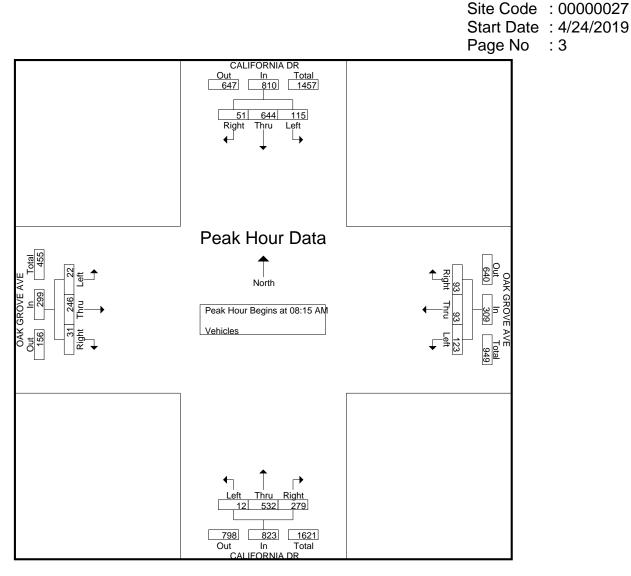

619-625 California Drive Live/Work Development TIA Technical Appendices

March 12, 2021

Appendix A Traffic Counts

In terms of	C	ak Gro	ove Av	е	0)ak Gr	ove A	ve		Carol	an Ave			Carola	an Ave		45	Delline
Interval Start		Eastb	ound			West	bound			North	bound			South	bound		15-min Total	Rolling One Hour
Start	UT	LT	ΤН	RT	UT	LT	ΤН	RT	UT	LT	ΤН	RT	UT	LT	TH	RT	Total	
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	2	0
7:30 AM	0	1	1	0	0	0	0	0	0	0	1	0	0	0	0	0	3	0
7:45 AM	0	2	1	0	0	0	1	0	0	0	1	0	0	0	1	0	6	11
8:00 AM	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	14
8:15 AM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	13
8:30 AM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	11
8:45 AM	0	1	1	0	0	0	1	0	0	0	0	0	0	0	4	1	8	13
Count Total	0	7	4	0	0	0	2	0	0	0	3	0	0	0	6	2	24	0
Peak Hour	0	5	2	0	0	0	1	0	0	0	2	0	0	0	1	0	11	0
Interval	C	ak Gro		е	C	Dak Gr		-			an Ave				an Ave		15-min	Rolling
Interval		Eastb	ound	-			bound	-			bound			South	bound		15-min	Rolling
Start	LT	Tł		RT	LT		Ή	RT	LT		Н	RT	LT		Ή	RT	Total	One Hou
7:00 AM	0	0)	1	0	(0	0	0		1	0	0	(C	0	2	0
7:15 AM	2	0)	0	1		0	0	0		0	0	0		C	0	3	0
7:30 AM	2	0)	0	1		1	0	0		2	0	0	(C	0	6	0
7:45 AM	2	0)	0	0		0	0	0		1	0	0		D	0	3	14
8:00 AM	0	0)	2	0	(0	0	0		0	0	1	(D	0	3	15
8:15 AM	1	0)	1	1		0	0	0		2	0	0		D	0	5	17
8:30 AM	0	0)	0	0		0	0	0		2	0	0	(D	0	2	13
8:45 AM	0	0)	0	0		0	0	0		1	0	0		C	0	1	11
Count Total	7	0)	4	3		1	0	0		9	0	1		C	0	25	0
		0		3	1		0	0	0		5	0	1		0	0	13	0

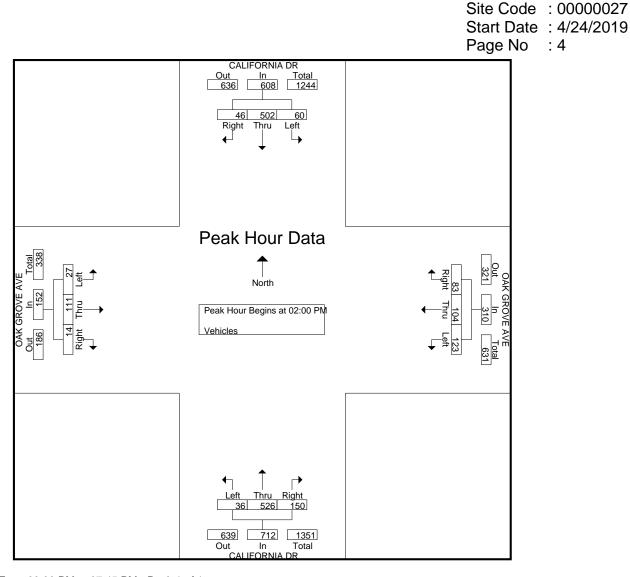
last a musel	0	Dak Gro	ove Av	е	0	Dak Gr	ove Av	/e		Carol	an Ave			Carola	an Ave		45	Delline
Interval Start		Eastb	ound			West	bound			North	bound			South	bound		15-min Total	Rolling One Hou
Start	UT	LT	TH	RT	UT	LT	ΤН	RT	UT	LT	TH	RT	UT	LT	ΤН	RT	Total	One Hou
4:00 PM	0	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	2	5
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
5:15 PM	0	0	0	0	0	0	2	1	0	0	0	0	0	0	0	0	3	5
5:30 PM	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	2	7
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5
Count Total	0	2	2	0	0	0	3	1	0	0	0	0	0	0	1	1	10	0
Peak Hour	0	1	0	0	0	0	3	1	0	0	0	0	0	0	0	0	5	0
Interval		Dak Gro		e		Dak Gr		/e			an Ave				an Ave		15-min	Rolling
Start		Eastb					bound				bound				bound		Total	One Hou
	LT		Н	RT	LT		Ή	RT	LT			RT	LT		Ή	RT		
4:00 PM	0)	0	0		0	0	0		2	0	0		0	0	2	0
4:15 PM	0	(0	0		0	0	0		0	0	0		1	0	1	0
4:30 PM	0	(0	0		0	0	0		1	0	0		1	0	2	0
4:45 PM	0	(-	0	0		0	0	0		1	0	0		1	0	2	7
5:00 PM	0	(-	0	0		1	0	0		1	0	0		D	0	2	7
5:15 PM	1	(0	0		0	0	0		0	0	0		D	0	1	7
5:30 PM	0		ט	0	1		0	0	1		0	0	0		D	0	2	7
5:45 PM	0		2	1	0		0	0	0		2	0	0		0	0	5	10
	1	2	2	1	1		1	0	1		7 3	0	0		3	0	17	0
Count Total Peak Hour	1		2	1	1		1	0	1			0	0		0	0	10	0


File Name : 27 FINAL Site Code : 00000027 Start Date : 4/24/2019 Page No : 1

									Group	s Printe		nielee					Pa	ge N	0	: 1	
		CALI	FORN	IIA DR			OAK		E AVE		u-vei		FORM	IIA DR			OAK (GROV	F AVF	:	
			outhbo					estbo		-			orthbo					astbou			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
05:00 AM	1	13	2	1	17	1	0	0	0	1	5	16	0	1	22	3	5	0	0	8	48
05:15 AM	3	9	1	0	13	1	2	0	0	3	7	6	0	1	14	0	5	2	0	7	37
05:30 AM 05:45 AM	0	11 25	1	0	12 33	05	2 4	1 4	0 0	3 13	5	11 17	1	0	17 31	3	6 3	2	0	11	43 82
Total	2	<u></u> 58	3	3	<u> </u>	7	<u>4</u> 8	<u>4</u> 5	0	20	9 26	50	0	5	84	2	19	0	0	5 31	210
Total	0	50	'	-	75	, ,	0	0	0	20	20	50		'	04	0	10	-	0	51	210
06:00 AM	3	29	0	1	33	0	1	8	0	9	15	23	0	5	43	5	7	1	0	13	98
06:15 AM	2	31	1	1	35	3	5	8	1	17	25	35	0	3	63	1	7	3	1	12	127
06:30 AM	2	34	3	0	39	5	3	11	1	20	30	51	1	1	83	6	22	6	3	37	179
06:45 AM	2	55	7	<u>1</u> 3	65	3 11	<u>4</u> 13	<u>10</u> 37	<u>1</u> 3	18	32	51	1	0	84	5	22	9	0	36	203
Total	9	149	11	3	172		13	31	3	64	102	160	2	9	273	17	58	19	4	98	607
07:00 AM	6	72	1	0	79	7	6	16	0	29	44	73	4	3	124	2	27	6	1	36	268
07:15 AM	8	76	7	2	93	6	12	16	0	34	33	84	3	6	126	3	29	3	9	44	297
07:30 AM	6	93	7	4	110	7	12	24	2	45	55	98	2	7	162	4	28	8	11	51	368
07:45 AM	9	93	7	2	111	8	18	35	0	61	49	91	5	5	150	5	35	6	3	49	371
Total	29	334	22	8	393	28	48	91	2	169	181	346	14	21	562	14	119	23	24	180	1304
08:00 AM	7	129	14	8	158	21	23	17	0	61	51	115	1	4	171	4	41	4	4	53	443
08:15 AM	10	129	28	9	176	29	35	22	0	86	63	135	1	6	205	10	49	4	9	72	539
08:30 AM	18	173	19	15	225	17	15	21	0	53	51	125	1	10	187	9	62	6	4	81	546
08:45 AM	15	193	53	19	280	24	18	46	0	88	100	154	5	32	291	4	73	4	3	84	743
Total	50	624	114	51	839	91	91	106	0	288	265	529	8	52	854	27	225	18	20	290	2271
09:00 AM	8	149	15	4	176	23	25	34	0	82	65	118	5	7	195	8	62	8	5	83	536
09:15 AM	4	121	7	3	135	9	15	29	0	53	41	106	4	0	151	6	25	6	2	39	378
09:30 AM	4	122	13	3	142	7	9	27	1	44	37	91	2	3	133	6	25	9	5	45	364
09:45 AM	5	125	9	3	142	10	16	29	0	55	39	72	8	0	119	9	27	7	3	46	362
Total	21	517	44	13	595	49	65	119	1	234	182	387	19	10	598	29	139	30	15	213	1640
10:00 AM	12	104	6	6	128	10	13	21	1	45	18	95	3	1	117	3	26	7	6	42	332
10:15 AM	9	120	16	3	148	15	7	24	0	46	34	110	5	4	153	0	22	4	12	38	385
10:30 AM	8	112	7	3	130	9	11	42	0	62	35	102	4	0	141	5	24	3	9	41	374
10:45 AM	3	138	12	1	154	11	11	27	0	49	21	106	4	1	132	6	28	2	3	39	374
Total	32	474	41	13	560	45	42	114	1	202	108	413	16	6	543	14	100	16	30	160	1465
11:00 AM	13	114	7	6	140	3	8	40	1	52	41	98	6	1	146	6	26	2	3	37	375
11:15 AM	7	136	8	1	152	12	16	32	0	60	29	109	6	1	145	7	14	7	5	33	390
11:30 AM	10	128	4	3	145	7	16	32	0	55	27	128	7	3	165	4	12	4	9	29	394
<u>11:45 AM</u>	5	145	9	0	159	8	16	41		65	33	99	3	3	138	2	14	4	5_	25	387
Total	35	523	28	10	596	30	56	145	1	232	130	434	22	8	594	19	66	17	22	124	1546
12:00 PM	9	118	19	1	147	12	5	33	0	50	35	132	5	1	173	2	21	3	2	28	398
12:15 PM	-	121	11	3	140	12	23	35	Ő	70	32	98	7	5		4	8	4	7	23	375
12:30 PM	10	144	7	0	161	16	12	29	0	57	37	113	4	5	159	5	16	7	4	32	409
12:45 PM	7	114	7	0	128	14	22	35	1	72	41	104	5	1	151	7	16	3	0	26	377
Total	31	497	44	4	576	54	62	132	1	249	145	447	21	12	625	18	61	17	13	109	1559
01:00 PM	9	114	11	5	139	13	12	25	0	50	44	130	9	4	187	3	26	7	3	39	415
01:15 PM	12	122	8	4	146	4	15	28	0	47	37	112	4	1	154	7	22	6	2	37	384
01:30 PM	9	113	9	1	132	7	13	29	0	49	41	141	2	1	185	3	15	6	4	28	394
01:45 PM	4	128	13	0	145	12	11	29	0	52	38	120	8	1	167	5	17	5	2	29	393
Total	34	477	41	10	562	36	51	111	0	198	160	503	23	7	693	18	80	24	11	133	1586
02:00 PM	6	116	8	0	130	13	20	26	0	59	37	138	2	0	177	4	32	8	3	47	413
02:15 PM	13	139	21	1	174	1	11	29	0	49	36	117	6	1	160	6	29	7	2	44	427

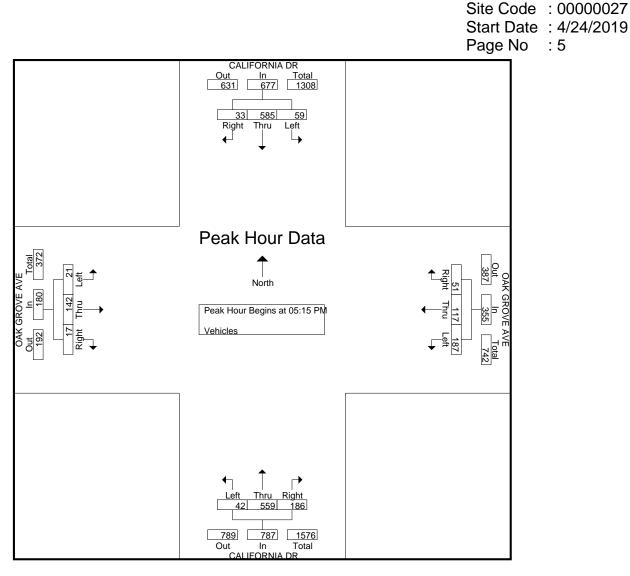
File Name : 27 FINAL Site Code : 00000027 Start Date : 4/24/2019 Page No : 2

									~	B · .							га	gen	10	. ∠	
		0.41.1					0.414			s Printe	d-ver						0.414		/= ^ \/F	_	1
		-	-	IIA DR			-		E AVE	=		-	-	IIA DR			-		'E AVE	=	
			uthbo					estbo					orthbo	· · ·				astbou			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
02:30 PM	15	111	24	2	152	33	33	33	1	100	40	138	13	22	213	1	26	4	3	34	499
02:45 PM	12	136			166	28	40	35		103	37	133	15	7	192	3	24	8	3_	38	499
Total	46	502	60	14	622	83	104	123	1	311	150	526	36	30	742	14	111	27	11	163	1838
03:00 PM	10	119	27	7	163	18	21	27	3	69	46	135	5	7	193	3	30	8	8	49	474
03:15 PM	13	135	26	15	189	24	24	27	0	75	39	155	4	5	203	9	33	3	5	50	517
03:30 PM	13	137	21	3	174	19	18	34	1	72	39	125	3	19	186	8	32	5	5	50	482
03:45 PM	14	124	24	5	167	15	18	37	0	70	31	123	4	7	165	4	33	4	6	47	449
Total	50	515	98	30	693	76	81	125	4	286	155	538	16	38	747	24	128	20	24	196	1922
04:00 PM	7	151	15	4	177	12	15	35	2	64	38	124	8	3	173	8	26	8	4	46	460
04:15 PM	12	155	16	3	186	13	29	37	0	79	42	144	5	1	192	11	34	4	3	52	509
04:30 PM	8	114	16	7	145	11	30	41	2	84	46	125	9	3	183	12	27	3	4	46	458
04:45 PM	7	154	19	3	183	13	19	48	0	80	48	141	6	10	205	2	26	9	4	41	509
Total	34	574	66	17	691	49	93	161	4	307	174	534	28	17	753	33	113	24	15	185	1936
05:00 PM	6	131	8	1	146	16	22	45	0	83	46	165	7	3	221	10	27	11	4	52	502
05:15 PM	4	172	12	5	193	9	24	35	1	69	50	157	9	3	219	3	36	7	9	55	536
05:30 PM	15	138	15	0	168	12	26	51	0	89	46	133	8	3	190	1	44	2	7	54	501
05:45 PM	8	136	11	5	160	14	32	60	2	108	49	130	8	0	187	8	29	6	8	51	506
Total	33	577	46	11	667	51	104	191	3	349	191	585	32	9	817	22	136	26	28	212	2045
06:00 PM	6	139	21	4	170	16	35	41	1	93	41	139	17	11	208	5	33	6	5	49	520
06:15 PM	7	154	16	5	182	10	43	39	3	95	38	122	7	11	178	6	33	3	5	47	502
06:30 PM	5	122	11	2	140	8	50	48	0	106	33	104	5	3	145	4	23	7	5	39	430
06:45 PM	5	124	10	1	140	10	25	41	1	77	32	116	5	6	159	12	24	4	3	43	419
Total	23	539	58	12	632	44	153	169	5	371	144	481	34	31	690	27	113	20	18	178	1871
07:00 PM	4	93	13	0	110	10	22	28	0	60	36	141	3	4	184	6	21	3	1	31	385
07:15 PM	8	113	9	4	134	6	20	27	1	54	38	104	8	4	154	3	28	1	4	36	378
07:30 PM	4	76	7	4	91	6	23	40	0 0	69	28	128	10	3	169	6	16	1	6	29	358
07:45 PM	6	80	3	1	90	9	16	29	0	54	18	90	5	4	117	2	18	3	6	29	290
Total	22	362	32	9	425	31	81	124	1	237	120	463	26	15	624	17	83	8	17	125	1411
	ı					i.					I					1					i.
Grand Total	455	6722	712	209	8098	685	1052	1753	27	3517	2233	6396	298	272	9199	301	1551	293	252	2397	23211
Apprch %	5.6	83	8.8	2.6		19.5	29.9	49.8	0.8		24.3	69.5	3.2	3		12.6	64.7	12.2	10.5		
Total %	2	29	3.1	0.9	34.9	3	4.5	7.6	0.1	15.2	9.6	27.6	1.3	1.2	39.6	1.3	6.7	1.3	1.1	10.3	


	C	CALIFO	RNIA D	R	С	AK GR	OVE A	VE	(CALIFO	RNIA D	R	С	AK GR	OVE A	/E]
		South	bound			West	oound			North	bound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Ana	lysis Fro	om 05:0	0 AM to	09:45 Al	M - Peal	< 1 of 1							-				
Peak Hour for Entire Intersection Begins at 08:15 AM																	
08:15 AM	10	129	28	167	29	35	22	86	63	135	1	199	10	49	4	63	515
08:30 AM	18	173	19	210	17	15	21	53	51	125	1	177	9	62	6	77	517
08:45 AM	15	193	53	261	24	18	46	88	100	154	5	259	4	73	4	81	689
09:00 AM	8	149	15	172	23	25	34	82	65	118	5	188	8	62	8	78	520
Total Volume	51	644	115	810	93	93	123	309	279	532	12	823	31	246	22	299	2241
% App. Total	6.3	79.5	14.2		30.1	30.1	39.8		33.9	64.6	1.5		10.4	82.3	7.4		
PHF	.708	.834	.542	.776	.802	.664	.668	.878	.698	.864	.600	.794	.775	.842	.688	.923	.813

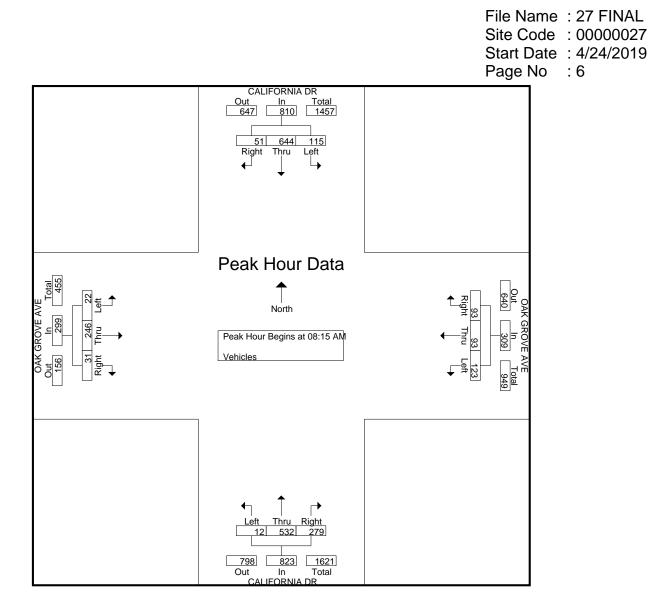
File Name : 27 FINAL

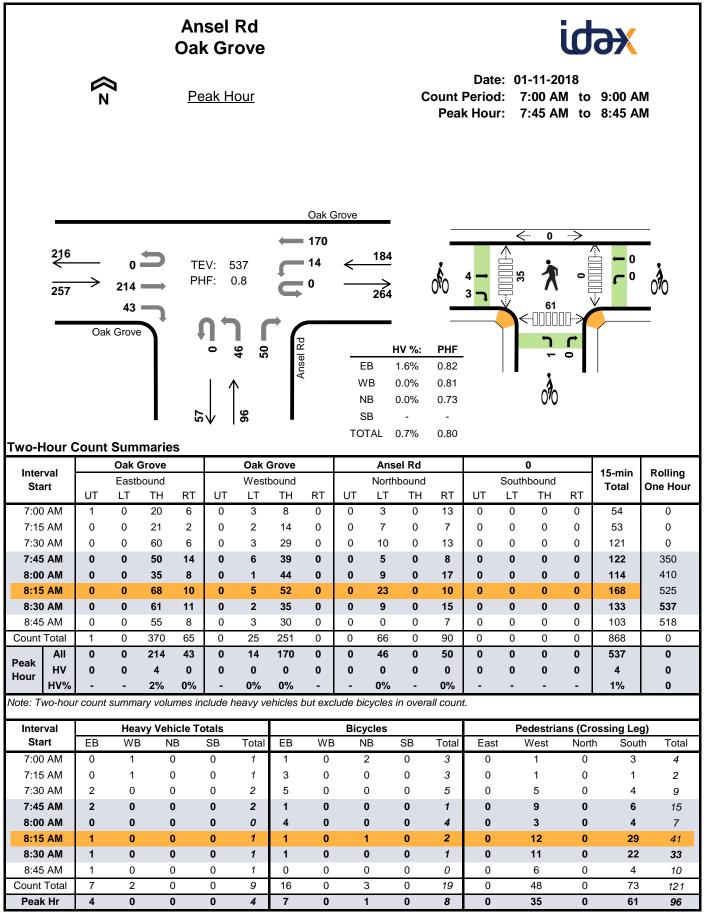
Peak Hour Analysis From 10:00 AM to 02:45 PM - Peak 1 of 1


Peak Hour for	Entire li	ntersect	tion Beg	ins at 02	2:00 PM												
02:00 PM	6	116	8	130	13	20	26	59	37	138	2	177	4	32	8	44	410
02:15 PM	13	139	21	173	9	11	29	49	36	117	6	159	6	29	7	42	423
02:30 PM	15	111	24	150	33	33	33	99	40	138	13	191	1	26	4	31	471
02:45 PM	12	136	7	155	28	40	35	103	37	133	15	185	3	24	8	35	478
Total Volume	46	502	60	608	83	104	123	310	150	526	36	712	14	111	27	152	1782
% App. Total	7.6	82.6	9.9		26.8	33.5	39.7		21.1	73.9	5.1		9.2	73	17.8		
PHF	.767	.903	.625	.879	.629	.650	.879	.752	.938	.953	.600	.932	.583	.867	.844	.864	.932

File Name : 27 FINAL

Peak Hour Analysis From 03:00 PM to 07:45 PM - Peak 1 of 1

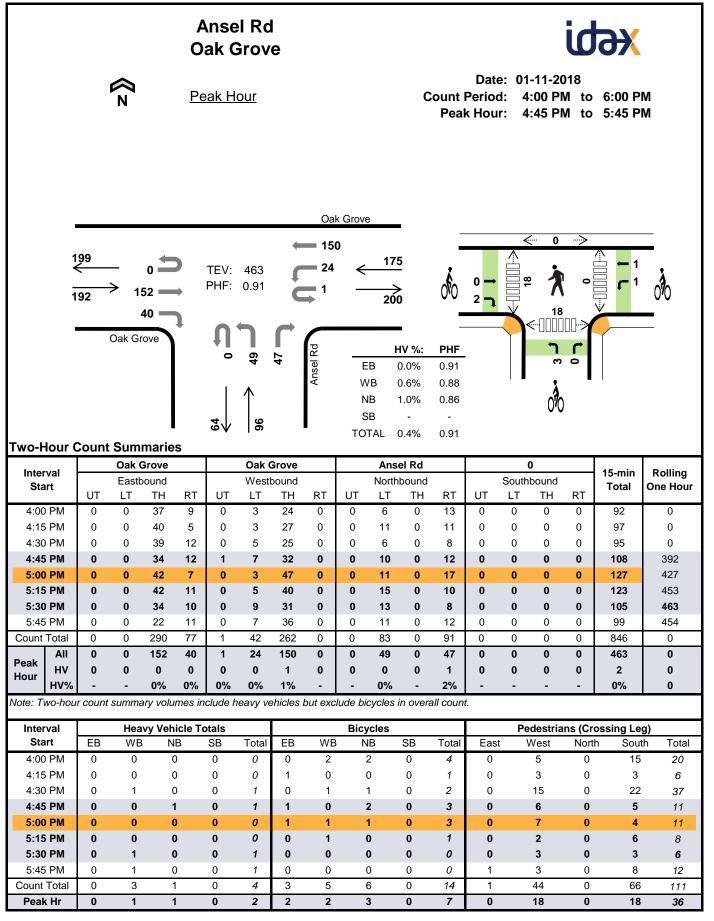

Peak Hour for	Entire li	ntersec	tion Beg	jins at 05	5:15 PM												
05:15 PM	4	172	12	188	9	24	35	68	50	157	9	216	3	36	7	46	518
05:30 PM	15	138	15	168	12	26	51	89	46	133	8	187	1	44	2	47	491
05:45 PM	8	136	11	155	14	32	60	106	49	130	8	187	8	29	6	43	491
06:00 PM	6	139	21	166	16	35	41	92	41	139	17	197	5	33	6	44	499
Total Volume	33	585	59	677	51	117	187	355	186	559	42	787	17	142	21	180	1999
% App. Total	4.9	86.4	8.7		14.4	33	52.7		23.6	71	5.3		9.4	78.9	11.7		
PHF	.550	.850	.702	.900	.797	.836	.779	.837	.930	.890	.618	.911	.531	.807	.750	.957	.965



File Name : 27 FINAL

Peak Hour Analysis From 05:00 AM to 07:45 PM - Peak 1 of 1

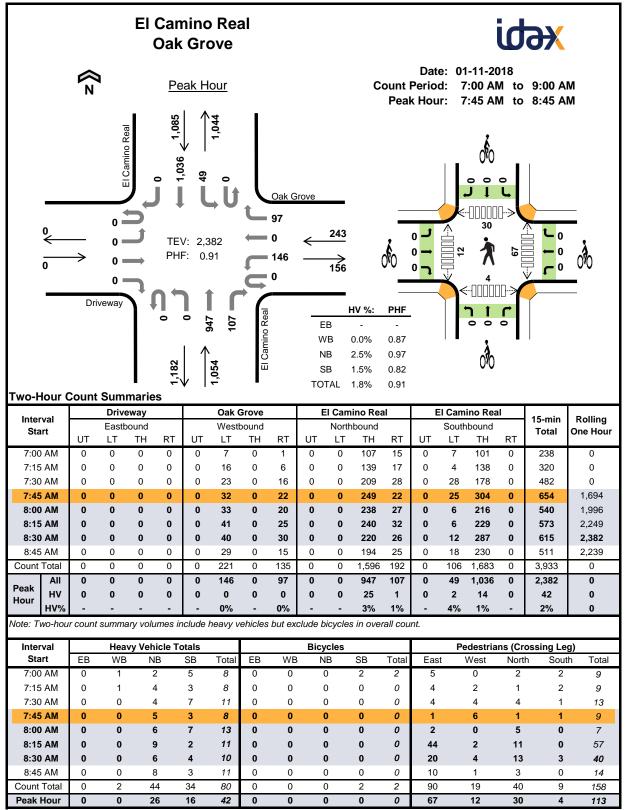
Peak Hour for	Entire Ir	ntersect	tion Beg	lins at 08	:15 AM												
08:15 AM	10	129	28	167	29	35	22	86	63	135	1	199	10	49	4	63	515
08:30 AM	18	173	19	210	17	15	21	53	51	125	1	177	9	62	6	77	517
08:45 AM	15	193	53	261	24	18	46	88	100	154	5	259	4	73	4	81	689
09:00 AM	8	149	15	172	23	25	34	82	65	118	5	188	8	62	8	78	520
Total Volume	51	644	115	810	93	93	123	309	279	532	12	823	31	246	22	299	2241
% App. Total	6.3	79.5	14.2		30.1	30.1	39.8		33.9	64.6	1.5		10.4	82.3	7.4		
PHF	.708	.834	.542	.776	.802	.664	.668	.878	.698	.864	.600	.794	.775	.842	.688	.923	.813



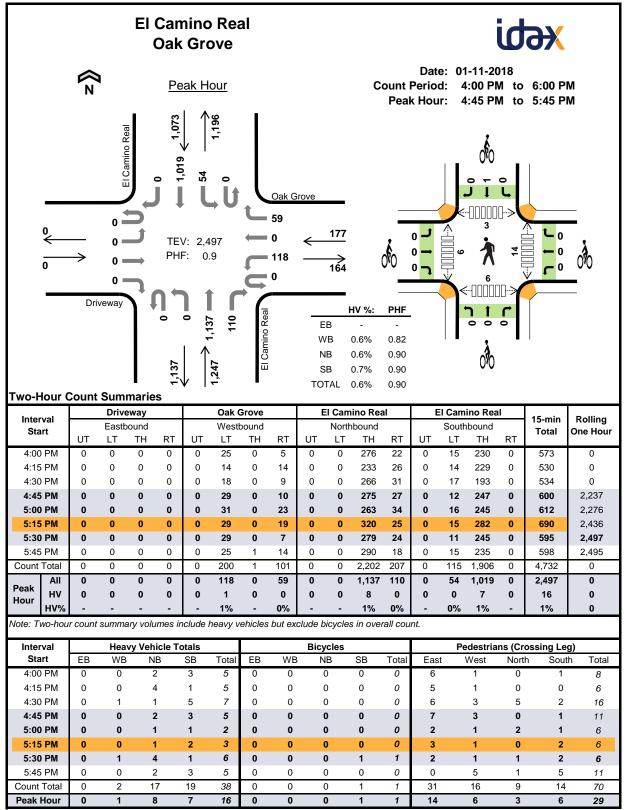
Two-Hour Count Summaries - Heavy Vehicles Ansel Rd Oak Grove Oak Grove Interval 15-min Rolling Eastbound Westbound Northbound Southbound Start Total One Hour UT LT ΤН RT UT LT RT UT LT RT UT LT RT ΤН ΤH ΤН 7:00 AM 7:15 AM 7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM Count Total Peak Hour

Two-Hour Count Summaries - Bikes

la tem ce l	c	ak Grov	e	_	Dak Grov	e		Ansel Ro	d		0		45	Delline
Interval Start	E	Eastboun	d	V	Vestboun	d	١	lorthbour	nd	S	outhbour	nd	15-min Total	Rolling One Hour
otart	LT	ΤН	RT	LT	ΤН	RT	LT	TH	RT	LT	ΤН	RT	Total	one nou
7:00 AM	0	1	0	0	0	0	1	0	1	0	0	0	3	0
7:15 AM	0	0	3	0	0	0	0	0	0	0	0	0	3	0
7:30 AM	0	5	0	0	0	0	0	0	0	0	0	0	5	0
7:45 AM	0	1	0	0	0	0	0	0	0	0	0	0	1	12
8:00 AM	0	2	2	0	0	0	0	0	0	0	0	0	4	13
8:15 AM	0	1	0	0	0	0	1	0	0	0	0	0	2	12
8:30 AM	0	0	1	0	0	0	0	0	0	0	0	0	1	8
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	7
Count Total	0	10	6	0	0	0	2	0	1	0	0	0	19	0
Peak Hour	0	4	3	0	0	0	1	0	0	0	0	0	8	0


Г

Interval		Oak (Grove			Oak (Grove			Anse	el Rd				0		45 min	Delling
Start		East	bound			West	oound			North	bound			South	bound		15-min Total	Rolling One Hou
otart	UT	LT	TH	RT	Total	one nou												
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	2
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
5:30 PM	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	2
5:45 PM	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	2
Count Total	0	0	0	0	0	0	3	0	0	0	0	1	0	0	0	0	4	0
Peak Hour	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	2	0


Two-Hour Count Summaries - Bikes

la ta mual	c	ak Grov	e	0	Dak Grov	e		Ansel Ro	d		0		45	Delline
Interval Start	E	astboun	d	V	Vestboun	d	Ν	lorthbour	nd	S	outhbour	nd	15-min Total	Rolling One Hou
Otart	LT	ΤН	RT	LT	ΤН	RT	LT	тн	RT	LT	тн	RT	Total	one nou
4:00 PM	0	0	0	1	1	0	1	0	1	0	0	0	4	0
4:15 PM	0	0	1	0	0	0	0	0	0	0	0	0	1	0
4:30 PM	0	0	0	1	0	0	1	0	0	0	0	0	2	0
4:45 PM	0	0	1	0	0	0	2	0	0	0	0	0	3	10
5:00 PM	0	0	1	0	1	0	1	0	0	0	0	0	3	9
5:15 PM	0	0	0	1	0	0	0	0	0	0	0	0	1	9
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	7
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	4
Count Total	0	0	3	3	2	0	5	0	1	0	0	0	14	0
Peak Hour	0	0	2	1	1	0	3	0	0	0	0	0	7	0

٦

• . •		Drive	eway			Oak C	Grove		E	El Cam	ino Rea	al	E	I Cami	ino Rea	al		
Interval Start		Eastb	ound			West	oound			North	bound			South	bound		15-min Total	Rolling One Hou
Start	UT	LT	ΤН	RT	UT	LT	ΤН	RT	UT	LT	ΤН	RT	UT	LT	ΤН	RT	Total	опе пои
7:00 AM	0	0	0	0	0	1	0	0	0	0	2	0	0	0	5	0	8	0
7:15 AM	0	0	0	0	0	1	0	0	0	0	4	0	0	0	3	0	8	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	3	1	0	1	6	0	11	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	4	1	0	1	2	0	8	35
8:00 AM	0	0	0	0	0	0	0	0	0	0	6	0	0	0	7	0	13	40
8:15 AM	0	0	0	0	0	0	0	0	0	0	9	0	0	0	2	0	11	43
8:30 AM	0	0	0	0	0	0	0	0	0	0	6	0	0	1	3	0	10	42
8:45 AM	0	0	0	0	0	0	0	0	0	0	8	0	0	1	2	0	11	45
Count Total	0	0	0	0	0	2	0	0	0	0	42	2	0	4	30	0	80	0
Peak Hour	0	0	0	0	0	0	0	0	0	0	25	1	0	2	14	0	42	0
Interval		Drive				Oak C			E		ino Rea	al	E		ino Re	ai	15-min	Rolling
Start		Eastb				West					bound				bound	_	Total	One Hou
	LT	Т		RT	LT	Т		RT	LT		ΓH	RT	LT		Ή	RT		
7:00 AM	0	(0	0	(0	0		0	0	0		2	0	2	0
7:15 AM	0	(0	0	(0	0		0	0	0		0	0	0	0
7:30 AM	0	(0	0	(0	0		0	0	0		0	0	0	0
7:45 AM	0	(0	0	(0	0		0	0	0		0	0	0	2
8:00 AM	0	(0	0	(0	0		0	0	0		0	0	0	0
8:15 AM	0	(0	0	C		0	0		0	0	0		D	0	0	0
8:30 AM	0	(0	0	(0	0		0	0	0		0	0	0	0
	0)	0	0	(0	0		0	0	0		0	0	0	0
8:45 AM	0	()	0	0	()	0	0		0	0	0		2 0	0	2	0
8:45 AM Count Total Peak Hour	0	(0	0			0			0	0						0

		Drive	eway			Oak 0	Grove		E	El Cam	ino Rea	al	E	I Cami	ino Rea	al		
Interval Start		Eastb	ound			West	oound			North	bound			South	bound		15-min Total	Rolling One Hour
Start	UT	LT	ΤН	RT	UT	LT	ΤН	RT	UT	LT	ΤН	RT	UT	LT	ΤН	RT	Total	
4:00 PM	0	0	0	0	0	0	0	0	0	0	2	0	0	0	3	0	5	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	1	0	5	0
4:30 PM	0	0	0	0	0	0	0	1	0	0	1	0	0	0	5	0	7	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	2	0	0	0	3	0	5	22
5:00 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	2	19
5:15 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	2	0	3	17
5:30 PM	0	0	0	0	0	1	0	0	0	0	4	0	0	0	1	0	6	16
5:45 PM	0	0	0	0	0	0	0	0	0	0	2	0	0	0	3	0	5	16
Count Total	0	0	0	0	0	1	0	1	0	0	17	0	0	0	19	0	38	0
Peak Hour	0	0	0	0	0	1	0	0	0	0	8	0	0	0	7	0	16	0
Interval		Drive				Oak 0			E		ino Rea	al	E		ino Rea	al	15-min	Rolling
Start		Eastb				West					bound				bound		Total	One Hou
	LT	Т		RT	LT	Т		RT	LT		Ή	RT	LT		Ή	RT		
4:00 PM	0)	0	0)	0	0		0	0	0		0	0	0	0
4:15 PM	0	(0	0	(0	0		0	0	0		0	0	0	0
4:30 PM	0	(0	0	(0	0		0	0	0		0	0	0	0
4:45 PM	0	(0	0	(-	0	0		0	0	0		0	0	0	0
5:00 PM	0	(0	0)	0	0		0	0	0		0	0	0	0
5:15 PM	0	(0	0		נ	0	0		0	0	0		0	0	0	0
5:30 PM	0	(0	0)	0	0		0	0	0		1	0	1	1
	0	(0	0)	0	0		0	0	0		0	0	0	1
5:45 PM	0	()	0	0	()	0	0		0	0	0		1	0	1	0
5:45 PM Count Total Peak Hour	0												0		1	0		0

Appendix B Level of Service Calculations

Intersection

Intersection Delay, s/veh Intersection LOS

```
h 14.5
B
```

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	Ţ.			\$			\$			ŧ	7
Traffic Vol, veh/h	307	148	127	11	150	7	72	71	24	12	104	176
Future Vol, veh/h	307	148	127	11	150	7	72	71	24	12	104	176
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	307	148	127	11	150	7	72	71	24	12	104	176
Number of Lanes	1	1	0	0	1	0	0	1	0	0	1	1
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			2			2			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			1			2			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			2			1			2		
HCM Control Delay	16.4			13.3			13.8			11.9		
HCM LOS	С			В			В			В		

Less						0010
Lane	NBLn1	EBLn1	EBLn2	WBLn1	SBLn1	SBLn2
Vol Left, %	43%	100%	0%	7%	10%	0%
Vol Thru, %	43%	0%	54%	89%	90%	0%
Vol Right, %	14%	0%	46%	4%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	167	307	275	168	116	176
LT Vol	72	307	0	11	12	0
Through Vol	71	0	148	150	104	0
RT Vol	24	0	127	7	0	176
Lane Flow Rate	167	307	275	168	116	176
Geometry Grp	6	7	7	6	7	7
Degree of Util (X)	0.332	0.582	0.458	0.323	0.227	0.307
Departure Headway (Hd)	7.155	6.826	5.99	6.927	7.056	6.289
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Сар	499	525	597	516	506	567
Service Time	5.248	4.598	3.762	5.019	4.844	4.076
HCM Lane V/C Ratio	0.335	0.585	0.461	0.326	0.229	0.31
HCM Control Delay	13.8	18.8	13.8	13.3	11.9	11.9
HCM Lane LOS	В	С	В	В	В	В
HCM 95th-tile Q	1.4	3.7	2.4	1.4	0.9	1.3

	٠	→	7	4	+	*	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	ţ,		5	4		٦	† †	1	٦	† †	1
Traffic Volume (veh/h)	22	248	31	124	94	94	12	537	282	116	650	52
Future Volume (veh/h)	22	248	31	124	94	94	12	537	282	116	650	52
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	-	1.00	1.00	-	1.00	1.00	-	1.00	1.00	-	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1900	1863	1863	1863	1863	1863	1863
Adj Flow Rate, veh/h	22	248	31	124	94	94	12	537	0	116	650	25
Adj No. of Lanes	1	1	0	1	1	0	1	2	1	1	2	1
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	413	378	47	341	164	164	63	871	390	184	1112	498
Arrive On Green	0.23	0.23	0.20	0.19	0.19	0.16	0.04	0.25	0.00	0.10	0.31	0.31
Sat Flow, veh/h	1774	1624	203	1774	856	856	1774	3539	1583	1774	3539	1583
Grp Volume(v), veh/h	22	0	279	124	0	188	12	537	0	116	650	25
Grp Sat Flow(s), veh/h/l		0	1827	1774	0	1712	1774	1770	1583	1774	1770	1583
Q Serve(g s), s	0.5	0.0	7.4	3.2	0.0	5.3	0.3	7.2	0.0	3.3	8.2	0.6
Cycle Q Clear(g_c), s	0.5	0.0	7.4	3.2	0.0	5.3	0.3	7.2	0.0	3.3	8.2	0.0
Prop In Lane	1.00	0.0	0.11	1.00	0.0	0.50	1.00	1.2	1.00	1.00	0.2	1.00
Lane Grp Cap(c), veh/h		0	425	341	0	329	63	871	390	184	1112	498
V/C Ratio(X)	0.05	0.00	0.66	0.36	0.00	0.57	0.19	0.62	0.00	0.63	0.58	0.05
Avail Cap(c_a), veh/h	951	0.00	979	951	0.00	918	117	1365	611	184	1498	670
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1490	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00
Uniform Delay (d), s/vel		0.00	18.6	18.7	0.0	19.9	24.9	17.8	0.0	22.9	15.3	12.7
Incr Delay (d2), s/veh	0.1	0.0	10.0	0.7	0.0	19.9	24.9 1.5	0.7	0.0	6.8	0.5	0.0
Initial Q Delay(d3), s/veh		0.0	0.0	0.7	0.0	0.0	0.0	0.7	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),vel		0.0	3.9	1.6	0.0	2.7	0.0	3.6	0.0	2.0	4.0	0.0
LnGrp Delay(d),s/veh	15.9	0.0	20.3	19.3	0.0	2.7	26.4	3.0 18.5	0.0	2.0	4.0	12.7
LnGrp LOS	15.9 B	0.0	20.3 C	19.3 B	0.0	21.4 C	20.4 C	10.5 B	0.0	29.7 C	15.0 B	12.7 B
	D	204	0	D	240	U	U			U		D
Approach Vol, veh/h		301			312			549			791	
Approach Delay, s/veh		20.0			20.6			18.7			17.7 P	
Approach LOS		В			С			В			В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc)), s8.5	16.1		15.4	4.9	19.7		13.2				
Change Period (Y+Rc),		4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gr		19.0		27.0	2.0	21.0		27.0				
Max Q Clear Time (g_c		9.2		9.4	2.3	10.2		7.3				
Green Ext Time (p_c), s		2.4		1.6	0.0	3.2		1.4				
Intersection Summary												
HCM 2010 Ctrl Delay			18.8									
HCM 2010 LOS			10.0 B									
			U									

Intersection		
Int Delay, s/veh	2.2	

1

Major/Minor M	/lajor1	Ν	/lajor2		Minor1	
Conflicting Flow All	0	0	262	0	441	240
Stage 1	-	-	-	-	240	-
Stage 2	-	-	-	-	201	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1302	-	574	799
Stage 1	-	-	-	-	800	-
Stage 2	-	-	-	-	833	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1302	-	567	799
Mov Cap-2 Maneuver	-	-	-	-	567	-
Stage 1	-	-	-	-	800	-
Stage 2	-	-	-	-	823	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.6		11.3	
HCM LOS	Ū		0.0		B	
					U	
Minor Lane/Major Mvm	t N	IBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		668	-	-	1302	-
HCM Lane V/C Ratio		0.147	-	-	0.011	-
HCM Control Delay (s)		11.3	-	-	7.8	0
HCM Lane LOS		В	-	-	Α	А
HCM 95th %tile Q(veh)		0.5	-	-	0	-

	1	*	t	1	1	Ŧ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	٦	1	≜ †}			-î†	
Traffic Volume (veh/h)	149	99	966	109	50	1057	
Future Volume (veh/h)	149	99	966	109	50	1057	
Number	1	16	8	18	7	4	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00	•	1.00	1.00	•	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1863	1863	1863	1900	1900	1863	
Adj Flow Rate, veh/h	149	99	966	109	50	1057	
Adj No. of Lanes	1	1	2	0	0	2	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	661	590	1555	175	98	1489	
Arrive On Green	0.37	0.37	0.48	0.48	0.48	0.48	
Sat Flow, veh/h	1774	1583	3300	362	73	3157	
Grp Volume(v), veh/h	149	99	533	542	562	545	
Grp Sat Flow(s),veh/h/ln	1774	1583	1770	1799	1535	1610	
Q Serve(g_s), s	3.6	2.6	14.0	14.0	4.5	16.6	
Cycle Q Clear(g_c), s	3.6	2.6	14.0	14.0	18.6	16.6	
Prop In Lane	1.00	1.00	050	0.20	0.09	704	
Lane Grp Cap(c), veh/h	661	590	858	872	806	781	
V/C Ratio(X)	0.23	0.17	0.62	0.62	0.70	0.70	
Avail Cap(c_a), veh/h	661	590	1613	1640	1454	1468	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Jpstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Jniform Delay (d), s/veh	13.6	13.2	12.0	12.0	12.4	12.7	
ncr Delay (d2), s/veh	0.8	0.6	0.7	0.7	1.1	1.1	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/In	1.9	1.3	7.0	7.1	8.1	7.5	
LnGrp Delay(d),s/veh	14.3	13.9	12.7	12.7	13.5	13.8	
LnGrp LOS	В	В	В	В	В	В	
Approach Vol, veh/h	248		1075			1107	
Approach Delay, s/veh	14.2		12.7			13.7	
Approach LOS	В		В			В	
Timer	1	2	3	4	5	6	7 8
Assigned Phs				4		6	8
Phs Duration (G+Y+Rc), s				35.1		28.0	35.1
Change Period (Y+Rc), s				4.5		4.5	4.5
Max Green Setting (Gmax), s				57.5		23.5	57.5
Max Q Clear Time (g_c+l1), s				20.6		5.6	16.0
Green Ext Time (p_c), s				10.0		0.7	9.1
ntersection Summary							
HCM 2010 Ctrl Delay			13.3				

Intersection 12.3

Intersection Delay, s/veh Intersection LOS

В

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	ţ,			\$			\$			ŧ	7
Traffic Vol, veh/h	214	130	47	23	137	21	35	84	42	20	104	184
Future Vol, veh/h	214	130	47	23	137	21	35	84	42	20	104	184
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	214	130	47	23	137	21	35	84	42	20	104	184
Number of Lanes	1	1	0	0	1	0	0	1	0	0	1	1
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			2			2			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			1			2			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			2			1			2		
HCM Control Delay	12.8			12.9			12.6			11.2		
HCM LOS	В			В			В			В		

Lane	NBLn1	EBLn1	EBLn2	WBLn1	SBLn1	SBLn2
Vol Left, %	22%	100%	0%	13%	16%	0%
Vol Thru, %	52%	0%	73%	76%	84%	0%
Vol Right, %	26%	0%	27%	12%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	161	214	177	181	124	184
LT Vol	35	214	0	23	20	0
Through Vol	84	0	130	137	104	0
RT Vol	42	0	47	21	0	184
Lane Flow Rate	161	214	177	181	124	184
Geometry Grp	6	7	7	6	7	7
Degree of Util (X)	0.298	0.402	0.298	0.33	0.228	0.298
Departure Headway (Hd)	6.655	6.765	6.069	6.565	6.624	5.83
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Сар	538	531	589	545	539	613
Service Time	4.731	4.529	3.832	4.638	4.392	3.597
HCM Lane V/C Ratio	0.299	0.403	0.301	0.332	0.23	0.3
HCM Control Delay	12.6	14	11.4	12.9	11.4	11.1
HCM Lane LOS	В	В	В	В	В	В
HCM 95th-tile Q	1.2	1.9	1.2	1.4	0.9	1.2

	۲	-	1	+	+	*	1	Ť	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ň	ţ,		٦	Þ		٦	^	1	٦	† †	1
Traffic Volume (veh/h)	21	143	17	189	118	52	42	565	188	60	591	33
Future Volume (veh/h)	21	143	17	189	118	52	42	565	188	60	591	33
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	· ·	1.00	1.00	•	1.00	1.00	•	1.00	1.00	•	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1900	1863	1863	1863	1863	1863	1863
Adj Flow Rate, veh/h	21	143	17	189	118	52	42	565	19	60	591	6
Adj No. of Lanes	1	1	0	1	1	0	1	2	1	1	2	1
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	292	269	32	367	254	112	109	995	445	132	1041	466
Arrive On Green	0.16	0.16	0.13	0.21	0.21	0.17	0.06	0.28	0.28	0.07	0.29	0.29
Sat Flow, veh/h	1774	1634	194	1774	1227	541	1774	3539	1583	1774	3539	1583
Grp Volume(v), veh/h	21	0	160	189	0	170	42	565	19	60	591	6
Grp Sat Flow(s), veh/h/li		0	1828	1774	0	1767	1774	1770	1583	1774	1770	1583
Q Serve(g_s), s	0.4	0.0	3.5	4.2	0.0	3.7	1.0	6.0	0.4	1.4	6.2	0.1
Cycle Q Clear(g_c), s	0.4	0.0	3.5	4.2	0.0	3.7	1.0	6.0	0.4	1.4	6.2	0.1
Prop In Lane	1.00	0.0	0.11	1.00	0.0	0.31	1.00	0.0	1.00	1.00	0.2	1.00
Lane Grp Cap(c), veh/h		0	301	367	0	366	109	995	445	132	1041	466
V/C Ratio(X)	0.07	0.00	0.53	0.51	0.00	0.46	0.39	0.57	0.04	0.45	0.57	0.01
Avail Cap(c_a), veh/h	1149	0.00	1184	1149	0.00	1145	141	1689	756	202	1809	809
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/vel		0.0	16.9	15.5	0.00	15.5	19.9	13.5	11.5	19.5	13.2	11.00
Incr Delay (d2), s/veh	0.1	0.0	1.5	1.1	0.0	0.9	2.2	0.5	0.0	2.4	0.5	0.0
Initial Q Delay(d3), s/veh		0.0	0.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),vet		0.0	1.9	2.2	0.0	1.9	0.0	3.0	0.0	0.0	3.1	0.0
LnGrp Delay(d),s/veh	15.6	0.0	18.4	16.6	0.0	16.4	22.1	14.0	11.5	21.9	13.6	11.0
LnGrp LOS	15.0 B	0.0	10.4 B	10.0 B	0.0	10.4 B	22.1 C	14.0 B	B	21.9 C	13.0 B	B
Approach Vol, veh/h	U	181	U	U	359	U	0	626	U	0	657	0
Approach Delay, s/veh		18.0			359 16.5			020 14.5			14.4	
Approach LOS		10.0 B			10.5 B			14.5 B			14.4 B	
		D			D						D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc)), s6.3	15.4		10.2	5.7	15.9		12.1				
Change Period (Y+Rc),	s 4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gm	nax}, 5	19.5		27.0	2.0	21.0		27.0				
Max Q Clear Time (g_c	+113,45	8.0		5.5	3.0	8.2		6.2				
Green Ext Time (p_c), s	s 0.0	2.9		0.9	0.0	3.1		1.5				
Intersection Summary												
HCM 2010 Ctrl Delay			15.2									
HCM 2010 LOS			В									

Int Delay, s/veh	2.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ţ,			ŧ	Y	
Traffic Vol, veh/h	155	41	26	153	50	48
Future Vol, veh/h	155	41	26	153	50	48
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	155	41	26	153	50	48

Major/Minor	Major1	Ν	Major2		Minor1	
Conflicting Flow All	0	0	196	0	381	176
Stage 1	-	-	-	-	176	-
Stage 2	-	-	-	-	205	-
Critical Hdwy	-	-	4.12	-		6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1377	-	621	867
Stage 1	-	-	-	-	855	-
Stage 2	-	-	-	-	829	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1377	-	608	867
Mov Cap-2 Maneuver	-	-	-	-	608	-
Stage 1	-	-	-	-	855	-
Stage 2	-	-	-	-	812	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		1.1		10.9	
HCM LOS	Ū				B	
					_	
			EDT			
Minor Lane/Major Mvm	it I	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		712	-		1377	-
HCM Lane V/C Ratio		0.138	-		0.019	-
HCM Control Delay (s)		10.9	-	-	7.7	0
HCM Lane LOS		B	-	-	A	Α
HCM 95th %tile Q(veh)		0.5	-	-	0.1	-

05/19/2020

Configurations Y <thy< th=""> Y <thy< th=""> <t< th=""><th></th><th>1</th><th>*</th><th>t</th><th>1</th><th>4</th><th>Ŧ</th><th></th><th></th></t<></thy<></thy<>		1	*	t	1	4	Ŧ		
Configurations Y Y Y Y Y Volume (veh/h) 120 60 1160 112 55 1039 er 1 16 8 18 7 4 Q (2b), veh 0 0 0 0 0 ng Bus, Adj 1.00 1.00 1.00 1.00 1.00 ng Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 ng Rate, veh/h 120 60 1160 112 55 1039 ox Rate, veh/h 120 60 1160 112 55 1039 ox Gatenes 1 1 2 0 0 2	Movement	WBL	WBR	NBT	NBR	SBL	SBT		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Lane Configurations								
2 Volume (veh/h) 120 60 1160 112 55 1039 er 1 16 8 18 7 4 Q(D), veh 0 0 0 0 0 0 ike Adj(A, pbT) 1.00 1.00 1.00 1.00 1.00 1.00 ig Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 ow Rate, veh/h 120 60 1160 112 55 1039 $2.$ of Lanes 1 1 2 0 0 2 hour Factor 1.00 1.00 1.00 1.00 1.00 1.00 in Heavy Veh, % 2 2 2 2 2 2 2 veh/h 1774 1583 3355 315 69 2968 1610 ow, veh/h 1774 1583 1770 1807 1342 1610 1610 ve(g, s), s 3.1 1.7 17.3 17.4 4.6 16.5 165 Q Clear(g_C), veh/h <t< td=""><td>raffic Volume (veh/h)</td><td></td><td></td><td></td><td>112</td><td>55</td><td></td><td></td><td></td></t<>	raffic Volume (veh/h)				112	55			
er 1 16 8 18 7 4 Q (Qb), veh 0 0 0 0 0 0 ng Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 ng Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 at Flow, veh/h/n 1863 1863 1900 1863 0.00 2 Hour Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 of ares 1 1 2 0 0 2	uture Volume (veh/h)								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	umber								
like Adj(A_pbT) 1.00 1.00 1.00 1.00 1.00 Ig Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 at Flow, veh/h/in 1863 1863 1963 1900 1900 1863 wor Rate, veh/h 120 60 1160 112 55 1039 o. of Lanes 1 1 2 0 0 2 Hour Factor 1.00 1.00 1.00 1.00 1.00 r Heavy Veh, % 2 2 2 2 2 2 2 veh/h 609 543 1695 163 97 1498 On Green 0.34 0.34 0.52 0.52 0.52 0.52 ow, veh/h 1774 1583 3355 315 69 2968 olume(v), veh/h 1774 1583 1770 1807 1342 1610 ve (g.s), s 3.1 1.7 17.3 17.4 4.6 16.5 Q Clear(g_c), s 3.1 1.7 17.3 17.4 2.0 16.5 n Lane 1.00 1.00 0.17 0.10 Gr Cap(c), veh/h 609 543 1579 1612 1278 1437 Platon Ratio 1.00 1.00 1.00 1.00 1.00 sam Filter(I) 1.00 1.00 1.00 1.00 1.00 sam Filter(I) 1.00 1.00 1.00 1.00 1.00 Q Delay(d), siveh 0.7 0.4 0.9 0.9 1.3 0.9 Q Delay(d), siveh 15.2 14.7 11.7 11.8 11.3 11.5 elay (d2), siveh 0.7 0.4 0.9 0.9 1.3 0.9 Q Delay(d), siveh 15.9 15.1 12.6 12.6 12.5 12.4 LOS B B B B B B B ach Vol, veh/h 180 1272 1094 ach Delay (d), siveh 15.6 12.6 12.5 12.4 LOS B B B B B B B ach Vol, veh/h 180 1272 1094 ach Delay (d), siveh 15.6 12.6 12.5 12.4 LOS B B B C 1 2 3 4 5 6 7 8 uration (G+Y+Rc), s 38.6 38.6 27.0 38.6 27.0	tial Q (Qb), veh								
ng Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	d-Bike Adj(A_pbT)			-			-		
at Flow, veh/h/ln 1863 1863 1900 1900 1863 ow Rate, veh/h 120 60 1160 112 55 1039 o. of Lanes 1 1 2 0 0 2 Hour Factor 1.00 1.00 1.00 1.00 1.00 1.00 nt Heavy Veh, % 2 2 2 2 2 2 or Green 0.34 0.34 0.52 0.52 0.52 0.52 ow, veh/h 1774 1583 3355 315 69 2968 olume(v), veh/h 1774 1583 1770 1807 1342 1610 veg(s.), s 3.1 1.7 17.3 17.4 4.6 16.5 Q Clear(g_c), s 3.1 1.7 17.3 17.4 22.0 16.5 n Lane 1.00 1.00 0.17 0.10 100 100 20 GP Cap(c), veh/h 609 543 1579 1612 1278 1437 Platoon Ratio 1.00 1.00	rking Bus, Adj			1.00			1.00		
ow Rate, veh/h 120 60 1160 112 55 1039 bour Factor 1.00 1.00 1.00 1.00 1.00 1.00 Hour Factor 1.00 1.00 1.00 1.00 1.00 1.00 reh/h 609 543 1695 163 97 1498 On Green 0.34 0.52 0.52 0.52 0.52 ow, veh/h 1774 1583 3355 69 2968 olume(v), veh/h 120 60 628 644 553 at Flow(s), veh/h/ln 1774 1583 1770 1807 1342 1610 velg.s), s 3.1 1.7 17.3 17.4 4.6 16.5 16.5 n Lane 1.00 1.00 0.17 0.10 100 10.0 10.0 Grig Cap(c), veh/h 609 543 919 939 758 837 atio(X) 0.20 0.11 0.68 0.69 0.71 0.66 Cap(c_a), veh/h 609 543 1	j Sat Flow, veh/h/ln								
b. of Lanes 1 1 2 0 0 2 Hour Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 nt Heavy Veh, % 2									
Hour Factor 1.00 1.00 1.00 1.00 1.00 1.00 nt Heavy Veh, % 2 <t< td=""><td>j No. of Lanes</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	j No. of Lanes								
nt Heavy Veh, % 2 2 2 2 2 2 2 2 2 reh/h 609 543 1695 163 97 1498 On Green 0.34 0.34 0.52 0.52 0.52 0.52 ow, veh/h 1774 1583 3355 315 69 2968 olume(v), veh/h 1774 1583 1770 1807 1342 1610 ve(g. s), s 3.1 1.7 17.3 17.4 4.6 16.5 Q Clear(g_c), s 3.1 1.7 17.3 17.4 22.0 16.5 n Lane 1.00 1.00 0.17 0.10 Grp Cap(c), veh/h 609 543 919 939 758 837 atio(X) 0.20 0.11 0.68 0.69 0.71 0.66 Cap(c_a), veh/h 609 543 1579 1612 1278 1437 Platon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 m Delay (d), s/veh 15.2 14.7 11.7 11.8 11.3 11.5 elay (d2), s/veh 0.7 0.4 0.9 0.9 1.3 0.9 Q Delay(d3), s/veh 15.9 15.1 12.6 12.6 12.5 12.4 0 Delay(d), s/veh 15.9 15.1 12.6 12.6 12.5 12.4 0 Delay(d), s/veh 15.9 15.1 12.6 12.6 12.5 12.4 0 Delay(d), s/veh 15.6 12.6 12.5 12.4 0 DOS B B B B B B B 1 2 3 4 5 6 7 8 read Phs 4 6 8 1 2 3 4 5 6 7 8 1 2 5 58.5 22.5 58.5 0 Clear Time (g_c+11), s 24.0 5.1 19.4 1 Ext Time (g_c, s 10.0 0.4 11.8 ection Summary 2010 Ctrl Delay 12.8	ak Hour Factor								
reh/h 609 543 1695 163 97 1498 On Green 0.34 0.34 0.52 0.52 0.52 0.52 own, veh/h 1774 1583 3355 315 69 2968 olume(v), veh/h 120 60 628 644 541 553 at Flow(s), veh/h/n 1774 1583 1770 1807 1342 1610 ve(g_s), s 3.1 1.7 17.3 17.4 4.6 16.5 Q Clear(g_c), s 3.1 1.7 17.3 17.4 22.0 16.5 n Lane 1.00 1.00 0.17 0.10 0.66 0.71 0.66 Cap(c_a), veh/h 609 543 1579 1612 1278 1437 Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 abar (d), siveh 15.2 14.7 11.8 11.3 11.5 elay (d2), siveh 0.7 0.4 0.9 0.9 1.3 0.9 Q Q Delay (d3), siveh <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
On Green 0.34 0.34 0.52 0.52 0.52 0.52 ow, veh/h 1774 1583 3355 315 69 2968 olume(v), veh/h 120 60 628 644 541 553 at Flow(s), veh/h 1774 1583 1770 1807 1342 1610 ve(g_s), s 3.1 1.7 17.3 17.4 4.6 16.5 Q Clear(g_c), s 3.1 1.7 17.3 17.4 22.0 16.5 n Lane 1.00 1.00 0.17 0.10 G66 Cap(c_a), veh/h 609 543 1579 1612 1278 1437 Platon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 aam Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 abay (d), s/veh 15.2 14.7 11.8 11.3 0.9 Q Q Q Q Q	o, veh/h								
ow, veh/h 1774 1583 3355 315 69 2968 olume(v), veh/h 120 60 628 644 553 at Flow(s), veh/h/ln 1774 1583 1770 1807 1342 1610 ve(g.s), s 3.1 1.7 17.3 17.4 4.6 16.5 Q Clear(g_c), s 3.1 1.7 17.3 17.4 22.0 16.5 I Lane 1.00 0.017 0.10 1.06 16.5 16.5 Grp Cap(c), veh/h 609 543 919 939 758 837 atio(X) 0.20 0.11 0.68 0.69 0.71 0.66 Cap(c, a), veh/h 609 543 1579 1612 1278 1437 Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 m Delay (d), s/veh 15.2 14.7 11.7 11.8 11.3 0.9 Q Delay(d), s/veh 15.0 0.0 </td <td>rive On Green</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	rive On Green								
olume(v), veh/h 120 60 628 644 541 553 at Flow(s), veh/h/ln 1774 1583 1770 1807 1342 1610 ve(g_s), s 3.1 1.7 17.3 17.4 4.6 16.5 Q Clear(g_c), s 3.1 1.7 17.3 17.4 22.0 16.5 n Lane 1.00 1.00 0.17 0.10 0.66 0.629 0.71 0.66 Cap(c_a), veh/h 609 543 919 939 758 837 atio(X) 0.20 0.11 0.66 Cap(c_a), veh/h 609 543 1579 1612 1278 1437 Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 sack (2), s/veh 0.7 0.4 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <	t Flow, veh/h								
at Flow(s), veh/h/ln 1774 1583 1770 1807 1342 1610 ve(g_s), s 3.1 1.7 17.3 17.4 4.6 16.5 Q Clear(g_c), s 3.1 1.7 17.3 17.4 22.0 16.5 n Lane 1.00 1.00 0.17 0.10 Grp Cap(c), veh/h 609 543 919 939 758 837 atio(X) 0.20 0.11 0.68 0.69 0.71 0.66 Cap(c_a), veh/h 609 543 1579 1612 1278 1437 Platon Ratio 1.00 1.00 1.00 1.00 1.00 m Delay (d), s/veh 15.2 14.7 11.7 11.8 11.3 11.5 relay (d2), s/veh 0.7 0.4 0.9 0.9 1.3 0.9 Q Delay(d), s/veh 15.9 15.1 12.6 12.6 12.5 12.4 0 Delay(d), s/veh 15.9 15.1 12.6 12.6 12.5 12.4 0 Delay(d), s/veh 15.6 12.6 12.5 12.5 ach LOS B B B B B B med Phs 4 6 8 1 2 3 4 5 6 7 8 1 3 0.9 1 2 3 4 5 6 7 8 1 3 0.9 1 3 0.9 1 3 0.9 1 4 5 4.5 4.5 1 5 4.									
ve(g_s), s 3.1 1.7 17.3 17.4 4.6 16.5 Q Clear(g_c), s 3.1 1.7 17.3 17.4 22.0 16.5 n Lane 1.00 1.00 0.17 0.10 0.10 0.17 Grp Cap(c), veh/h 609 543 919 939 758 837 atio(X) 0.20 0.11 0.68 0.69 0.71 0.66 Cap(c_a), veh/h 609 543 1579 1612 1278 1437 Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 m Delay (d), s/veh 15.2 14.7 11.7 11.8 11.3 11.5 elay (d2), s/veh 0.7 0.4 0.9 0.9 1.3 0.9 Q Delay(d3), s/veh 0.5 9 15.1 12.6 12.5 12.4 o Delay (d), s/veh 15.9 15.1 12.6 12.5 12.4 o LOS B B B B 12.5 ach Vol, veh/h 180 12.7	• • • • • •								
Q Clear(g_c), s 3.1 1.7 17.3 17.4 22.0 16.5 n Lane 1.00 1.00 0.17 0.10 Grp Cap(c), veh/h 609 543 919 939 758 837 atio(X) 0.20 0.11 0.68 0.69 0.71 0.66 Cap(c_a), veh/h 609 543 1579 1612 1278 1437 Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 am Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 m Delay (d), s/veh 15.2 14.7 11.7 11.8 11.3 11.5 elay (d2), s/veh 0.7 0.4 0.9 0.9 1.3 0.9 Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 ackOfQ(50%),veh/ln 1.7 0.8 8.6 8.8 8.2 7.4 o Delay(d),s/veh 15.6 12.6 12.5 12.4 12.5 ach Vol, veh/h 180 1272 109									
n Lane 1.00 1.00 0.17 0.10 Grp Cap(c), veh/h 609 543 919 939 758 837 atio(X) 0.20 0.11 0.68 0.69 0.71 0.66 Cap(c_a), veh/h 609 543 1579 1612 1278 1437 Platon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 scalar filter(i) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 m Delay (d), s/veh 15.2 14.7 11.7 11.8 11.3 11.5 elay (d2), s/veh 0.7 0.4 0.9 0.9 1.3 0.9 Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 ackCNQ(50%), veh/ln 1.7 0.8 8.6 8.8 8.2 7.4 Delay(d), s/veh 15.6 12.6 12.5 12.4 12.5 ach Delay, s/veh 15.6 12.6 12.5 12.4 12.5 ach Delay, s/veh <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
Grp Cap(c), veh/h 609 543 919 939 758 837 atio(X) 0.20 0.11 0.68 0.69 0.71 0.66 Cap(c_a), veh/h 609 543 1579 1612 1278 1437 Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 aam Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 melay (d), s/veh 15.2 14.7 11.7 11.8 11.3 11.5 elay (d2), s/veh 0.7 0.4 0.9 0.9 1.3 0.9 Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 ackcOQ(50%), veh/ln 1.7 0.8 8.6 8.8 2 7.4 D Delay(d), s/veh 15.6 12.6 12.5 12.4 12.5 ach Vol, veh/h 180 1272 1094 104 12.5 ach LOS B B B B 12.5 4.5 4.5 Green Setting (Gmax),	p In Lane			17.0			10.0		
atio(X)0.200.110.680.690.710.66Cap(c_a), veh/h6095431579161212781437Platoon Ratio1.001.001.001.001.001.00am Filter(I)1.001.001.001.001.001.00m Delay (d), s/veh15.214.711.711.811.311.5elay (d2), s/veh0.70.40.90.91.30.9Q Delay(d3), s/veh0.00.00.00.00.0BackOfQ(50%), veh/ln1.70.88.68.88.27.4D Delay(d), s/veh15.915.112.612.512.4D Delay(d), s/veh15.915.112.612.512.4D Delay, s/veh15.612.612.512.4D Delay, s/veh15.612.612.512.4D Delay, s/veh15.612.612.512.4D Delay, s/veh15.612.612.512.5ach Vol, veh/h18012721094ach LOSBBBB12345610 Genaxi, s'38.627.038.611 Genaxi, s58.522.558.512 Genaxi, s58.522.558.510 Collog5119.411 Ext Time (p_c), s10.00.411.8ection Summary12.812.812.8				919			837		
Cap(c_a), veh/h 609 543 1579 1612 1278 1437 Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 eam Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 m Delay (d), s/veh 15.2 14.7 11.7 11.8 11.3 11.5 elay (d2), s/veh 0.7 0.4 0.9 0.9 1.3 0.9 Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 BackOfQ(50%),veh/ln 1.7 0.8 8.6 8.8 8.2 7.4 D Delay(d),s/veh 15.9 15.1 12.6 12.5 12.4 D LOS B B B B B B ach Vol, veh/h 180 1272 1094 1094 ach LOS B B B B 12.5 ach LOS B B B 12.5 14.7 ach Vol, veh/h 180 12.72 1094 15.6 12.5 ach LOS B	C Ratio(X)								
Platon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 eam Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 m Delay (d), s/veh 15.2 14.7 11.7 11.8 11.3 11.5 elay (d2), s/veh 0.7 0.4 0.9 0.9 1.3 0.9 Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 BackOfQ(50%), veh/ln 1.7 0.8 8.6 8.8 8.2 7.4 D Delay(d), s/veh 15.9 15.1 12.6 12.5 12.4 D Delay(d), s/veh 15.9 15.1 12.6 12.5 12.4 D Delay, (s/veh 15.6 12.6 12.5 12.4 D LOS B B B B B 12.5 ach Delay, s/veh 15.6 12.6 12.5 12.5 12.5 ach LOS B B B B 12.5 12.5 ach LOS B B B 12.5 13.6 14.5	. ,								
earn Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 m Delay (d), s/veh 15.2 14.7 11.7 11.8 11.3 11.5 elay (d2), s/veh 0.7 0.4 0.9 0.9 1.3 0.9 Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 BackOfQ(50%),veh/In 1.7 0.8 8.6 8.8 8.2 7.4 D Delay(d),s/veh 15.9 15.1 12.6 12.5 12.4 D Delay(d),s/veh 15.9 15.1 12.6 12.5 12.4 D LOS B B B B B B ach Vol, veh/h 180 1272 1094 1094 ach LOS B B B B B 1004 ach LOS B B B B 1004 1004 ach LOS B B B B 100 1004 1000 ge Period (Y+Rc), s 38.6 27.0 38.6 1000 1004 1									
m Delay (d), s/veh 15.2 14.7 11.7 11.8 11.3 11.5 elay (d2), s/veh 0.7 0.4 0.9 0.9 1.3 0.9 Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 y Delay(d3), s/veh 11.7 0.8 8.6 8.8 8.2 7.4 y Delay(d), s/veh 15.9 15.1 12.6 12.5 12.4 y Delay(d), s/veh 15.9 15.1 12.6 12.5 12.4 y Dolos B B B B B ach vol, veh/h 180 1272 1094 ach Vol, veh/h 180 1272 1094 12.5 14.7 11.8 12.5 ach LOS B B B B 1.2									
elay (d2), s/veh 0.7 0.4 0.9 0.9 1.3 0.9 Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 BackOfQ(50%),veh/ln 1.7 0.8 8.6 8.8 8.2 7.4 D Delay(d),s/veh 15.9 15.1 12.6 12.5 12.4 D DOS B B B B B B ach Vol, veh/h 180 1272 1094 ach Delay, s/veh 15.6 12.6 12.5 ach LOS B B B B ach LOS B A 5 6 7 ach LOS B B B B B B B B ach LOS S 38.6 27.0 38.6 38.6 27.0 38.6 38.5 22.5 58.5 22.5 58.5 <td< td=""><td>()</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	()								
Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 BackOfQ(50%),veh/ln 1.7 0.8 8.6 8.8 8.2 7.4 D Delay(d),s/veh 15.9 15.1 12.6 12.5 12.4 12.4 D Delay(d),s/veh 15.9 15.1 12.6 12.5 12.4 1094 ach Vol, veh/h 180 1272 1094 1094 1094 ach Delay, s/veh 15.6 12.6 12.5 12.5 ach LOS B B B B B ned Phs 4 6 7 8 uration (G+Y+Rc), s 38.6 27.0 38.6 ge Period (Y+Rc), s 4.5 4.5 4.5 Green Setting (Gmax), s 58.5 22.5 58.5 Q Clear Time (g_c+I1), s 24.0 5.1 19.4 n Ext Time (p_c), s 10.0 0.4 11.8 ection Summary 2010 Ctrl Delay 12.8 12.8									
BackOfQ(50%),veh/ln 1.7 0.8 8.6 8.8 8.2 7.4 D Delay(d),s/veh 15.9 15.1 12.6 12.5 12.4 D LOS B B B B B B ach Vol, veh/h 180 1272 1094 ach Delay, s/veh 15.6 12.6 12.5 ach LOS B B B B 1 2 3 4 5 6 7 8 ned Phs 4 6 8 8 9 9 9 10 38.6 27.0 38.6 38.6 38.6 9 9 9 10 38.6 27.0 38.6 38.6 38.6 27.0 38.6 3									
Delay(d),s/veh 15.9 15.1 12.6 12.5 12.4 DOS B B B B B B B ach Vol, veh/h 180 1272 1094 1094 ach Delay, s/veh 15.6 12.6 12.5 ach LOS B B B B 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 ned Phs 4 6 8 8 9 9 9 9 10 38.6 27.0 38.6 38.6 9 9 9 9 9 12.5 58.5 22.5 58.5 22.5 58.5 22.5 58.5 22.5 58.5 22.5 58.5 22.5 58.5 22.5 58.5 22.5 58.5 22.5 58.5 22.5 58.5 22.5 58.5 22.5 58.5 22.5 58.5 22.5 58.5 22.5 58.5 20.5 58.5 20.0 11.8 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
b LOS B Constraints Constandits <thconstrai< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thconstrai<>									
ach Vol, veh/h 180 1272 1094 ach Delay, s/veh 15.6 12.6 12.5 ach LOS B B B 1 2 3 4 5 6 7 8 ned Phs 4 6 8 6 8 9 nuration (G+Y+Rc), s 38.6 27.0 38.6 38.6 38.6 38.6 38.6 38.6 27.0 38.6 38.6 38.6 38.6 38.6 36 36 38.6 36 36 36 38.6 36 38.6 36 38.6 36	Grp LOS								
ach Delay, s/veh 15.6 12.6 12.5 ach LOS B B B 1 2 3 4 5 6 7 8 ned Phs 4 6 8 8 8 9 9 9 9 9 9 9 10 38.6 38.6 27.0 38.6									
B B B B 1 2 3 4 5 6 7 8 ned Phs 4 6 8 puration (G+Y+Rc), s 38.6 27.0 38.6 ge Period (Y+Rc), s 4.5 4.5 4.5 Green Setting (Gmax), s 58.5 22.5 58.5 Q Clear Time (g_c+I1), s 24.0 5.1 19.4 n Ext Time (p_c), s 10.0 0.4 11.8 ection Summary 12.8 2010 Ctrl Delay 12.8	•								
1 2 3 4 5 6 7 8 hed Phs 4 6 8 8 9 3 8 6 7 8 8 9 9 9 9 3 8 6 7 10 3 8 6 9 9 9 8 5<									
A 6 8 Puration (G+Y+Rc), s 38.6 27.0 38.6 ge Period (Y+Rc), s 4.5 4.5 4.5 Green Setting (Gmax), s 58.5 22.5 58.5 Q Clear Time (g_c+I1), s 24.0 5.1 19.4 a Ext Time (p_c), s 10.0 0.4 11.8 ection Summary 2010 Ctrl Delay 12.8			0		4	-		7 0	
uration (G+Y+Rc), s 38.6 27.0 38.6 ge Period (Y+Rc), s 4.5 4.5 4.5 Green Setting (Gmax), s 58.5 22.5 58.5 Q Clear Time (g_c+I1), s 24.0 5.1 19.4 n Ext Time (p_c), s 10.0 0.4 11.8 ection Summary 12.8	mer	1	2	3		5			
ge Period (Y+Rc), s 4.5 4.5 4.5 Green Setting (Gmax), s 58.5 22.5 58.5 Q Clear Time (g_c+I1), s 24.0 5.1 19.4 n Ext Time (p_c), s 10.0 0.4 11.8 ection Summary 12.8	•								
Green Setting (Gmax), s 58.5 22.5 58.5 Q Clear Time (g_c+I1), s 24.0 5.1 19.4 h Ext Time (p_c), s 10.0 0.4 11.8 ection Summary 2010 Ctrl Delay 12.8									
Q Clear Time (g_c+I1), s 24.0 5.1 19.4 a Ext Time (p_c), s 10.0 0.4 11.8 ection Summary 2010 Ctrl Delay 12.8	č								
n Ext Time (p_c), s 10.0 0.4 11.8 ection Summary 2010 Ctrl Delay 12.8									
ection Summary 2010 Ctrl Delay 12.8									
2010 Ctrl Delay 12.8	u = 71				10.0		0.4	11.8	
	ersection Summary			10.5					
2010 LOS B	M 2010 Ctrl Delay								
	CM 2010 LOS			В					

Intersection Delay, s/veh Intersection LOS

h 15.2 C

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ţ,			\$			\$			ŧ	1
Traffic Vol, veh/h	311	149	127	11	152	7	72	71	24	16	107	209
Future Vol, veh/h	311	149	127	11	152	7	72	71	24	16	107	209
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	311	149	127	11	152	7	72	71	24	16	107	209
Number of Lanes	1	1	0	0	1	0	0	1	0	0	1	1
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			2			2			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			1			2			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			2			1			2		
HCM Control Delay	17.3			13.9			14.2			12.7		
HCM LOS	С			В			В			В		

Lawa	NDL 4				0014	0010
Lane	NBLn1	EBLn1	EBLn2	WBLn1	SBLn1	SBLn2
Vol Left, %	43%	100%	0%	6%	13%	0%
Vol Thru, %	43%	0%	54%	89%	87%	0%
Vol Right, %	14%	0%	46%	4%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	167	311	276	170	123	209
LT Vol	72	311	0	11	16	0
Through Vol	71	0	149	152	107	0
RT Vol	24	0	127	7	0	209
Lane Flow Rate	167	311	276	170	123	209
Geometry Grp	6	7	7	6	7	7
Degree of Util (X)	0.343	0.602	0.47	0.34	0.247	0.375
Departure Headway (Hd)	7.397	7.079	6.243	7.19	7.238	6.456
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Сар	488	513	580	501	499	560
Service Time	5.419	4.779	3.943	5.22	4.938	4.156
HCM Lane V/C Ratio	0.342	0.606	0.476	0.339	0.246	0.373
HCM Control Delay	14.2	19.9	14.4	13.9	12.3	13
HCM Lane LOS	В	С	В	В	В	В
HCM 95th-tile Q	1.5	3.9	2.5	1.5	1	1.7

	٠	-	7	*	+	*	1	Ť	1	1	Ŧ	1	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	٦	ţ,		7	ţ,		٦	† †	1	٦	^	1	
Traffic Volume (veh/h)	23	250	38	146	108	94	14	543	286	116	658	52	
Future Volume (veh/h)	23	250	38	146	108	94	14	543	286	116	658	52	
Number	7	4	14	3	8	18	5	2	12	1	6	16	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1900	1863	1863	1863	1863	1863	1863	
Adj Flow Rate, veh/h	23	250	38	146	108	94	14	543	0	116	658	25	
Adj No. of Lanes	1	1	0	1	1	0	1	2	1	1	2	1	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2	
Cap, veh/h	420	374	57	354	184	160	64	866	387	178	1094	490	
Arrive On Green	0.24	0.24	0.21	0.20	0.20	0.17	0.04	0.24	0.00	0.10	0.31	0.31	
Sat Flow, veh/h	1774	1580	240	1774	920	801	1774	3539	1583	1774	3539	1583	
Grp Volume(v), veh/h	23	0	288	146	0_0	202	14	543	0	116	658	25	
Grp Sat Flow(s), veh/h/li		0	1820	1774	0	1721	1774	1770	1583	1774	1770	1583	
Q Serve(g_s), s	0.5	0.0	7.9	3.9	0.0	5.9	0.4	7.5	0.0	3.4	8.6	0.6	
Cycle Q Clear(g_c), s	0.5	0.0	7.9	3.9	0.0	5.9	0.4	7.5	0.0	3.4	8.6	0.6	
Prop In Lane	1.00	0.0	0.13	1.00	0.0	0.47	1.00	7.5	1.00	1.00	0.0	1.00	
Lane Grp Cap(c), veh/h		0	430	354	0	343	64	866	387	178	1094	490	
V/C Ratio(X)	0.05	0.00	0.67	0.41	0.00	0.59	0.22	0.63	0.00	0.65	0.60	0.05	
Avail Cap(c_a), veh/h	923	0.00	947	923	0.00	896	113	1325	593	178	1454	650	
HCM Platoon Ratio	923 1.00	1.00	1.00	923	1.00	1.00	1.00	1.00	1.00	1.00	1454	1.00	
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	
Uniform Delay (d), s/vel		0.00	19.1	19.1	0.00	20.2	25.7	18.5	0.00	23.7	16.1	13.3	
• • • •	0.1	0.0	19.1	0.8	0.0	1.6	25.7	0.8	0.0	23.7 8.1	0.5	0.0	
Incr Delay (d2), s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	
Initial Q Delay(d3),s/veh %ile BackOfQ(50%),veh		0.0	4.1	2.0	0.0	2.9	0.0	3.7	0.0	2.1	4.3	0.0	
· · · ·	16.2	0.0	20.9	2.0 19.9	0.0	2.9	27.4	3.7 19.2	0.0	31.8	4.5	13.3	
LnGrp Delay(d),s/veh	16.2 B	0.0	20.9 C	19.9 B	0.0	21.8 C	27.4 C	19.2 B	0.0	31.8 C	10.0 B	13.3 B	
LnGrp LOS	D	244		D	240	U	U			U		D	
Approach Vol, veh/h		311			348			557			799		
Approach Delay, s/veh		20.5			21.0			19.4			18.7		
Approach LOS		С			С			В			В		
Timer	1	2	3	4	5	6	7	8					
Assigned Phs	1	2		4	5	6		8					
Phs Duration (G+Y+Rc)), s8.5	16.4		16.0	5.0	19.9		13.9					
Change Period (Y+Rc),	s 4.5	4.5		4.5	4.5	4.5		4.5					
Max Green Setting (Gm	nax) 4,. G	19.0		27.0	2.0	21.0		27.0					
Max Q Clear Time (g_c	+115,45	9.5		9.9	2.4	10.6		7.9					
Green Ext Time (p_c), s	s 0.0	2.4		1.7	0.0	3.2		1.6					
u = r													
Intersection Summary													
u = 71			19.6										

Int Delay, s/veh	2.1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ţ,			ŧ	Y	
Traffic Vol, veh/h	228	44	14	189	47	51
Future Vol, veh/h	228	44	14	189	47	51
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	228	44	14	189	47	51

Major/Minor	Major1	N	Major2	l	Minor1	
Conflicting Flow All	0	0	272	0	467	250
Stage 1	-	-	-	-	250	-
Stage 2	-	-	-	-	217	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1291	-	554	789
Stage 1	-	-	-	-	792	-
Stage 2	-	-	-	-	819	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1291	-	547	789
Mov Cap-2 Maneuver	-	-	-	-	547	-
Stage 1	-	-	-	-	792	-
Stage 2	-	-	-	-	809	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.5		11.5	
HCM LOS	-				В	
Minor Lane/Major Mvm	nt N	VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	ι ι Ι	651	LDI	-	1001	-
HCM Lane V/C Ratio		0.151	-		0.011	-
HCM Control Delay (s)	•	11.5	-	-		0
HCM Lane LOS	1	B	-	-	7.0 A	A
HCM 95th %tile Q(veh	١	0.5	-	-	0	A -
)	0.5	-	-	0	-

	1	*	t	1	1	Ŧ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	٦	1	≜ î,			-î†	
Traffic Volume (veh/h)	159	105	975	110	57	1065	
Future Volume (veh/h)	159	105	975	110	57	1065	
Number	1	16	8	18	7	4	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00	•	1.00	1.00	•	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1863	1863	1863	1900	1900	1863	
Adj Flow Rate, veh/h	159	105	975	110	57	1065	
Adj No. of Lanes	1	1	2	0	0	2	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	642	573	1601	181	103	1497	
Arrive On Green	0.36	0.36	0.50	0.50	0.50	0.50	
Sat Flow, veh/h	1774	1583	3300	362	84	3083	
Grp Volume(v), veh/h	159	105	538	547	563	559	
Grp Sat Flow(s),veh/h/ln	1774	1583	1770	1799	1471	1610	
Q Serve(g_s), s	4.1	2.9	14.2	14.2	6.0	17.3	
Cycle Q Clear(g_c), s	4.1	2.9	14.2	14.2	20.2	17.3	
Prop In Lane	1.00	1.00	004	0.20	0.10	004	
Lane Grp Cap(c), veh/h	642	573	884	898	796	804	
V/C Ratio(X)	0.25	0.18	0.61	0.61	0.71	0.69	
Avail Cap(c_a), veh/h	642	573	1567	1593	1366	1426	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	14.5	14.2	11.7	11.7	12.3	12.5	
Incr Delay (d2), s/veh	0.9	0.7	0.7	0.7	1.2	1.1	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/In	2.2	1.4	7.0	7.2	8.4	7.9	
LnGrp Delay(d),s/veh	15.4	14.9	12.4	12.4	13.5	13.6	
LnGrp LOS	В	В	В	В	В	В	
Approach Vol, veh/h	264		1085			1122	
Approach Delay, s/veh	15.2		12.4			13.5	
Approach LOS	В		В			В	
Timer	1	2	3	4	5	6	7 8
Assigned Phs				4		6	8
Phs Duration (G+Y+Rc), s				36.9		28.0	36.9
Change Period (Y+Rc), s				4.5		4.5	4.5
Max Green Setting (Gmax), s				57.5		23.5	57.5
Max Q Clear Time (g_c+l1), s				22.2		6.1	16.2
Green Ext Time (p_c), s				10.2		0.7	9.3
$u = \gamma$				10.2		0.1	
Intersection Summary			40.0				
HCM 2010 Ctrl Delay			13.2				
HCM 2010 LOS			В				

Intersection Delay, s/veh Intersection LOS

h 12.9 B

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	f.			\$			\$			ŧ	7
Traffic Vol, veh/h	240	133	47	26	138	21	35	86	42	23	104	194
Future Vol, veh/h	240	133	47	26	138	21	35	86	42	23	104	194
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	240	133	47	26	138	21	35	86	42	23	104	194
Number of Lanes	1	1	0	0	1	0	0	1	0	0	1	1
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			2			2			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			1			2			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			2			1			2		
HCM Control Delay	13.8			13.3			12.9			11.6		
HCM LOS	В			В			В			В		

Lane	NBLn1	EBLn1	EBLn2	WBLn1	SBLn1	SBLn2
Vol Left, %	21%	100%	0%	14%	18%	0%
Vol Thru, %	53%	0%	74%	75%	82%	0%
Vol Right, %	26%	0%	26%	11%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	163	240	180	185	127	194
LT Vol	35	240	0	26	23	0
Through Vol	86	0	133	138	104	0
RT Vol	42	0	47	21	0	194
Lane Flow Rate	163	240	180	185	127	194
Geometry Grp	6	7	7	6	7	7
Degree of Util (X)	0.308	0.456	0.308	0.344	0.238	0.321
Departure Headway (Hd)	6.8	6.845	6.151	6.693	6.756	5.951
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Сар	525	523	581	535	528	599
Service Time	4.888	4.617	3.923	4.776	4.534	3.728
HCM Lane V/C Ratio	0.31	0.459	0.31	0.346	0.241	0.324
HCM Control Delay	12.9	15.3	11.7	13.3	11.7	11.6
HCM Lane LOS	В	С	В	В	В	В
HCM 95th-tile Q	1.3	2.4	1.3	1.5	0.9	1.4

	٠	-	1	+	+	*	1	Ť	1	1	Ŧ	1	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	٦	ţ,		٦	Þ		٦	^	1	٦	† †	1	
Traffic Volume (veh/h)	21	152	21	199	121	52	50	576	208	60	599	33	
Future Volume (veh/h)	21	152	21	199	121	52	50	576	208	60	599	33	
Number	7	4	14	3	8	18	5	2	12	1	6	16	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1900	1863	1863	1863	1863	1863	1863	
Adj Flow Rate, veh/h	21	152	21	199	121	52	50	576	39	60	599	6	
Adj No. of Lanes	1	1	0	1	1	0	1	2	1	1	2	1	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2	
Cap, veh/h	306	276	38	372	259	111	117	1000	447	130	1026	- 459	
Arrive On Green	0.17	0.17	0.14	0.21	0.21	0.18	0.07	0.28	0.28	0.07	0.29	0.29	
Sat Flow, veh/h	1774	1602	221	1774	1237	532	1774	3539	1583	1774	3539	1583	
Grp Volume(v), veh/h	21	0	173	199	0	173	50	576	39	60	599	6	
Grp Sat Flow(s), veh/h/l		0	1824	1774	0	1769	1774	1770	1583	1774	1770	1583	
Q Serve(g s), s	0.5	0.0	4.0	4.6	0.0	3.9	1.2	6.4	0.8	1.5	6.6	0.1	
Cycle Q Clear(g_c), s	0.5	0.0	4.0	4.6	0.0	3.9	1.2	6.4	0.0	1.5	6.6	0.1	
Prop In Lane	1.00	0.0	0.12	1.00	0.0	0.30	1.00	0.4	1.00	1.00	0.0	1.00	
Lane Grp Cap(c), veh/h		0	314	372	0	371	117	1000	447	130	1026	459	
V/C Ratio(X)	0.07	0.00	0.55	0.54	0.00	0.47	0.43	0.58	0.09	0.46	0.58	0.01	
Avail Cap(c_a), veh/h	1105	0.00	1136	1105	0.00	1102	136	1624	727	194	1740	779	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/vel		0.0	17.4	16.1	0.0	16.1	20.5	14.1	12.1	20.3	13.9	11.6	
Incr Delay (d2), s/veh	0.1	0.0	1.5	1.2	0.0	0.9	20.5	0.5	0.1	20.5	0.5	0.0	
Initial Q Delay(d3), s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),vel		0.0	2.1	2.3	0.0	2.0	0.0	3.2	0.0	0.0	3.2	0.0	
LnGrp Delay(d),s/veh	16.0	0.0	18.9	17.3	0.0	17.0	23.0	14.6	12.2	22.9	14.4	11.6	
LnGrp LOS	10.0 B	0.0	10.9 B	В	0.0	В	23.0 C	B	12.2 B	22.9 C	B	B	
Approach Vol, veh/h	0	194	J	U	372	J	0	665	0	0	665	U	
Approach Delay, s/veh		18.6			17.1			15.1			15.2		
Approach LOS		10.0 B			В			B			15.2 B		
											U		
Timer	1	2	3	4	5	6	7	8					
Assigned Phs	1	2		4	5	6		8					
Phs Duration (G+Y+Rc)), s6.4	15.9		10.9	6.0	16.3		12.6					
Change Period (Y+Rc),	s 4.5	4.5		4.5	4.5	4.5		4.5					
Max Green Setting (Gr	nax},. 5	19.5		27.0	2.0	21.0		27.0					
Max Q Clear Time (g_c		8.4		6.0	3.2	8.6		6.6					
Green Ext Time (p_c), s	s 0.0	2.9		1.0	0.0	3.1		1.6					
Intersection Summary													
HCM 2010 Ctrl Delay			15.9										
HCM 2010 LOS			В										

Inte	rec	otu	nn
nne	130	ະບເມ	

Int Delay, s/veh	2.6					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ţ,			ŧ	Y	
Traffic Vol, veh/h	168	41	26	164	50	48
Future Vol, veh/h	168	41	26	164	50	48
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	168	41	26	164	50	48

Major/Minor I	Major1	I	Major2		Minor1	
Conflicting Flow All	0	0	209	0	405	189
Stage 1	-	-	203	-	189	- 109
Stage 2	_	_	-	_	216	-
Critical Hdwy		_	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	4.12	-	5.42	0.22
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218		3.518	
Pot Cap-1 Maneuver	-	-		-	602	853
Stage 1	-	-	1302	-	843	- 000
Stage 2	-	-	-	-	820	-
Platoon blocked, %	-	-	-	-	020	-
Mov Cap-1 Maneuver	-	-	1362	-	589	853
Mov Cap-1 Maneuver Mov Cap-2 Maneuver	-	-	1302	-	589	000
Stage 1	-	-	-		843	-
Stage 2	-	-	-	-	803	-
Slaye 2	-	-	-	-	003	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		1.1		11	
HCM LOS					В	
Minor Long/Major Mum	.+ N	NBLn1	EBT	EBR	WBL	WBT
Minor Lane/Major Mvm	<u>IL I</u>		EDI			VVDI
Capacity (veh/h)		694	-	-	1362	-
HCM Lane V/C Ratio		0.141	-		0.019	-
HCM Control Delay (s)		11	-	-	•••	0
HCM Lane LOS	`	В	-	-	A	А
HCM 95th %tile Q(veh))	0.5	-	-	0.1	-

	1	*	Ť	1	4	ţ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	7	1	† 1>			-î†	
Traffic Volume (veh/h)	122	69	1171	118	62	1049	
Future Volume (veh/h)	122	69	1171	118	62	1049	
Number	1	16	8	18	7	4	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00	•	1.00	1.00	•	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1863	1863	1863	1900	1900	1863	
Adj Flow Rate, veh/h	122	69	1171	118	62	1049	
Adj No. of Lanes	1	1	2	0	0	2	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	588	525	1740	175	101	1505	
Arrive On Green	0.33	0.33	0.54	0.54	0.54	0.54	
Sat Flow, veh/h	1774	1583	3341	327	79	2894	
Grp Volume(v), veh/h	122	69	637	652	540	571	
Grp Sat Flow(s), veh/h/ln	1774	1583	1770	1805	1278	1610	
	3.4	2.1	17.7	17.8	6.3	17.3	
Q Serve(g_s), s	3.4	2.1	17.7		24.1	17.3	
Cycle Q Clear(g_c), s			17.7	17.8		17.5	
Prop In Lane	1.00	1.00	049	0.18	0.11	060	
Lane Grp Cap(c), veh/h	588	525	948	967	744	863	
V/C Ratio(X)	0.21	0.13	0.67	0.67	0.73	0.66	
Avail Cap(c_a), veh/h	588	525	1525	1556	1182	1388	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	16.3	15.9	11.4	11.4	11.3	11.3	
Incr Delay (d2), s/veh	0.8	0.5	0.8	0.8	1.4	0.9	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/In	1.8	1.0	8.7	8.9	8.5	7.8	
LnGrp Delay(d),s/veh	17.1	16.4	12.3	12.3	12.6	12.2	
LnGrp LOS	В	В	В	В	В	B	
Approach Vol, veh/h	191		1289			1111	
Approach Delay, s/veh	16.8		12.3			12.4	
Approach LOS	В		В			В	
Timer	1	2	3	4	5	6	7 8
Assigned Phs				4		6	8
Phs Duration (G+Y+Rc), s				40.9		27.0	40.9
Change Period (Y+Rc), s				4.5		4.5	4.5
Max Green Setting (Gmax), s				58.5		22.5	58.5
Max Q Clear Time (g_c+l1), s				26.1		5.4	19.8
Green Ext Time (p_c), s				10.2		0.5	12.0
Intersection Summary							
HCM 2010 Ctrl Delay			12.7				

Intersection Delay, s/veh Intersection LOS

n 14.5 B

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	2	Ţ.			\$			\$			ŧ	1
Traffic Vol, veh/h	308	148	127	11	150	7	72	71	24	12	104	176
Future Vol, veh/h	308	148	127	11	150	7	72	71	24	12	104	176
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	308	148	127	11	150	7	72	71	24	12	104	176
Number of Lanes	1	1	0	0	1	0	0	1	0	0	1	1
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			2			2			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			1			2			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			2			1			2		
HCM Control Delay	16.4			13.3			13.8			11.9		
HCM LOS	С			В			В			В		

Lane	NBLn1	EBLn1	EBLn2	WBLn1	SBLn1	SBLn2
Vol Left, %	43%	100%	0%	7%	10%	0%
Vol Thru, %	43%	0%	54%	89%	90%	0%
Vol Right, %	14%	0%	46%	4%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	167	308	275	168	116	176
LT Vol	72	308	0	11	12	0
Through Vol	71	0	148	150	104	0
RT Vol	24	0	127	7	0	176
Lane Flow Rate	167	308	275	168	116	176
Geometry Grp	6	7	7	6	7	7
Degree of Util (X)	0.332	0.584	0.458	0.323	0.227	0.308
Departure Headway (Hd)	7.157	6.826	5.99	6.929	7.059	6.292
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Сар	499	527	597	516	506	567
Service Time	5.251	4.6	3.763	5.022	4.847	4.079
HCM Lane V/C Ratio	0.335	0.584	0.461	0.326	0.229	0.31
HCM Control Delay	13.8	18.8	13.8	13.3	11.9	11.9
HCM Lane LOS	В	С	В	В	В	В
HCM 95th-tile Q	1.4	3.7	2.4	1.4	0.9	1.3

	٠	-	7	4	+	*	1	Ť	1	1	Ŧ	1	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	5	ţ,		5	ţ,		٦	† †	1	٦	† †	1	
Traffic Volume (veh/h)	24	249	34	124	94	94	13	537	282	116	650	53	
Future Volume (veh/h)	24	249	34	124	94	94	13	537	282	116	650	53	
Number	7	4	14	3	8	18	5	2	12	1	6	16	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1900	1863	1863	1863	1863	1863	1863	
Adj Flow Rate, veh/h	24	249	34	124	94	94	13	537	0	116	650	26	
Adj No. of Lanes	1	1	0	1	1	0	1	2	1	1	2	1	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2	
Cap, veh/h	417	377	52	340	164	164	64	870	389	183	1107	495	
Arrive On Green	0.24	0.24	0.21	0.19	0.19	0.16	0.04	0.25	0.00	0.10	0.31	0.31	
Sat Flow, veh/h	1774	1605	219	1774	856	856	1774	3539	1583	1774	3539	1583	
Grp Volume(v), veh/h	24	0	283	124	0	188	13	537	0	116	650	26	
Grp Sat Flow(s), veh/h/li		0	1824	1774	0	1712	1774	1770	1583	1774	1770	1583	
Q Serve(g_s), s	0.6	0.0	7.5	3.2	0.0	5.4	0.4	7.2	0.0	3.4	8.3	0.6	
Cycle Q Clear(g_c), s	0.6	0.0	7.5	3.2	0.0	5.4	0.4	7.2	0.0	3.4	8.3	0.6	
Prop In Lane	1.00	0.0	0.12	1.00	0.0	0.50	1.00	1.2	1.00	1.00	0.0	1.00	
Lane Grp Cap(c), veh/h		0	429	340	0	328	64	870	389	183	1107	495	
V/C Ratio(X)	0.06	0.00	0.66	0.36	0.00	0.57	0.20	0.62	0.00	0.64	0.59	0.05	
Avail Cap(c_a), veh/h	947	0.00	973	947	0.00	913	116	1358	608	183	1491	667	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	
Uniform Delay (d), s/vel		0.0	18.6	18.8	0.0	20.0	25.0	17.9	0.0	23.0	15.5	12.8	
Incr Delay (d2), s/veh	0.1	0.0	1.7	0.7	0.0	1.6	1.6	0.7	0.0	7.0	0.5	0.0	
Initial Q Delay(d3),s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh		0.0	4.0	1.6	0.0	2.7	0.2	3.6	0.0	2.0	4.0	0.3	
LnGrp Delay(d),s/veh	15.9	0.0	20.3	19.4	0.0	21.5	26.6	18.6	0.0	30.0	16.0	12.9	
LnGrp LOS	В	0.0	20.0 C	B	0.0	21.5 C	20.0 C	B	0.0	0.00 C	В	12.5 B	
Approach Vol, veh/h	<u> </u>	307	<u> </u>		312	Ŭ		550		<u> </u>	792		
Approach Delay, s/veh		20.0			20.7			18.8			17.9		
Approach LOS		20.0 B			20.7 C			B			В		
											U		
Timer	1	2	3	4	5	6	7	8					
Assigned Phs	1	2		4	5	6		8					
Phs Duration (G+Y+Rc)		16.1		15.6	4.9	19.7		13.2					
Change Period (Y+Rc),		4.5		4.5	4.5	4.5		4.5					
Max Green Setting (Gr		19.0		27.0	2.0	21.0		27.0					
Max Q Clear Time (g_c		9.2		9.5	2.4	10.3		7.4					
Green Ext Time (p_c), s	s 0.0	2.4		1.7	0.0	3.2		1.4					
Intersection Summary													
HCM 2010 Ctrl Delay			18.9										
HCM 2010 LOS			В										

05/19/2020

Intersection						
Int Delay, s/veh	2.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	Þ			÷.	Y	
Traffic Vol, veh/h	219	44	14	177	47	51
Future Vol, veh/h	219	44	14	177	47	51
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	219	44	14	177	47	51

Major/Minor N	/lajor1	Ν	Major2		Minor1	
Conflicting Flow All	0	0	263	0	446	241
Stage 1	-	-	-	-	241	-
Stage 2	-	-	-	-	205	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1301	-	570	798
Stage 1	-	-	-	-	799	-
Stage 2	-	-	-	-	829	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1301	-	563	798
Mov Cap-2 Maneuver	-	-	-	-	563	-
Stage 1	-	-	-	-	799	-
Stage 2	-	-	-	-	819	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.6		11.3	
HCM LOS	Ū		0.0		B	
					14/51	MAT
Minor Lane/Major Mvm	t I	VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		665	-	-	1301	-
HCM Lane V/C Ratio		0.147	-		0.011	-
HCM Control Delay (s)		11.3	-	-	1.0	0
HCM Lane LOS		B	-	-	A	А
HCM 95th %tile Q(veh)		0.5	-	-	0	-

	1	*	1	1	1	ţ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	ň	1	≜ î∌		-	-î†		
Traffic Volume (veh/h)	151	101	966	109	51	1057		
Future Volume (veh/h)	151	101	966	109	51	1057		
Number	1	16	8	18	7	4		
Initial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A_pbT)	1.00	1.00	U	1.00	1.00	U		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Adj Sat Flow, veh/h/ln	1863	1863	1863	1900	1900	1863		
Adj Flow Rate, veh/h	151	101	966	109	51	1057		
Adj No. of Lanes	1	101	2	0	0	2		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Percent Heavy Veh, %	1.00	1.00	1.00	1.00	1.00	1.00		
Cap, veh/h	2 659	2 588	∠ 1560	176	2 98	<u>ح</u> 1489		
Arrive On Green	0.37	0.37	0.49	0.49	0.49	0.49		
Sat Flow, veh/h	1774	1583	3300	362	0.49	0.49 3147		
Grp Volume(v), veh/h	151	101	533	542	562	546		
Grp Sat Flow(s),veh/h/ln	1774	1583	1770	1799	1526	1610		
Q Serve(g_s), s	3.7	2.7	14.0	14.0	4.7	16.7		
Cycle Q Clear(g_c), s	3.7	2.7	14.0	14.0	18.7	16.7		
Prop In Lane	1.00	1.00		0.20	0.09			
Lane Grp Cap(c), veh/h	659	588	861	875	804	783		
V/C Ratio(X)	0.23	0.17	0.62	0.62	0.70	0.70		
Avail Cap(c_a), veh/h	659	588	1608	1635	1442	1463		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00		
Uniform Delay (d), s/veh	13.7	13.4	11.9	11.9	12.4	12.6		
Incr Delay (d2), s/veh	0.8	0.6	0.7	0.7	1.1	1.1		
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/In	2.0	1.3	7.0	7.1	8.1	7.5		
LnGrp Delay(d),s/veh	14.5	14.0	12.7	12.7	13.5	13.8		
LnGrp LOS	В	В	В	В	В	В		
Approach Vol, veh/h	252		1075			1108		
Approach Delay, s/veh	14.3		12.7			13.6		
Approach LOS	В		В			В		
Timer	1	2	3	4	5	6	7 8	
Assigned Phs				4		6	8	
Phs Duration (G+Y+Rc), s				35.3		28.0	35.3	
Change Period (Y+Rc), s				4.5		4.5	4.5	
Max Green Setting (Gmax), s				57.5		23.5	57.5	
Max Q Clear Time (g_c+l1), s				20.7		5.7	16.0	
							10.0	
Green Ext Time (n. c) s								
Green Ext Time (p_c), s				10.0		0.7	9.1	
Intersection Summary			40.0					
			13.3 B					

Intersection 12.3

Intersection Delay, s/veh Intersection LOS

В

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ţ,			\$			4			ŧ	7
Traffic Vol, veh/h	214	130	47	23	137	21	35	84	42	20	104	185
Future Vol, veh/h	214	130	47	23	137	21	35	84	42	20	104	185
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	214	130	47	23	137	21	35	84	42	20	104	185
Number of Lanes	1	1	0	0	1	0	0	1	0	0	1	1
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			2			2			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			1			2			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			2			1			2		
HCM Control Delay	12.8			12.9			12.6			11.2		
HCM LOS	В			В			В			В		

Lane	NBLn1	EBLn1	EBLn2	WBLn1	SBLn1	SBLn2
Vol Left, %	22%	100%	0%	13%	16%	0%
Vol Thru, %	52%	0%	73%	76%	84%	0%
Vol Right, %	26%	0%	27%	12%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	161	214	177	181	124	185
LT Vol	35	214	0	23	20	0
Through Vol	84	0	130	137	104	0
RT Vol	42	0	47	21	0	185
Lane Flow Rate	161	214	177	181	124	185
Geometry Grp	6	7	7	6	7	7
Degree of Util (X)	0.298	0.402	0.299	0.33	0.228	0.3
Departure Headway (Hd)	6.657	6.768	6.072	6.569	6.624	5.83
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Сар	538	531	589	545	539	612
Service Time	4.734	4.532	3.835	4.643	4.393	3.599
HCM Lane V/C Ratio	0.299	0.403	0.301	0.332	0.23	0.302
HCM Control Delay	12.6	14	11.4	12.9	11.4	11.1
HCM Lane LOS	В	В	В	В	В	В
HCM 95th-tile Q	1.2	1.9	1.2	1.4	0.9	1.3

و		→	1	+	+	*	1	1	1	1	Ŧ	1	
Movement EE	3L	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
	٦	ħ		٦	¢î,		٦	† †	1	٦	† †	1	
	22	143	18	189	119	52	45	565	188	60	591	35	
	22	143	18	189	119	52	45	565	188	60	591	35	
Number	7	4	14	3	8	18	5	2	12	1	6	16	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT) 1.0		-	1.00	1.00		1.00	1.00	-	1.00	1.00		1.00	
Parking Bus, Adj 1.0		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln 186		1863	1900	1863	1863	1900	1863	1863	1863	1863	1863	1863	
	22	143	18	189	119	52	45	565	19	60	591	8	
Adj No. of Lanes	1	1	0	1	1	0	1	2	1	1	2	1	
Peak Hour Factor 1.0		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2	
Cap, veh/h 29		269	34	367	254	111	113	996	446	132	1035	463	
Arrive On Green 0.1		0.17	0.13	0.21	0.21	0.17	0.06	0.28	0.28	0.07	0.29	0.29	
Sat Flow, veh/h 177		1622	204	1774	1230	538	1774	3539	1583	1774	3539	1583	
	22	0	161	189	0	171	45	565	19	60	591	8	
Grp Sat Flow(s), veh/h/ln177		0	1827	1774	0	1768	1774	1770	1583	1774	1770	1583	
	.5	0.0	3.6	4.2	0.0	3.8	1.1	6.0	0.4	1.4	6.3	0.2	
	.5	0.0	3.6	4.2	0.0	3.8	1.1	6.0	0.4	1.4	6.3	0.2	
Prop In Lane 1.0		0.0	0.11	1.00	0.0	0.30	1.00	0.0	1.00	1.00	0.0	1.00	
Lane Grp Cap(c), veh/h 29		0	302	367	0	366	113	996	446	132	1035	463	
V/C Ratio(X) 0.0		0.00	0.53	0.52	0.00	0.47	0.40	0.57	0.04	0.45	0.57	0.02	
Avail Cap(c_a), veh/h 114		0.00	1179	1145	0.00	1141	141	1683	753	201	1803	807	
HCM Platoon Ratio 1.0		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I) 1.0		0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh 15		0.0	16.9	15.5	0.0	15.6	19.9	13.6	11.5	19.6	13.3	11.1	
Incr Delay (d2), s/veh 0		0.0	1.5	1.1	0.0	0.9	2.3	0.5	0.0	2.4	0.5	0.0	
	.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/In0		0.0	1.9	2.2	0.0	1.9	0.6	3.0	0.2	0.8	3.1	0.0	
LnGrp Delay(d),s/veh 15		0.0	18.4	16.7	0.0	16.5	22.1	14.1	11.6	22.0	13.8	11.1	
	B		В	В		B	C	В	B	C	B	В	
Approach Vol, veh/h		183			360			629			659		
Approach Delay, s/veh		18.1			16.6			14.6			14.5		
Approach LOS		B			B			B			B		
Timer	1	2	3	4	5	6	7	8			_		
Assigned Phs	1	2	5	4	5	6	1	8					
Phs Duration (G+Y+Rc), s6	3	∠ 15.4		4 10.3	5.8	6 15.9		o 12.1					
		15.4 4.5		4.5	5.8 4.5	4.5		4.5					
Change Period (Y+Rc), s 4 Max Green Setting (Gmax)		4.5 19.5		4.5 27.0	4.5 2.0	4.5 21.0		4.5 27.0					
Max Q Clear Time (g_c+113)		19.5 8.0		27.0 5.6	2.0	21.0 8.3		6.2					
Green Ext Time (p_c), s 0		8.0 2.9		5.6 0.9	0.0	8.3 3.1		6.2 1.5					
<i>u</i> = <i>7</i> *	.0	2.9		0.9	0.0	J. I		C.1					
Intersection Summary													
HCM 2010 Ctrl Delay			15.3										
HCM 2010 LOS			В										

Int	0	rc.	$\sim \sim$	ч п	2	n
			_		U	

Int Delay, s/veh	2.6					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ţ,			ŧ	Y	
Traffic Vol, veh/h	159	41	26	155	50	48
Future Vol, veh/h	159	41	26	155	50	48
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	159	41	26	155	50	48

Major/Minor	Major1	ſ	Major2		Minor1	
Conflicting Flow All	0	0	200	0	387	180
Stage 1	-	-	200	-	180	-
Stage 2	-	-	-	-	207	
Critical Hdwy	-	-	4.12	-		6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	_	-	-	5.42	-
Follow-up Hdwy	-	-	2.218		3.518	
Pot Cap-1 Maneuver	-	-		-		863
Stage 1	-	-	-	-	851	-
Stage 2	-	-	-	-	828	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1372	-	603	863
Mov Cap-2 Maneuver		-	-	-	603	-
Stage 1	-	-	-	-	851	-
Stage 2	-	-	-	-	811	-
Approach	EB		WB		NB	
			1.1		10.9	
HCM Control Delay, s HCM LOS	0		1.1		10.9 B	
					D	
Minor Lane/Major Mvr	nt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		707	-	-	1372	-
HCM Lane V/C Ratio		0.139	-	-	0.019	-
HCM Control Delay (s)	10.9	-	-	7.7	0
HCM Lane LOS		В	-	-	Α	А
HCM 95th %tile Q(veh	I)	0.5	-	-	0.1	-

	1	*	t	1	1	ţ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	5	1	≜ î∌		-	-î†	
Traffic Volume (veh/h)	121	61	1160	114	57	1039	
Future Volume (veh/h)	121	61	1160	114	57	1039	
Number	1	16	8	18	7	4	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00	Ŭ	1.00	1.00	Ű	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1863	1863	1863	1900	1900	1863	
Adj Flow Rate, veh/h	121	61	1160	114	57	1039	
Adj No. of Lanes	1	1	2	0	0	2	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	604	539	1704	167	98	1498	
Arrive On Green	0.34	0.34	0.52	0.52	0.52	0.52	
Sat Flow, veh/h	1774	1583	3350	320	72	2947	
Grp Volume(v), veh/h	121	61	630	644	539	557	
Grp Sat Flow(s), veh/h/ln	1774	1583	1770	044 1806	1324	557 1610	
	3.2					16.7	
Q Serve(g_s), s	3.2 3.2	1.7	17.4	17.5	5.0		
Cycle Q Clear(g_c), s		1.7	17.4	17.5	22.5	16.7	
Prop In Lane	1.00	1.00	000	0.18	0.11	0.40	
Lane Grp Cap(c), veh/h	604	539	926	945	753	843	
V/C Ratio(X)	0.20	0.11	0.68	0.68	0.72	0.66	
Avail Cap(c_a), veh/h	604	539	1567	1599	1253	1426	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	15.4	14.9	11.7	11.7	11.3	11.5	
Incr Delay (d2), s/veh	0.7	0.4	0.9	0.9	1.3	0.9	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/In	1.7	0.8	8.6	8.8	8.2	7.5	
LnGrp Delay(d),s/veh	16.2	15.4	12.5	12.6	12.6	12.4	
LnGrp LOS	B	В	В	В	В	B	
Approach Vol, veh/h	182		1274			1096	
Approach Delay, s/veh	15.9		12.5			12.5	
Approach LOS	В		В			В	
Timer	1	2	3	4	5	6	7 8
Assigned Phs				4		6	8
Phs Duration (G+Y+Rc), s				39.1		27.0	39.1
Change Period (Y+Rc), s				4.5		4.5	4.5
Max Green Setting (Gmax), s				58.5		22.5	58.5
Max Q Clear Time (g_c+I1), s				24.5		5.2	19.5
Green Ext Time (p c), s				10.1		0.5	11.8
<i>u</i> = <i>y</i> ,							
Intersection Summary HCM 2010 Ctrl Delay			12.8				

Intersection Delay, s/veh Intersection LOS

```
15.3
```

С

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ef.			\$			\$			ŧ	7
Traffic Vol, veh/h	312	149	127	11	152	7	72	71	24	16	107	209
Future Vol, veh/h	312	149	127	11	152	7	72	71	24	16	107	209
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	312	149	127	11	152	7	72	71	24	16	107	209
Number of Lanes	1	1	0	0	1	0	0	1	0	0	1	1
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			2			2			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			1			2			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			2			1			2		
HCM Control Delay	17.4			13.9			14.2			12.7		
HCM LOS	С			В			В			В		

Lane	NBLn1	EBLn1	EBLn2	WBLn1	SBLn1	SBLn2
Vol Left, %	43%	100%	0%	6%	13%	0%
Vol Thru, %	43%	0%	54%	89%	87%	0%
Vol Right, %	14%	0%	46%	4%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	167	312	276	170	123	209
LT Vol	72	312	0	11	16	0
Through Vol	71	0	149	152	107	0
RT Vol	24	0	127	7	0	209
Lane Flow Rate	167	312	276	170	123	209
Geometry Grp	6	7	7	6	7	7
Degree of Util (X)	0.343	0.604	0.47	0.34	0.247	0.375
Departure Headway (Hd)	7.4	7.079	6.243	7.192	7.24	6.458
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Сар	488	512	580	501	499	560
Service Time	5.422	4.779	3.943	5.221	4.94	4.158
HCM Lane V/C Ratio	0.342	0.609	0.476	0.339	0.246	0.373
HCM Control Delay	14.2	20	14.4	13.9	12.3	13
HCM Lane LOS	В	С	В	В	В	В
HCM 95th-tile Q	1.5	4	2.5	1.5	1	1.7

Instruction EBL EBL EBR WBL WBT VBR NBL NBR SBL SBL SBR ane Configurations 1 <t< th=""></t<>
ane Configurations i
raffic Volume (veh/h) 25 251 41 146 108 94 15 543 286 116 658 53 uthure Volume (veh/h) 25 251 41 146 108 94 15 543 286 116 658 53 umber 7 4 14 3 8 18 5 2 12 1 6 16 itial Q (Qb), veh 0 </td
uture Volume (veh/h) 25 251 41 146 108 94 15 543 286 116 658 53 umber 7 4 14 3 8 18 5 2 12 1 6 16 itital Q (Qb), veh 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
umber 7 4 14 3 8 18 5 2 12 1 6 16 itial Q (Qb), veh 0
itital Q (Qb), veh 0
ed-Bike Aj(A_pbT) 1.00 1.
arking Bus, Adj 1.00
dj Saf Flow, veh/h/ln 1863 1863 1900 1863 <t< td=""></t<>
dj Flow Rate, veh/h 25 251 41 146 108 94 15 543 0 116 658 26 dj No. of Lanes 1 1 0 1 1 0 1 2 1 1 2 1 1 2 1 eak Hour Factor 1.00 1.01 1.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
dj No. of Lanes 1 1 0 1 1 0 1 2 1 1 2 1 eak Hour Factor 1.00 1.01 1.00 1.01 1.01 1.01 1.01 0.01 0.21 22 2 <t< td=""></t<>
eak Hour Factor 1.00
ap, veh/h42437361353183159658643871771089487rrive On Green0.240.240.210.200.200.170.040.240.000.100.310.31at Flow, veh/h177415622551774920801177435391583177435391583rrv Volume(v), veh/h250292146020215543011665826rp Volume(v), veh/h250292146020215543011665826rp Volume(v), veh/h250292146020215543011665826rp Sat Flow(s), veh/h/ln177401818177401721177417701583177417701583Serve(g_s), s0.60.08.04.00.05.90.57.50.03.58.70.6orp In Lane1.000.141.000.471.001.001.001.001.00are Grp Cap(c), veh/h42404343530343658643871771089487// C Ratio(X)0.060.000.670.410.000.590.230.630.000.650.600.05vail Cap(c_a), veh/h91909419190891113
ap, veh/h42437361353183159658643871771089487rrive On Green0.240.240.210.200.200.170.040.240.000.100.310.31at Flow, veh/h177415622551774920801177435391583177435391583rp Volume(v), veh/h250292146020215543011665826rp Sat Flow(s), veh/h/In177401818177401721177417701583177417701583Serve(g_s), s0.60.08.04.00.05.90.57.50.03.58.70.6vgle Q Clear(g_c), s0.60.08.04.00.05.90.57.50.03.58.70.6rop In Lane1.000.141.000.471.001.001.001.001.00ane Grp Cap(c), veh/h42404343530343658643871771089487/C Ratio(X)0.060.000.670.410.000.590.230.630.000.650.600.05vail Cap(c_a), veh/h9190941919089111313185901771447647CM Platoon Ratio1.001.001.001.001.00
rrive On Green0.240.240.210.200.200.170.040.240.000.100.310.31at Flow, veh/h177415622551774920801177435391583177435391583rp Volume(v), veh/h250292146020215543011665826rp Sat Flow(s),veh/h/ln177401818177401721177417701583177417701583Serve(g_s), s0.60.08.04.00.05.90.57.50.03.58.70.6ycle Q Clear(g_c), s0.60.08.04.00.05.90.57.50.03.58.70.6rop In Lane1.000.141.000.471.001.001.001.001.00ane Grp Cap(c), veh/h42404343530343658643871771089487/C Ratio(X)0.060.000.670.410.000.590.230.630.000.650.600.05vail Cap(c_a), veh/h9190941919089111313185901771447647CM Platoon Ratio1.001.001.001.001.001.001.001.001.001.001.00protecam Filter(I)1.000.001.001.00
at Flow, veh/h177415622551774920801177435391583177435391583rp Volume(v), veh/h250292146020215543011665826rp Sat Flow(s), veh/h/ln177401818177401721177417701583177417701583· Serve(g_s), s0.60.08.04.00.05.90.57.50.03.58.70.6vgle Q Clear(g_c), s0.60.08.04.00.05.90.57.50.03.58.70.6rop In Lane1.000.141.000.471.001.001.001.001.00ane Grp Cap(c), veh/h42404343530343658643871771089487/C Ratio(X)0.060.000.670.410.000.590.230.630.000.650.600.05vail Cap(c_a), veh/h9190941919089111313185901771447647CM Platoon Ratio1.001.001.001.001.001.001.001.001.001.00pstream Filter(I)1.000.011.011.001.001.001.001.001.001.001.00niform Delay (d), s/veh0.10.01.80.80.00.0
rp Volume(v), veh/h 25 0 292 146 0 202 15 543 0 116 658 26 rp Sat Flow(s),veh/h/ln1774 0 1818 1774 0 1721 1774 1770 1583 1774 1770 1583 Serve(g_s), s 0.6 0.0 8.0 4.0 0.0 5.9 0.5 7.5 0.0 3.5 8.7 0.6 ycle Q Clear(g_c), s 0.6 0.0 8.0 4.0 0.0 5.9 0.5 7.5 0.0 3.5 8.7 0.6 orop In Lane 1.00 0.14 1.00 0.47 1.00 1.00 1.00 1.00 ane Grp Cap(c), veh/h 424 0 434 353 0 343 65 864 387 177 1089 487 /C Ratio(X) 0.06 0.00 0.67 0.41 0.00 0.59 0.23 0.63 0.00 0.65 0.60 0.05 vail Cap(c_a), veh/h 919 0 941 919 891 113 </td
Ty Sat Flow(s),veh/h/ln1774 0 1818 1774 0 1721 1774 1770 1583 1774 1770 1583 Serve(g_s), s 0.6 0.0 8.0 4.0 0.0 5.9 0.5 7.5 0.0 3.5 8.7 0.6 ycle Q Clear(g_c), s 0.6 0.0 8.0 4.0 0.0 5.9 0.5 7.5 0.0 3.5 8.7 0.6 rop In Lane 1.00 0.14 1.00 0.47 1.00 1.00 1.00 1.00 ane Grp Cap(c), veh/h 424 0 434 353 0 343 65 864 387 177 1089 487 /C Ratio(X) 0.06 0.00 0.67 0.41 0.00 0.59 0.23 0.63 0.00 0.65 0.60 0.05 vail Cap(c_a), veh/h 919 0 941 919 0 891 113 1318 590 177 1447 647 CM Platoon Ratio 1.00 1.00 1.00 1.00 1.00
Serve(g_s), s 0.6 0.0 8.0 4.0 0.0 5.9 0.5 7.5 0.0 3.5 8.7 0.6 ycle Q Clear(g_c), s 0.6 0.0 8.0 4.0 0.0 5.9 0.5 7.5 0.0 3.5 8.7 0.6 rop In Lane 1.00 0.14 1.00 0.47 1.00 1.00 1.00 1.00 ane Grp Cap(c), veh/h 424 0 434 353 0 343 65 864 387 177 1089 487 /C Ratio(X) 0.06 0.00 0.67 0.41 0.00 0.59 0.23 0.63 0.00 0.65 0.60 0.05 vail Cap(c_a), veh/h 919 0 941 919 0 891 113 1318 590 177 1447 647 CM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ycle Q Clear(g_c), s 0.6 0.0 8.0 4.0 0.0 5.9 0.5 7.5 0.0 3.5 8.7 0.6 rop In Lane 1.00 0.14 1.00 0.47 1.00 1.00 1.00 1.00 ane Grp Cap(c), veh/h 424 0 434 353 0 343 65 864 387 177 1089 487 /C Ratio(X) 0.06 0.00 0.67 0.41 0.00 0.59 0.23 0.63 0.00 0.65 0.60 0.05 vail Cap(c_a), veh/h 919 0 941 919 0 891 113 1318 590 177 1447 647 CM Platoon Ratio 1.00
Top In Lane 1.00 0.14 1.00 0.47 1.00 1.00 1.00 1.00 ane Grp Cap(c), veh/h 424 0 434 353 0 343 65 864 387 177 1089 487 /C Ratio(X) 0.06 0.00 0.67 0.41 0.00 0.59 0.23 0.63 0.00 0.65 0.60 0.05 vail Cap(c_a), veh/h 919 0 941 919 0 891 113 1318 590 177 1447 647 CM Platoon Ratio 1.00
ane Grp Cap(c), veh/h 424 0 434 353 0 343 65 864 387 177 1089 487 /C Ratio(X) 0.06 0.00 0.67 0.41 0.00 0.59 0.23 0.63 0.00 0.65 0.60 0.05 vail Cap(c_a), veh/h 919 0 941 919 0 891 113 1318 590 177 1447 647 CM Platoon Ratio 1.00 1
/C Ratio(X) 0.06 0.00 0.67 0.41 0.00 0.59 0.23 0.63 0.00 0.65 0.60 0.05 vail Cap(c_a), veh/h 919 0 941 919 0 891 113 1318 590 177 1447 647 CM Platoon Ratio 1.00
vail Cap(c_a), veh/h 919 0 941 919 0 891 113 1318 590 177 1447 647 CM Platoon Ratio 1.00 1.
CM Platoon Ratio 1.00
pstream Filter(I) 1.00 0.00 1.00 0.00 1.00
niform Delay (d), s/veh 16.2 0.0 19.1 19.2 0.0 20.3 25.8 18.6 0.0 23.9 16.2 13.4 Icr Delay (d2), s/veh 0.1 0.0 1.8 0.8 0.0 1.6 1.8 0.8 0.0 8.4 0.5 0.0 Itial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
icr Delay (d2), s/veh 0.1 0.0 1.8 0.8 0.0 1.6 1.8 0.8 0.0 8.4 0.5 0.0 itial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
itial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
<i>μιε</i> <u>ασκυιαχου/01,νειι/π</u> .ο. υ.υ. 4.Ζ. Ζ.υ. υ.υ. Ζ.Υ. υ.ο. ο.ο. υ.υ. Ζ.Ι. 4.ο. υ.ο.
nGrp Delay(d),s/veh 16.2 0.0 20.9 20.0 0.0 22.0 27.6 19.3 0.0 32.2 16.7 13.5
nGrp LOS B C C C C B C B B
pproach Vol, veh/h 317 348 558 800
pproach Delay, s/veh 20.5 21.1 19.6 18.9
pproach LOS C C B B
imer 1 2 3 4 5 6 7 8
ssigned Phs 1 2 4 5 6 8
hs Duration (G+Y+Rc), s8.5 16.4 16.1 5.0 19.9 14.0
hange Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 4.5 4.5
lax Green Setting (Gmax), & 19.0 27.0 2.0 21.0 27.0
lax Q Clear Time (g_c+l15),5s 9.5 10.0 2.5 10.7 7.9
reen Ext Time (p_c), s 0.0 2.4 1.7 0.0 3.2 1.6
tersection Summary
CM 2010 Ctrl Delay 19.7
CM 2010 LOS B

Int Delay, s/veh	2.1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ţ,			ŧ	Y	
Traffic Vol, veh/h	229	44	14	193	47	51
Future Vol, veh/h	229	44	14	193	47	51
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	229	44	14	193	47	51

Major/Minor M	/lajor1	N	/lajor2		Minor1	
Conflicting Flow All	0	0	273	0	472	251
Stage 1	-	-	-	-	251	-
Stage 2	-	-	-	-	221	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1290	-	551	788
Stage 1	-	-	-	-	791	-
Stage 2	-	-	-	-	816	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1290	-	544	788
Mov Cap-2 Maneuver	-	-	-	-	544	-
Stage 1	-	-	-	-	791	-
Stage 2	-	-	-	-	806	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.5		11.5	
HCM LOS	U		0.0		B	
					U	
Minor Lane/Major Mvm	t I	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		649	-	-	1290	-
HCM Lane V/C Ratio		0.151	-		0.011	-
HCM Control Delay (s)		11.5	-	-	1.0	0
HCM Lane LOS		В	-	-	Α	Α
HCM 95th %tile Q(veh)		0.5	-	-	0	-

	1	*	1	1	1	ţ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	5	1	≜ î∌		002	↑		
Traffic Volume (veh/h)	161	107	975	110	58	1065		
Future Volume (veh/h)	161	107	975	110	58	1065		
Number	1	16	8	18	7	4		
Initial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A_pbT)	1.00	1.00	U	1.00	1.00	U		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Adj Sat Flow, veh/h/ln	1863	1863	1863	1900	1900	1863		
Adj Flow Rate, veh/h	161	1003	975	110	58	1065		
Adj No. of Lanes	101	107	2	0	0	2		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Percent Heavy Veh, %	1.00	1.00	1.00	1.00	1.00	1.00		
•	2 640	2 571	ے 1607	2 181	2 104	ے 1497		
Cap, veh/h	0.36	0.36	0.50	0.50		0.50		
Arrive On Green					0.50			
Sat Flow, veh/h	1774	1583	3300	362	86	3073		
Grp Volume(v), veh/h	161	107	538	547	563	560		
Grp Sat Flow(s),veh/h/ln	1774	1583	1770	1799	1463	1610		
Q Serve(g_s), s	4.2	3.0	14.2	14.2	6.2	17.3		
Cycle Q Clear(g_c), s	4.2	3.0	14.2	14.2	20.4	17.3		
Prop In Lane	1.00	1.00		0.20	0.10			
Lane Grp Cap(c), veh/h	640	571	887	901	794	807		
V/C Ratio(X)	0.25	0.19	0.61	0.61	0.71	0.69		
Avail Cap(c_a), veh/h	640	571	1562	1588	1355	1422		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00		
Uniform Delay (d), s/veh	14.6	14.3	11.7	11.7	12.3	12.4		
Incr Delay (d2), s/veh	0.9	0.7	0.7	0.7	1.2	1.1		
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/In	2.2	1.4	7.0	7.2	8.4	7.9		
LnGrp Delay(d),s/veh	15.6	15.0	12.3	12.3	13.5	13.5		
LnGrp LOS	В	В	В	В	В	В		
Approach Vol, veh/h	268		1085			1123		
Approach Delay, s/veh	15.3		12.3			13.5		
Approach LOS	В		B			B		
Timer	1	2	3	4	5	6	7 8	
Assigned Phs				4		6	8	
Phs Duration (G+Y+Rc), s				37.1		28.0	37.1	
Change Period (Y+Rc), s				4.5		4.5	4.5	
Max Green Setting (Gmax), s				57.5		23.5	57.5	
Max Q Clear Time (g_c+I1), s				22.4		6.2	16.2	
Green Ext Time (p_c), s				10.2		0.7	9.3	
Intersection Summary								
HCM 2010 Ctrl Delay			13.2					
HCM 2010 LOS			13.2 B					
			D					

Intersection Delay, s/veh Intersection LOS

h 12.9 B

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	Ţ.			\$			\$			ŧ	7
Traffic Vol, veh/h	240	133	47	26	138	21	35	86	42	23	104	195
Future Vol, veh/h	240	133	47	26	138	21	35	86	42	23	104	195
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	240	133	47	26	138	21	35	86	42	23	104	195
Number of Lanes	1	1	0	0	1	0	0	1	0	0	1	1
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			2			2			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			1			2			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			2			1			2		
HCM Control Delay	13.8			13.3			12.9			11.6		
HCM LOS	В			В			В			В		

Lane	NBLn1	EBLn1	EBLn2	WBLn1	SBLn1	SBLn2
Vol Left, %	21%	100%	0%	14%	18%	0%
Vol Thru, %	53%	0%	74%	75%	82%	0%
Vol Right, %	26%	0%	26%	11%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	163	240	180	185	127	195
LT Vol	35	240	0	26	23	0
Through Vol	86	0	133	138	104	0
RT Vol	42	0	47	21	0	195
Lane Flow Rate	163	240	180	185	127	195
Geometry Grp	6	7	7	6	7	7
Degree of Util (X)	0.308	0.457	0.308	0.344	0.238	0.322
Departure Headway (Hd)	6.803	6.848	6.154	6.696	6.756	5.951
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Сар	525	523	581	535	528	601
Service Time	4.89	4.619	3.924	4.779	4.535	3.73
HCM Lane V/C Ratio	0.31	0.459	0.31	0.346	0.241	0.324
HCM Control Delay	12.9	15.3	11.7	13.3	11.7	11.6
HCM Lane LOS	В	С	В	В	В	В
HCM 95th-tile Q	1.3	2.4	1.3	1.5	0.9	1.4

	٢	-	7	*	-	*	1	Ť	1	1	Ŧ	~	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	٦	ţ,		٦	¢,		٦	† †	1	٦	^	1	
Traffic Volume (veh/h)	22	152	22	199	122	52	53	576	208	60	599	35	
Future Volume (veh/h)	22	152	22	199	122	52	53	576	208	60	599	35	
Number	7	4	14	3	8	18	5	2	12	1	6	16	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
	1863	1863	1900	1863	1863	1900	1863	1863	1863	1863	1863	1863	
Adj Flow Rate, veh/h	22	152	22	199	122	52	53	576	39	60	599	8	
Adj No. of Lanes	1	1	0	1	1	0	1	2	1	1	2	1	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2	
Cap, veh/h	307	275	40	371	259	111	121	1005	450	130	1023	458	
Arrive On Green	0.17	0.17	0.14	0.21	0.21	0.18	0.07	0.28	0.28	0.07	0.29	0.29	
	1774	1592	230	1774	1241	529	1774	3539	1583	1774	3539	1583	
Grp Volume(v), veh/h	22	0	174	199	0	174	53	576	39	60	599	8	
Grp Sat Flow(s), veh/h/ln		0	1822	1774	0	1769	1774	1770	1583	1774	1770	1583	
Q Serve(g_s), s	0.5	0.0	4.0	4.6	0.0	4.0	1.3	6.4	0.8	1.5	6.7	0.2	
Cycle Q Clear(g_c), s	0.5	0.0	4.0	4.6	0.0	4.0	1.3	6.4	0.8	1.5	6.7	0.2	
Prop In Lane	1.00	0.0	0.13	1.00	0.0	0.30	1.00	0.4	1.00	1.00	0.7	1.00	
Lane Grp Cap(c), veh/h		0	315	371	0	370	121	1005	450	130	1023	458	
V/C Ratio(X)	0.07	0.00	0.55	0.54	0.00	0.47	0.44	0.57	0.09	0.46	0.59	0.02	
	1098	0.00	1128	1098	0.00	1096	135	1615	722	193	1730	774	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh		0.0	17.5	16.2	0.0	16.2	20.6	14.1	12.1	20.5	14.0	11.7	
Incr Delay (d2), s/veh	0.1	0.0	1.5	1.2	0.0	0.9	2.5	0.5	0.1	2.5	0.5	0.0	
Initial Q Delay(d3),s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh		0.0	2.2	2.3	0.0	2.0	0.7	3.2	0.4	0.8	3.3	0.1	
LnGrp Delay(d),s/veh	16.0	0.0	19.0	17.4	0.0	17.1	23.1	14.6	12.2	23.0	14.5	11.7	
LnGrp LOS	ю.0 В	0.0	13.0 B	B	0.0	B	23.1 C	B	12.2 B	20.0 C	В	B	
Approach Vol, veh/h	0	196	5	<u> </u>	373	5	<u> </u>	668	0	<u> </u>	667	0	
Approach Delay, s/veh		18.7			17.3			15.1			15.3		
Approach LOS		B			В			B			B		
											U		
Timer	1	2	3	4	5	6	7	8					
Assigned Phs	1	2		4	5	6		8					
Phs Duration (G+Y+Rc)		16.1		11.0	6.1	16.3		12.6					
Change Period (Y+Rc),	s 4.5	4.5		4.5	4.5	4.5		4.5					
Max Green Setting (Gm		19.5		27.0	2.0	21.0		27.0					
Max Q Clear Time (g_c+	+113),5s	8.4		6.0	3.3	8.7		6.6					
Green Ext Time (p_c), s	0.0	2.9		1.0	0.0	3.1		1.6					
Intersection Summary													
HCM 2010 Ctrl Delay			16.0										
HCM 2010 LOS			В										

nte	rcc	octu	nn
IIIE	1.55	:011	

Int Delay, s/veh	2.5					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ţ,			ŧ	Y	
Traffic Vol, veh/h	172	41	26	166	50	48
Future Vol, veh/h	172	41	26	166	50	48
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	172	41	26	166	50	48

Major/Minor Ma	ajor1	N	/lajor2	- r	Minor1		Ţ
						400	
Conflicting Flow All	0	0	213	0	411	193	
Stage 1	-	-	-	-	193	-	
Stage 2	-	-	-	-	218	-	
Critical Hdwy	-	-	4.12	-	6.42	6.22	
Critical Hdwy Stg 1	-	-	-	-	5.42	-	
Critical Hdwy Stg 2	-	-	-	-	5.42	-	
Follow-up Hdwy	-	-	2.218	-	3.518	3.318	
Pot Cap-1 Maneuver	-	-	1357	-	597	849	
Stage 1	-	-	-	-	840	-	
Stage 2	-	-	-	-	818	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuver	-	-	1357	-	584	849	
Mov Cap-2 Maneuver	-	-	-	-	584	-	
Stage 1	-	-	-	-	840	-	
Stage 2	_	-	-	-	801	-	
olago 2					001		
							1
Approach	EB		WB		NB		
HCM Control Delay, s	0		1		11.1		
HCM LOS					В		
					14/51	MOT	
Minor Lane/Major Mvmt		3Ln1	EBT	EBR	WBL	WBT	
Capacity (veh/h)		689	-	-	1357	-	
HCM Lane V/C Ratio	0	.142	-	-	0.019	-	
HCM Control Delay (s)		11.1	_	_	7.7	0	

HCM Lane LOS В А А --HCM 95th %tile Q(veh) 0.1 0.5 -

	1	*	Ť	1	1	Ŧ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	ň	1	≜ î∌		-	-î†		
Traffic Volume (veh/h)	123	70	1171	120	64	1049		
Future Volume (veh/h)	123	70	1171	120	64	1049		
Number	1	16	8	18	7	4		
Initial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A_pbT)	1.00	1.00	Ű	1.00	1.00	Ŭ		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Adj Sat Flow, veh/h/ln	1863	1863	1863	1900	1900	1863		
Adj Flow Rate, veh/h	123	70	1171	120	64	1049		
Adj No. of Lanes	1	1	2	0	0	2		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Percent Heavy Veh, %	2	2	2	2	2	2		
Cap, veh/h	584	521	1749	179	103	1505		
Arrive On Green	0.33	0.33	0.54	0.54	0.54	0.54		
Sat Flow, veh/h	1774	1583	3335	332	82	2874		
			638			575		
Grp Volume(v), veh/h Grp Sat Flow(s),veh/h/ln	123 1774	70		653	538 1260	575 1610		
		1583	1770	1804	1260			
Q Serve(g_s), s	3.4	2.1	17.8	17.9	6.8	17.5		
Cycle Q Clear(g_c), s	3.4	2.1	17.8	17.9	24.6	17.5		
Prop In Lane	1.00	1.00	055	0.18	0.12	000		
Lane Grp Cap(c), veh/h	584	521	955	973	739	869		
V/C Ratio(X)	0.21	0.13	0.67	0.67	0.73	0.66		
Avail Cap(c_a), veh/h	584	521	1513	1543	1158	1377		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00		
Uniform Delay (d), s/veh	16.5	16.1	11.3	11.4	11.3	11.3		
Incr Delay (d2), s/veh	0.8	0.5	0.8	0.8	1.4	0.9		
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/In	1.8	1.0	8.7	8.9	8.5	7.9		
LnGrp Delay(d),s/veh	17.4	16.7	12.2	12.2	12.7	12.2		
LnGrp LOS	В	В	В	В	В	В		
Approach Vol, veh/h	193		1291			1113		
Approach Delay, s/veh	17.1		12.2			12.4		
Approach LOS	В		В			В		
Timer	1	2	3	4	5	6	7 8	
Assigned Phs				4		6	8	
Phs Duration (G+Y+Rc), s				41.4		27.0	41.4	
Change Period (Y+Rc), s				4.5		4.5	4.5	
Max Green Setting (Gmax), s				58.5		22.5	58.5	
Max Q Clear Time (g_c+l1), s				26.6		5.4	19.9	
Green Ext Time (p_c), s				10.3		0.5	12.0	
Intersection Summary								
HCM 2010 Ctrl Delay			12.6					
HCM 2010 LOS			12.0 B					
			U					

Intersection Delay, s/veh Intersection LOS

```
15.4
```

С

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ţ,			\$			\$			ŧ	7
Traffic Vol, veh/h	313	149	127	11	152	7	72	71	24	16	107	209
Future Vol, veh/h	313	149	127	11	152	7	72	71	24	16	107	209
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	313	149	127	11	152	7	72	71	24	16	107	209
Number of Lanes	1	1	0	0	1	0	0	1	0	0	1	1
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			2			2			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			1			2			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			2			1			2		
HCM Control Delay	17.6			13.9			14.3			12.7		
HCM LOS	С			В			В			В		

Leve	NDL 4				0014	001-0
Lane	NBLn1	EBLn1	EBLn2	WBLn1	SBLn1	SBLn2
Vol Left, %	43%	100%	0%	6%	13%	0%
Vol Thru, %	43%	0%	54%	89%	87%	0%
Vol Right, %	14%	0%	46%	4%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	167	313	276	170	123	209
LT Vol	72	313	0	11	16	0
Through Vol	71	0	149	152	107	0
RT Vol	24	0	127	7	0	209
Lane Flow Rate	167	313	276	170	123	209
Geometry Grp	6	7	7	6	7	7
Degree of Util (X)	0.343	0.614	0.478	0.34	0.247	0.375
Departure Headway (Hd)	7.403	7.065	6.229	7.196	7.243	6.461
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Сар	486	513	580	500	498	558
Service Time	5.44	4.779	3.943	5.233	4.961	4.179
HCM Lane V/C Ratio	0.344	0.61	0.476	0.34	0.247	0.375
HCM Control Delay	14.3	20.4	14.5	13.9	12.3	13
HCM Lane LOS	В	С	В	В	В	В
HCM 95th-tile Q	1.5	4.1	2.6	1.5	1	1.7

Lane Configurations Y 1 1 1 1 1 1 1 1 1 1		٠	-	7	•	t	*	1	Ť	1	1	Ŧ	1	
Lane Configurations Y 1 1 1 1 1 1 1 1 1 1	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Traffic Volume (veh/h) 25 251 41 146 108 94 15 544 287 116 658 53 Future Volume (veh/h) 25 251 41 146 108 94 15 544 287 116 658 53 Initial Q(b), veh 0			î,											
Future Volume (veh/h) 25 251 41 146 108 94 15 544 287 116 658 53 Number 7 4 14 3 8 18 5 2 12 1 6 16 Pad-Bike Adj(A, pbT) 1.00				41			94							
Number 7 4 14 3 8 18 5 2 12 1 6 16 Initial Q (2b), veh 0	. ,						94							
Initial Q (Qb), veh 0	Number		4	14			18							
Ped-Bike Adj(A_pbT) 1.00														
Parking Bus, Adj 1.00 1.0	. ,							1.00						
Adj Sat Flow, veh/h/ln 1863 1863 1900 1863 100 100 100 <th1< td=""><td>2 ,</td><td></td><td>1.00</td><td></td><td></td><td>1.00</td><td></td><td></td><td>1.00</td><td></td><td></td><td>1.00</td><td></td><td></td></th1<>	2 ,		1.00			1.00			1.00			1.00		
Adj Flow Rate, veh/h 25 251 41 146 108 94 15 544 0 116 658 26 Adj No of Lanes 1 1 0 1.01 1.01 1.														
Adj No. of Lanes 1 1 0 1 1 0 1 2 1 1 2 1 Peak Hour Factor 1.00 1.01 1.01 1.01 0.31 1.31 1.353 1583 1683 1675 1681 1774 170 1583 1774 170 1583 1774 170 1583 1774 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00														
Peak Hour Factor 1.00 1.0														
Percent Heavy Veh, % 2			1.00											
Cap, veh/h 424 373 61 353 183 159 65 865 387 177 1090 487 Arrive On Green 0.24 0.24 0.21 0.20 0.17 0.04 0.24 0.00 0.10 0.31 0.31 Sat Flow, veh/h 1774 1562 255 1774 920 801 1774 3539 1583 1774 3539 1583 Grp Sat Flow(s), veh/h 25 0 292 146 0 202 15 544 0 116 658 26 Grp Sat Flow(s), veh/h/1 0 1818 1774 0 1721 1774 1774 170 1583 1774 100 1.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
Arrive On Green 0.24 0.24 0.24 0.21 0.20 0.27 0.04 0.24 0.00 0.10 0.31 0.31 Sat Flow, veh/h 1774 1562 255 1774 920 801 1774 3539 1583 1774 3539 1583 1774 3539 1583 Grp Volume(v), veh/h 25 0 292 146 0 202 15 544 0 116 658 26 Grp Sat Flow(s), veh/h/ln1774 0 1818 1774 0 1721 1774 1770 1583 1774 1770 1583 Qserve(g.s), s 0.6 0.0 8.0 4.0 0.0 5.9 0.5 7.6 0.0 3.5 8.7 0.6 Qserve(g.s), s 0.6 0.0 0.67 4.41 0.00 0.59 0.23 0.63 0.00 0.65 0.60 0.05 Avail Cap(c_a), veh/h 918 0 941 918 0 911 131 1318 589 177 1446 647	-													
Sat Flow, veh/h 1774 1562 255 1774 920 801 1774 3539 1583 1774 3539 1583 Grp Volume(v), veh/h 25 0 292 146 0 202 15 544 0 116 658 26 Grp Sat Flow(s), veh/h/Inf1774 0 1818 1774 0 1714 1707 1583 1774 170 1583 Q Serve(g, s), s 0.6 0.0 8.0 4.0 0.0 5.9 0.5 7.6 0.0 3.5 8.7 0.6 Cycle Q Clear(g, c), s 0.6 0.00 8.0 4.0 0.0 5.9 0.5 7.6 0.0 3.5 8.7 0.6 Cycle Q Clear(g, c), s 0.6 0.00 0.67 0.41 0.00 0.59 0.23 0.63 307 177 190 487 V/C Ratio(X) 0.06 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00														
Grp Volume(v), veh/h 25 0 292 146 0 202 15 544 0 116 658 26 Grp Sat Flow(s), veh/h/ln1774 0 1818 1774 0 1721 1774 1770 1583 1774 1770 1583 Q Serve(g, s), s 0.6 0.0 8.0 4.0 0.0 5.9 0.5 7.6 0.0 3.5 8.7 0.6 Cycle Q Clear(g, c), s 0.6 0.0 8.0 4.0 0.0 5.9 0.5 7.6 0.0 3.5 8.7 0.6 Prop In Lane 1.00 0.14 1.00 0.47 1.00 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 424 0 434 353 0 343 65 865 387 177 1090 487 V/C Ratio(X) 0.06 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0														
Grp Sat Flow(s),veh/h/ln1774 0 1818 1774 0 1721 1774 1770 1583 1774 1770 1583 Q Serve(g, s), s 0.6 0.0 8.0 4.0 0.0 5.9 0.5 7.6 0.0 3.5 8.7 0.6 Cycle Q Clear(g_c), s 0.6 0.0 8.0 4.0 0.0 5.9 0.5 7.6 0.0 3.5 8.7 0.6 Prop In Lane 1.00 0.14 1.00 0.47 1.00 <td>,</td> <td></td>	,													
Q Serve(g_s), s 0.6 0.0 8.0 4.0 0.0 5.9 0.5 7.6 0.0 3.5 8.7 0.6 Cycle Q Clear(g_c), s 0.6 0.0 8.0 4.0 0.0 5.9 0.5 7.6 0.0 3.5 8.7 0.6 Cycle Q Clear(g_c), s 0.6 0.0 4.0 0.0 5.9 0.5 7.6 0.0 3.5 8.7 0.6 Prop In Lane 1.00 0.14 1.00 0.47 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 424 0 433 353 0 343 65 865 387 177 1090 487 V/C Ratio(X) 0.06 0.00 1.00														
Cycle Q Clear(g_c), s 0.6 0.0 8.0 4.0 0.0 5.9 0.5 7.6 0.0 3.5 8.7 0.6 Prop In Lane 1.00 0.14 1.00 0.47 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 424 0 434 353 0 343 65 865 387 177 1090 487 V/C Ratio(X) 0.06 0.00 0.67 0.41 0.00 0.59 0.23 0.63 0.00 0.65 0.60 0.05 Avail Cap(c_a), veh/h 918 0 941 918 0 891 113 1318 589 177 1446 647 HCM Platoon Ratio 1.00 1														
Prop In Lane 1.00 0.14 1.00 0.47 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 424 0 434 353 0 343 65 865 387 177 1090 487 V/C Ratio(X) 0.06 0.00 0.67 0.41 0.00 0.59 0.23 0.63 0.00 0.65 0.60 0.05 Avail Cap(c_a), veh/h 918 0 941 918 0 891 113 1318 589 177 1446 647 HCM Platon Ratio 1.00 </td <td>,</td> <td></td>	,													
Lane Grp Cap(c), veh/h 424 0 434 353 0 343 65 865 387 177 1090 487 V/C Ratio(X) 0.06 0.00 0.67 0.41 0.00 0.59 0.23 0.63 0.00 0.65 0.60 0.05 Avail Cap(c_a), veh/h 918 0 941 918 0 891 113 1318 589 177 1446 647 HCM Platoon Ratio 1.00			0.0			0.0			1.0			0.7		
V/C Ratio(X) 0.06 0.00 0.67 0.41 0.00 0.59 0.23 0.63 0.00 0.65 0.60 0.05 Avail Cap(c_a), veh/h 918 0 941 918 0 891 113 1318 589 177 1446 647 HCM Platoon Ratio 1.00			0			٥			865			1090		
Avail Cap(c_a), veh/h 918 0 991 113 1318 589 177 1446 647 HCM Platoon Ratio 1.00														
HCM Plation Ratio 1.00 1.														
Upstream Filter(I) 1.00 0.00 1														
Uniform Delay (d), s/veh 16.2 0.0 19.1 19.3 0.0 20.3 25.8 18.6 0.0 23.9 16.2 13.4 Incr Delay (d2), s/veh 0.1 0.0 1.8 0.8 0.0 1.6 1.8 0.8 0.0 8.4 0.5 0.0 Initial Q Delay(d3), s/veh 0.0 0														
Incr Delay (d2), s/veh 0.1 0.0 1.8 0.8 0.0 1.6 1.8 0.8 0.0 8.4 0.5 0.0 Initial Q Delay(d3),s/veh 0.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
Initial Q Delay(d3),s/veh 0.0 2.1 4.3 0.3 LnGrp Delay(d),s/veh 16.2 0.0 20.9 20.0 0.0 22.0 27.6 19.3 0.0 32.2 16.7 13.5 LnGrp DOS B C C C B C B B A Approach Vol, veh/h 317 348 559 800 Approach LOS 18.9 Approach LOS C C B B B B Timer 1 2 3 4 5 6 7 8 S S S 16.5 16.2 5.0 20.0 14.0 Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 4.5 <td>• • • •</td> <td></td>	• • • •													
%ile BackOfQ(50%),veh/lr0.3 0.0 4.2 2.0 0.0 2.9 0.3 3.8 0.0 2.1 4.3 0.3 LnGrp Delay(d),s/veh 16.2 0.0 20.9 20.0 0.0 22.0 27.6 19.3 0.0 32.2 16.7 13.5 LnGrp LOS B C C C B C B B Approach Vol, veh/h 317 348 559 800 800 Approach Delay, s/veh 20.6 21.2 19.6 18.9 Approach LOS C C B B B Timer 1 2 3 4 5 6 7 8 Timer 1 2 3 4 5 6 8 B 16 16.5 16.2 5.0 20.0 14.0 14.0 14.0 14.0 16 16 16.5 16.2 5.0 20.0 14.0 14.0 16 16 14.0 16 16 16 16 16 16 16 16														
LnGrp Delay(d),s/veh 16.2 0.0 20.9 20.0 0.0 22.0 27.6 19.3 0.0 32.2 16.7 13.5 LnGrp LOS B C C C C B B B Approach Vol, veh/h 317 348 559 800 Approach Delay, s/veh 20.6 21.2 19.6 18.9 Approach LOS C C B B Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 4 5 6 8 8 5 9 9 16.7 13.5 Change Period (Y+Rc), s8.5 16.5 16.2 5.0 20.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 15.0 16.1 15.0 16.1 16.1 16.1 16.1 16.1 16.1 16.1 16.1 16.1 16.1 16.1 <td></td>														
LnGrp LOS B C C C C B C B B C C B B B C C C B B B C C C B B C Approach Vol, veh/h 317 348 559 800 Approach Delay, s/veh 20.6 21.2 19.6 18.9 Approach LOS C C B B B Timer 1 2 3 4 5 6 7 8 A Signed Phs 1 2 4 5 6 8 A Signed Phs 1 2 4 5 6 8 A Signed Phs 1 2 4 5 6 8 A Signed Phs 1 2 4 5 0 14.0 C Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 Max Green Setting (Gmax¥, 6 19.0 27.0 2.0 21.0 27.0 <td></td>														
Approach Vol, veh/h 317 348 559 800 Approach Delay, s/veh 20.6 21.2 19.6 18.9 Approach LOS C C B B Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 4 5 6 7 8 Assigned Phs 1 2 4 5 6 8 9 Assigned Phs 1 2 4 5 6 8 9 Phs Duration (G+Y+Rc), s8.5 16.5 16.2 5.0 20.0 14.0 14.0 Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 4.5 Max Green Setting (Gmax¥, 6 19.0 27.0 2.0 21.0 27.0 Max Q Clear Time (g_c+l15,5s 9.6 10.0 2.5 10.7 7.9 Green Ext Time (p_c), s 0.0 2.4 1.7 0.0 3.2 1.6 Intersection Summary HCM 2010 Ctrl Delay 19.7 19.7			0.0			0.0				0.0				
Approach Delay, s/veh 20.6 21.2 19.6 18.9 Approach LOS C C B B Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 4 5 6 8 9 Assigned Phs 1 2 4 5 6 8 9 Phs Duration (G+Y+Rc), s8.5 16.5 16.2 5.0 20.0 14.0 Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 Max Green Setting (Gmax¥, 6 19.0 27.0 2.0 21.0 27.0 Max Q Clear Time (g_c+l15, 5s 9.6 10.0 2.5 10.7 7.9 3.2 1.6 Intersection Summary HCM 2010 Ctrl Delay 19.7 19.7 19.7 19.7		0	317	<u> </u>	<u> </u>	3/18	<u> </u>	<u> </u>			5		0	
Approach LOS C C C B B Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 4 5 6 7 8 Assigned Phs 1 2 4 5 6 7 8 Assigned Phs 1 2 4 5 6 8 9 Phs Duration (G+Y+Rc), s8.5 16.5 16.2 5.0 20.0 14.0 14.0 Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 4.5 Max Green Setting (Gmax¥, 6 19.0 27.0 2.0 21.0 27.0 Max Q Clear Time (g_c+I15, 5 9.6 10.0 2.5 10.7 7.9 Green Ext Time (p_c), s 0.0 2.4 1.7 0.0 3.2 1.6 Intersection Summary HCM 2010 Ctrl Delay 19.7 19.7														
Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s8.5 16.5 16.2 5.0 20.0 14.0 Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 Max Green Setting (Gmax¥.6 19.0 27.0 2.0 21.0 27.0 Max Q Clear Time (g_c+145,5s 9.6 10.0 2.5 10.7 7.9 Green Ext Time (p_c), s 0.0 2.4 1.7 0.0 3.2 1.6 Intersection Summary 19.7 19.7 19.7 19.7 19.7														
Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s8.5 16.5 16.2 5.0 20.0 14.0 Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), 6 19.0 27.0 2.0 21.0 27.0 Max Q Clear Time (g_c+I15, 5s 9.6 10.0 2.5 10.7 7.9 Green Ext Time (p_c), s 0.0 2.4 1.7 0.0 3.2 1.6 Intersection Summary HCM 2010 Ctrl Delay 19.7 19.7												U		
Phs Duration (G+Y+Rc), s8.5 16.5 16.2 5.0 20.0 14.0 Change Period (Y+Rc), s4.5 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 19.0 27.0 2.0 21.0 27.0 Max Q Clear Time (g_c+I15, s 9.6 10.0 2.5 10.7 7.9 Green Ext Time (p_c), s 0.0 2.4 1.7 0.0 3.2 1.6 Intersection Summary 19.7 19.7 19.7 19.7	Timer	1		3				7						
Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 19.0 27.0 2.0 21.0 27.0 Max Q Clear Time (g_c+I15, s 9.6 10.0 2.5 10.7 7.9 Green Ext Time (p_c), s 0.0 2.4 1.7 0.0 3.2 1.6 Intersection Summary 19.7 19.7 19.7 19.7		1												
Max Green Setting (Gmax), 6 19.0 27.0 2.0 21.0 27.0 Max Q Clear Time (g_c+115,5s 9.6 10.0 2.5 10.7 7.9 Green Ext Time (p_c), s 0.0 2.4 1.7 0.0 3.2 1.6 Intersection Summary HCM 2010 Ctrl Delay 19.7														
Max Q Clear Time (g_c+115,5s 9.6 10.0 2.5 10.7 7.9 Green Ext Time (p_c), s 0.0 2.4 1.7 0.0 3.2 1.6 Intersection Summary HCM 2010 Ctrl Delay 19.7														
Green Ext Time (p_c), s 0.0 2.4 1.7 0.0 3.2 1.6 Intersection Summary HCM 2010 Ctrl Delay 19.7	• • •													
Intersection Summary HCM 2010 Ctrl Delay 19.7														
HCM 2010 Ctrl Delay 19.7	Green Ext Time (p_c), s	0.0	2.4		1.7	0.0	3.2		1.6					
	Intersection Summary													
HCM 2010 LOS B	HCM 2010 Ctrl Delay			19.7										
	HCM 2010 LOS			В										

Int Delay, s/veh	2.1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ţ,			ŧ	Y	
Traffic Vol, veh/h	229	44	14	193	47	51
Future Vol, veh/h	229	44	14	193	47	51
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	229	44	14	193	47	51

Major/Minor M	/lajor1	N	/lajor2		Minor1	
Conflicting Flow All	0	0	273	0	472	251
Stage 1	-	-	-	-	251	-
Stage 2	-	-	-	-	221	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1290	-	551	788
Stage 1	-	-	-	-	791	-
Stage 2	-	-	-	-	816	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1290	-	544	788
Mov Cap-2 Maneuver	-	-	-	-	544	-
Stage 1	-	-	-	-	791	-
Stage 2	-	-	-	-	806	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.5		11.5	
HCM LOS	U		0.0		B	
					U	
Minor Lane/Major Mvm	t I	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		649	-	-	1290	-
HCM Lane V/C Ratio		0.151	-		0.011	-
HCM Control Delay (s)		11.5	-	-	1.0	0
HCM Lane LOS		В	-	-	Α	А
HCM 95th %tile Q(veh)		0.5	-	-	0	-

	1	*	1	1	1	ţ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	5	1	≜ î∌		-	-î†	
Traffic Volume (veh/h)	161	107	977	110	58	1065	
Future Volume (veh/h)	161	107	977	110	58	1065	
Number	1	16	8	18	7	4	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00	Ű	1.00	1.00	Ű	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1863	1863	1863	1900	1900	1863	
Adj Flow Rate, veh/h	161	107	977	110	58	1065	
Adj No. of Lanes	1	1	2	0	0	2	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	640	571	1608	181	104	1497	
Arrive On Green	0.36	0.36	0.50	0.50	0.50	0.50	
Sat Flow, veh/h	1774	1583	3301	361	85	3071	
Grp Volume(v), veh/h	161	107	539	548	563	560	
Grp Sat Flow(s), veh/h/ln	1774	1583	539 1770	548 1799	563 1462	1610	
Q Serve(g_s), s	4.2	3.0	14.2	14.2	1462 6.2	17.3	
	4.2	3.0	14.2	14.2	20.4	17.3	
Cycle Q Clear(g_c), s			14.Z			17.5	
Prop In Lane	1.00	1.00	007	0.20	0.10	007	
Lane Grp Cap(c), veh/h	640	571	887	902	794	807	
V/C Ratio(X)	0.25	0.19	0.61	0.61	0.71	0.69	
Avail Cap(c_a), veh/h	640	571	1561	1587	1353	1421	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	14.7	14.3	11.7	11.7	12.3	12.4	
Incr Delay (d2), s/veh	0.9	0.7	0.7	0.7	1.2	1.1	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/In	2.2	1.4	7.1	7.2	8.4	7.9	
LnGrp Delay(d),s/veh	15.6	15.0	12.3	12.3	13.5	13.5	
LnGrp LOS	В	В	В	В	В	В	
Approach Vol, veh/h	268		1087			1123	
Approach Delay, s/veh	15.4		12.3			13.5	
Approach LOS	В		В			В	
Timer	1	2	3	4	5	6	7 8
Assigned Phs				4		6	8
Phs Duration (G+Y+Rc), s				37.2		28.0	37.2
Change Period (Y+Rc), s				4.5		4.5	4.5
Max Green Setting (Gmax), s				57.5		23.5	57.5
Max Q Clear Time (g_c+I1), s				22.4		6.2	16.2
Green Ext Time (p_c), s				10.2		0.7	9.3
W - 77							
<i>u</i> = <i>P</i>							
Intersection Summary HCM 2010 Ctrl Delay			13.2				

Intersection Delay, s/veh Intersection LOS

```
eh 12.9
B
```

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	f,			\$			\$			ŧ	1
Traffic Vol, veh/h	240	133	47	26	138	21	35	86	42	23	104	196
Future Vol, veh/h	240	133	47	26	138	21	35	86	42	23	104	196
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	240	133	47	26	138	21	35	86	42	23	104	196
Number of Lanes	1	1	0	0	1	0	0	1	0	0	1	1
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			2			2			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			1			2			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			2			1			2		
HCM Control Delay	13.8			13.3			12.9			11.6		
HCM LOS	В			В			В			В		

Lane	NBLn1	EBLn1	EBLn2	WBLn1	SBLn1	SBLn2
Vol Left, %	21%	100%	0%	14%	18%	0%
Vol Thru, %	53%	0%	74%	75%	82%	0%
Vol Right, %	26%	0%	26%	11%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	163	240	180	185	127	196
LT Vol	35	240	0	26	23	0
Through Vol	86	0	133	138	104	0
RT Vol	42	0	47	21	0	196
Lane Flow Rate	163	240	180	185	127	196
Geometry Grp	6	7	7	6	7	7
Degree of Util (X)	0.308	0.457	0.308	0.344	0.238	0.324
Departure Headway (Hd)	6.807	6.852	6.159	6.7	6.758	5.953
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Сар	525	523	581	533	528	600
Service Time	4.893	4.622	3.928	4.782	4.535	3.73
HCM Lane V/C Ratio	0.31	0.459	0.31	0.347	0.241	0.327
HCM Control Delay	12.9	15.3	11.7	13.3	11.7	11.6
HCM Lane LOS	В	С	В	В	В	В
HCM 95th-tile Q	1.3	2.4	1.3	1.5	0.9	1.4

	۲	→	1	+	+	*	1	Ť	1	1	Ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	4		7	4		۲	^	1	٦	1	1
Traffic Volume (veh/h)	22	152	22	200	122	52	53	577	209	60	600	35
Future Volume (veh/h)	22	152	22	200	122	52	53	577	209	60	600	35
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1900	1863	1863	1863	1863	1863	1863
Adj Flow Rate, veh/h	22	152	22	200	122	52	53	577	40	60	600	8
Adj No. of Lanes	1	1	0	1	1	0	1	2	1	1	2	1
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	307	275	40	372	260	111	121	1005	450	130	1023	458
Arrive On Green	0.17	0.17	0.14	0.21	0.21	0.18	0.07	0.28	0.28	0.07	0.29	0.29
Sat Flow, veh/h	1774	1592	230	1774	1241	529	1774	3539	1583	1774	3539	1583
Grp Volume(v), veh/h	22	0	174	200	0	174	53	577	40	60	600	8
Grp Sat Flow(s), veh/h/lr		0	1822	1774	0	1769	1774	1770	1583	1774	1770	1583
Q Serve(g_s), s	0.5	0.0	4.0	4.6	0.0	4.0	1.3	6.4	0.9	1.5	6.7	0.2
Cycle Q Clear(g_c), s	0.5	0.0	4.0	4.6	0.0	4.0	1.3	6.4	0.9	1.5	6.7	0.2
Prop In Lane	1.00	•.•	0.13	1.00		0.30	1.00	•	1.00	1.00	•	1.00
Lane Grp Cap(c), veh/h		0	315	372	0	371	121	1005	450	130	1023	458
V/C Ratio(X)	0.07	0.00	0.55	0.54	0.00	0.47	0.44	0.57	0.09	0.46	0.59	0.02
Avail Cap(c_a), veh/h	1097	0.00	1126	1097	0.00	1094	135	1612	721	192	1727	773
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh		0.0	17.5	16.2	0.0	16.2	20.6	14.1	12.1	20.5	14.0	11.7
Incr Delay (d2), s/veh	0.1	0.0	1.5	1.2	0.0	0.9	2.5	0.5	0.1	2.5	0.5	0.0
Initial Q Delay(d3),s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh		0.0	2.2	2.4	0.0	2.0	0.7	3.2	0.4	0.8	3.3	0.1
LnGrp Delay(d),s/veh	16.1	0.0	19.0	17.4	0.0	17.1	23.1	14.6	12.2	23.0	14.6	11.7
LnGrp LOS	В		В	В		В	C	В	В	C	В	В
Approach Vol, veh/h		196			374		-	670			668	
Approach Delay, s/veh		18.7			17.3			15.2			15.3	
Approach LOS		В			B			B			B	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc)	۱ ۸ می	16.1		11.0	6.1	16.3		12.7				
Change Period (Y+Rc),		4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gm		19.5		27.0	2.0	21.0		27.0				
Max Q Clear Time (g_c-		8.4		6.0	3.3	8.7		6.6				
Green Ext Time (p_c), s		2.9		1.0	0.0	3.1		1.6				
u – 71	0.0	2.3		1.0	0.0	5.1		1.0				
Intersection Summary			40.0									
HCM 2010 Ctrl Delay			16.0									
HCM 2010 LOS			В									

Inte	rco	Oth	nn.
ппе	150	UII	
	100	Uli	

HCM 95th %tile Q(veh)

Int Delay, s/veh	2.5					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	t,			ŧ	Y	
Traffic Vol, veh/h	172	41	26	166	50	48
Future Vol, veh/h	172	41	26	166	50	48
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	172	41	26	166	50	48

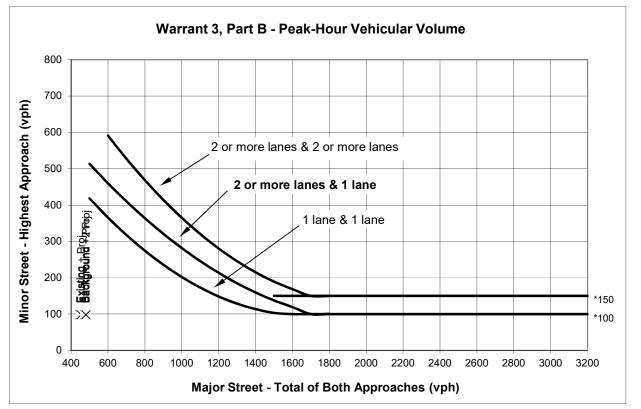
Major/Minor	Major1	N	Jaiar?		Minor1	
			Major2		-	400
Conflicting Flow All	0	0	213	0	411	193
Stage 1	-	-	-	-	193	-
Stage 2	-	-	-	-	218	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1357	-	597	849
Stage 1	-	-	-	-	840	-
Stage 2	-	-	-	-	818	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1357	-	584	849
Mov Cap-2 Maneuver	-	-	-	-	584	-
Stage 1	-	_	-	-	0.40	-
Stage 2	_			_	801	-
Stage 2	-	-	-	-	001	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		1		11.1	
HCM LOS	-				В	
					_	
Minor Lane/Major Mvm	nt N	VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		689	-	-	1357	-
HCM Lane V/C Ratio		0.142	-	-	0.019	-
HCM Control Delay (s)	1	11.1	-	-	7.7	0
HCM Lane LOS		В	-	-	А	А

0.5

0.1

-

	1	*	t	1	1	ţ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	۲	1	≜ î≽			t∳	
Traffic Volume (veh/h)	123	70	1172	120	64	1051	
Future Volume (veh/h)	123	70	1172	120	64	1051	
Number	1	16	8	18	7	4	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00	•	1.00	1.00	Ţ	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1863	1863	1863	1900	1900	1863	
Adj Flow Rate, veh/h	123	70	1172	120	64	1051	
Adj No. of Lanes	1	1	2	0	0	2	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	583	520	1751	179	103	1506	
Arrive On Green	0.33	0.33	0.54	0.54	0.54	0.54	
Sat Flow, veh/h	1774	1583	3336	331	82	2874	
Grp Volume(v), veh/h	123	70	639	653	539	576	
Grp Sat Flow(s), veh/h/ln	123	1583	1770	1804	1260	1610	
	3.4	2.1	17.8	17.9	6.8	17.5	
Q Serve(g_s), s Cycle Q Clear(g_c), s	3.4 3.4	2.1	17.8	17.9	24.7	17.5	
, ,,	3.4 1.00	1.00	17.0	0.18	0.12	I <i>I</i> .5	
Prop In Lane	583		056	974	0.12 740	870	
Lane Grp Cap(c), veh/h		520	956				
V/C Ratio(X)	0.21	0.13	0.67	0.67	0.73	0.66	
Avail Cap(c_a), veh/h	583	520	1512	1541	1157	1376	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	16.6	16.2	11.3	11.4	11.3	11.3	
Incr Delay (d2), s/veh	0.8	0.5	0.8	0.8	1.4	0.9	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/In	1.8	1.0	8.7	8.9	8.5	7.9	
LnGrp Delay(d),s/veh	17.4	16.7	12.2	12.2	12.7	12.1	
LnGrp LOS	B	В	В	В	В	B	
Approach Vol, veh/h	193		1292			1115	
Approach Delay, s/veh	17.2		12.2			12.4	
Approach LOS	В		В			В	
Timer	1	2	3	4	5	6	7 8
Assigned Phs				4		6	8
Phs Duration (G+Y+Rc), s				41.5		27.0	41.5
Change Period (Y+Rc), s				4.5		4.5	4.5
Max Green Setting (Gmax), s				58.5		22.5	58.5
Max Q Clear Time (g_c+l1), s				26.7		5.4	19.9
Green Ext Time (p_c), s				10.3		0.5	12.0
				10.5		0.0	12.0
Intersection Summary				10.5			
u = 71			12.6	10.5		0.0	12.0


Appendix C List of Background Projects

List of Background Projects

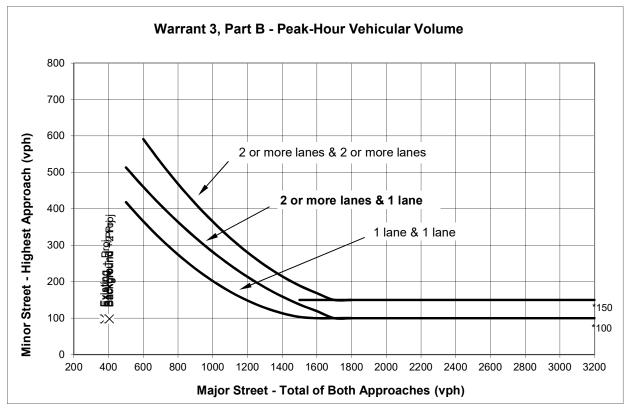
Project Name
Adrian Court
1499 Bayshore Highway
920 Bayswater Avenue
Burlingame Point
225 California Drive
250 California Drive
Carolan Avenue/Rollins Road Multi-Family Residential Development
1128-1132 Douglas Avenue
1431 El Camino Real
1457 El Camino Real
1509 El Camino Real
1433 Floribunda Avenue
988 Howard Avenue
240 Lorton Avenue
1491-1493 Oak Grove Avenue
21 Park Road
1095 Rollins Road
1600 Trousdale Drive
Village at Burlingame

Appendix D Signal Warrant Analysis

Ansel Road and Oak Grove Avenue Ansel Road and Oak Grove Avenue

Source: Figure 4C-3 California Manual on Uniform Traffic Control Devices for Streets and Highways (FHWA's MUTCD 2010 Edition, as amended for use in California).

* Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.


Warrant 3, Part B - Peak-Hour Vehicular Volume

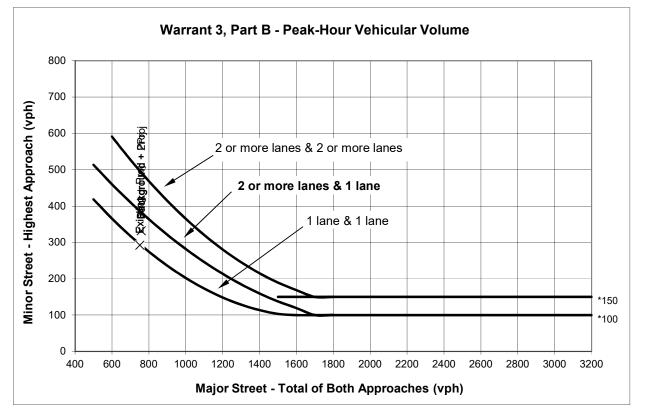
		AM PEAK PERIOD										
		Approach Lanes		Existing	Existing + Proj	Backgroun d	Backgroun d + Proj	Backgroun d +2 Proj				
		One	2 or More	ĒX	Exis	Bac	Bacl d +	Bacl d +				
Major Street - Both Approaches	Oak Grove Avenue	x		449	454	475	480	480				
Minor Street - Highest Approach	Ansel Road	x		98	98	98	98	98				
Signal Warranted Based on Part B - Peak-Hour Volumes?					No	No	No	No				

*Warrant is satisfied if plotted points fall above the appropriate curve in graph above. Note 1: Right turn volume was removed from the minor WB approach.

AM PEAK PERIOD

Ansel Road and Oak Grove Avenue Ansel Road and Oak Grove Avenue

Source: Figure 4C-3 California Manual on Uniform Traffic Control Devices for Streets and Highways (FHWA's MUTCD 2010 Edition, as amended for use in California).


* Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Warrant 3, Part B - Peak-Hour Vehicular Volume

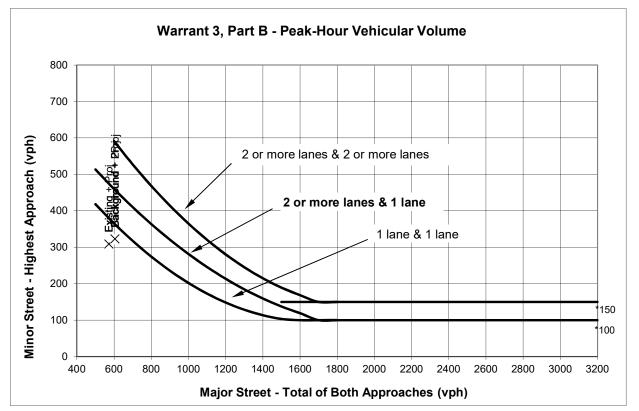
		PM PEAK HOUR									
			roach nes	Existing	ing + oj	Background	Jround Proj	Background +2 Proj			
		One	2 or More	Exis	Existing Proj	Backg	Backgrour + Proj	Backç +2 I			
Major Street - Both Approaches	Oak Grove Avenue	x		375	381	399	405	405			
Minor Street - Highest Approach	Ansel Road	x		98	98	98	98	98			
Signal Warranted Based on Part B - Peak-Hour Volumes?					No	No	No	No			

*Warrant is satisfied if plotted points fall above the appropriate curve in graph above. Note 1: Right turn volume was removed from the minor WB approach.

PM PEAK HOUR

Source: Figure 4C-3 California Manual on Uniform Traffic Control Devices for Streets and Highways (FHWA's MUTCD 2010 Edition, as amended for use in California).

* Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.


Warrant 3, Part B - Peak-Hour Vehicular Volume

		AM PEAK PERIOD									
		Approach Lanes 2 or One More			Existing + Proj	Backgroun d	Backgroun d + Proj	Backgroun d + 2Proj			
Major Street - Both Approaches	Oak Grove Avenue	X		750	751	757	758	759			
Minor Street - Highest Approach	Carolan Avenue	x		292	292	332	332	332			
Signal Warranted Based on Part B - Peak-Hour Volumes?					Yes	Yes	Yes	Yes			

*Warrant is satisfied if plotted points fall above the appropriate curve in graph above. Note 1: Right turn volume was removed from the minor WB approach.

AM PEAK PERIOD

Carolan Avenue and Oak Grove Avenue Carolan Avenue and Oak Grove Avenue

Source: Figure 4C-3 California Manual on Uniform Traffic Control Devices for Streets and Highways (FHWA's MUTCD 2010 Edition, as amended for use in California).

* Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Warrant 3, Part B - Peak-Hour Vehicular Volume

		PM PEAK HOUR									
			roach nes	Existing	ing + oj	Background	Jround Proj	Background + 2Proj			
		One	2 or More	Exis	Existing Proj	Backg	Backgrour + Proj	Backç + 2l			
Major Street - Both Approaches	Oak Grove Avenue	x		572	572	605	605	605			
Minor Street - Highest Approach	Carolan Avenue	x		308	309	321	322	323			
Signal Warranted Based or	Signal Warranted Based on Part B - Peak-Hour Volumes?					No	No	No			

*Warrant is satisfied if plotted points fall above the appropriate curve in graph above. Note 1: Right turn volume was removed from the minor WB approach.

PM PEAK HOUR

5/22/2020