

DECEMBER
2018

The Village at Burlingame Project

CEQA Class 32 Infill Exemption

City of Burlingame

CEQA CLASS 32 INFILL EXEMPTION

THE VILLAGE AT BURLINGAME PROJECT

P R E P A R E D F O R :

City of Burlingame
501 Primrose Road
Burlingame, CA 94010
Contact: Ruben Hurin, Planning Manager
650.558.7256

P R E P A R E D B Y :

ICF
201 Mission Street, Suite 1500
San Francisco, CA 94105
Contact: Kirsten Chapman
(415) 537-1702

December 2018

ICF. 2018. CEQA Class 32 Infill Exemption. The Village at Burlingame Project.
December. (ICF 00052.18.) San Francisco, CA. Prepared for City of Burlingame, Burlingame CA.

Contents

Section 1 Project Description	1-1
Introduction	1-2
Existing Setting.....	1-2
Land Use and Zoning.....	1-2
Project Description	1-3
Site Plan	1-3
Building Design and Lighting	1-5
Landscaping	1-5
Remediation	1-6
Construction	1-7
Construction Schedule and Phasing	1-7
Construction Equipment and Staging	1-7
Section 2 CEQA Exemption.....	2-1
Class 32 (Infill Development)	2-1
Exemptions	2-1
City of Burlingame – Standard Conditions of Approval	2-2
Section 3 CEQA Exemption Checklist	3-1
Introduction	3-1
Criterion Section 15332(a): General Plan and Zoning Consistency.....	3-1
Criterion Section 15332(b): Project Location, Size, and Context.....	3-2
Criterion Section 15332(c): Endangered, Rare, or Threatened Species	3-3
Criterion Section 15332(d): Traffic	3-4
Criterion Section 15332(d): Noise	3-8
Criterion Section 15332(d): Air Quality	3-18
Criterion Section 15332(d): Water Quality	3-26
Criterion Section 15332(e): Utilities and Public Services.....	3-28
Section 4 Exceptions to Categorical Exemptions Checklist.....	4-1
Criterion 15300.2(a): Location.....	4-1
Criterion 15300.2(b): Cumulative Impact	4-1
Criterion 15300.2(c): Significant Effect.....	4-2
Criterion 15300.2(d): Scenic Highway	4-2
Criterion 15300.2(e): Hazardous Waste Sites.....	4-2
Criterion 15300.2(f): Historical Resources.....	4-5
Section 5 Conclusions	5-1

Appendix A Draft Transportation Impact Analysis
Appendix B1 Noise Measurement Data and CNEL Calculations
Appendix B2 Traffic Noise Screening Table
Appendix C Air Quality and Health Risk Assessment

Tables

1-1	Proposed Housing Unit Summary.....	1-4
1-2	Proposed Parking Structure Summary	1-5
3-1	Vibration Source Levels for Construction Equipment	3-10
3-2	Vibration Damage Potential Threshold Criteria Guidelines.....	3-10
3-3	Vibration Annoyance Potential Criteria Guidelines.....	3-11
3-4	City of Burlingame Outdoor Noise Level Planning Criteria.....	3-11
3-5	Maximum Allowable Noise Levels from Construction Equipment	3-12
3-6	Individual Construction Equipment Noise Levels and Potential Exceedances	3-16
3-7	Summary of Health Risk Assessment for DPM and PM _{2.5} Emissions during Construction.....	3-23
3-8	Summary of Health Risk Assessment for DPM and PM _{2.5} Emissions during Operation.....	3-24
3-9	Summary of Risks and Hazards from nearby TAC Sources	3-25
4-1	Summary of Cortese List Search Results for Lot F and Lot N, Burlingame, California	4-3

Figures

		Follows Page
1	Project Location.....	1-2
2	Lot F Site Plan	1-4
3	Lot N Site Plan	1-4
4	Lot F Park Road and Lorton Avenue Elevations	1-4
5	Lot F Howard Avenue and Southeast Elevations	1-4
6	Lot F Perspective Rendering	1-4
7	Lot N Lorton Avenue and Highland Avenue Elevations	1-4
8	Lot N Aerial Renderings	1-4
9	Noise Measurement Locations.....	3-14

Acronyms and Abbreviations

ADT	average daily traffic
AERMOD	Air Quality Dispersion Modeling
BAAQMD	Bay Area Air Quality Management District
Bay	San Francisco Bay
BMPs	best management practices
BPD	Burlingame Police Department
BSD	Burlingame School District
C/CAG	City/County Association of Governments
CalEPA	California Environmental Protection Agency
CalRecycle	California Department of Resources Recycling and Recovery
Caltrans	California Department of Transportation
CAPs	criteria air pollutants
CARB	California Air Resources Board
CCFD	Central County Fire Department
CCR	California Code of Regulations
CEQA	California Environmental Quality Act
CGP	Construction General Permit
City	City of Burlingame
CMP	Congestion Management Program
CNEL	community noise equivalent level
CO	carbon monoxide
CRHR	California Register of Historical Resources
dB	decibel
dBA	A-weighted decibels
DPH	Department of Public Health
DPM	diesel particulate matter
DTSC	Department of Toxic Substance Control
DU	dwelling unit
EIR	environmental impact report
EPA	U.S. Environmental Protection Agency
ESA	Environmental Site Assessment
FTA	Federal Transit Administration
gpd	gallons per day
gsf	gross square foot
HI	Hazard Index
HMU	Howard Avenue Mixed-Use District
HRA	health risk assessment
HVAC	heating, ventilation, air-conditioning
IS/MND	initial study/mitigated negative declaration

ITE	Institute of Transportation Engineers
L_{dn}	day-night level
L_{eq}	equivalent sound level
LOS	level of service
LUST	leaking underground storage tank
MEIR	maximally exposed individual resident
mgd	million gallons per day
MRP	Municipal Regional Permit
NO _x	nitrogen oxides
NPDES	National Pollutant Discharge Elimination System
NRHP	National Register of Historic Places
OEHHA	Office of Environmental Health Hazard Assessment
PM	particulate matter
PM ₁₀	particulate matter 10 microns in diameter or less
PM _{2.5}	particulate matter 2.5 microns in diameter or less
ppd	person per day
PPV	peak particle velocity
Project	The Village at Burlingame Project
Regional Water Board	Regional Water Quality Control Board
ROG	reactive organic gas
SCA	Standard Conditions of Approval
SFBAAB	San Francisco Bay Area Air Basin
SFPUC	San Francisco Public Utilities Commission
SMUHSD	San Mateo Union High School District
Specific Plan	Burlingame Downtown Specific Plan
SWPPP	Stormwater Pollution Prevention Plan
SWRCB	State Water Resources Control Board
TACs	toxic air contaminants
TDM	Travel Demand Management
TPH	total petroleum hydrocarbons
UWMP	Urban Water Management Plan
VOCs	volatile organic compounds
WWTP	wastewater treatment plant
$\mu\text{g}/\text{m}^3$	microgram per cubic meter

Section 1

Project Description

1. Project Title:

The Village at Burlingame Project

2. Lead Agency/Sponsor's Name and Address:

City of Burlingame
Planning Division
501 Primrose Road
Burlingame, CA 94010

3. Contact Person and Phone Number:

Contact: Kevin Gardiner, Planning Manager
Planning Division
501 Primrose Road
Burlingame, CA 94010
650.558.7253

4. Project Location:

150 Park Road (Parking Lot F) – APN 029-224-270
160 Lorton Avenue (Parking Lot N) – APN 029-231-060 and APN 029-231-240

5. Project Sponsor's Name and Address:

Pacific West Communities, Attn: Chris Grant
430 East State Street, Suite 100
Eagle, ID 83616

6. General Plan Designation:

150 Park Road (Parking Lot F): Howard Avenue Mixed-Use District and R-4 Incentive District
160 Lorton Avenue (Parking Lot N): R-4 Incentive District

7. Zoning:

150 Park Road (Parking Lot F): HMU and R-4 (R-4 Incentive District Subarea)
160 Lorton Avenue (Parking Lot N): R-4 (R-4 Incentive District Subarea)

8. Requested Permits

150 Park Road (Lot F):

- Design review for construction of a five-story, 132-unit affordable workforce and senior apartment development (Code Section 25.33.045 and Chapter 5 of the Downtown Specific Plan).
- Lot merger to combine Lots 14, 15, 16, and southeasterly 45 feet of Lot 8 of Block 7, Town of Burlingame Map No. 1 Subdivision, and Lot 17 of Block 7, Polo Field Subdivision.
- Density bonus to allow development concessions and incentives and/or waiver/modification of development standards to facilitate affordable housing (Code Section 25.63).

160 Lorton Avenue (Lot N):

- Design review for construction of a new five-level, aboveground parking garage (Code Section 25.29.045 and Chapter 5 of the Downtown Specific Plan).
- Lot merger to combine Lots 9, 14, 15, northwesterly 25 feet of Lot 7, southeasterly 25 feet of Lot 8, and westerly one-half of Lot 8 of Block 10, Town of Burlingame Map No. 1 Subdivision.

Introduction

The Village at Burlingame Project (Project) includes two sites within the Burlingame Downtown Specific Plan (Specific Plan): Parking Lot F (Lot F) and Parking Lot N (Lot N). These two lots are currently owned and operated by the City of Burlingame (City) and include 206 public parking spaces (97 spaces on Lot F and 109 spaces on Lot N). Upon Project implementation, Lot F would include a 137,460-gross-square-foot (gsf) residential building. Parking for residents would be provided partially below grade within the building, and a public park amenity would be accessible from Lorton Avenue. Lot N would include a five-story public parking garage for 388 vehicles, resulting in a net increase of approximately 182 public parking spaces compared to the existing conditions on Lot F and Lot N.

Existing Setting

The Project site is within the downtown area of the city of Burlingame and includes two separate parcels: Lot F and Lot N. Lot F is bounded by one- and two-story commercial buildings along Howard Avenue to the north, two- and three-story multi-family residential structures along Lorton Avenue to the east, three- and six-story multi-family residential structures to the south, and Park Road to the west.¹ Lot N is bounded by one- and two-story commercial buildings along Howard Avenue to the north, Highland Avenue to the east, a private surface parking lot and a two-story multi-family residential structure to the south, and Lorton Avenue to the west. Figure 1 depicts the location of the Project site.

The parking lots were created in the 1960s after demolition of existing residential units. Five residential parcels were consolidated into Lot F, while three residential parcels were consolidated into Lot N.² The City acquired these properties to create a common supply of parking for efficiency and promotion of the downtown shopping environment. Both parcels are currently city-owned and operated surface parking lots that include pavement, numbered stalls, pay kiosks, signage, cobra-style lighting fixtures, and curbs. Vegetation is limited to various small shrubs and street trees beside the adjacent sidewalks.

Lot F, at 150 Park Road, is approximately 0.84 acre and currently provides parking for 97 vehicles. The western portion of Lot F, adjacent to Park Road, includes a small windowless shed with a smokestack on the roof that was previously part of a soil vapor treatment system, which treated a commingled plume from multiple offsite sources. According to the City's Public Works Department, the treatment system was decommissioned in December 2017; a new location is now being considered. Lot F is accessible from Park Road and Lorton Avenue (entrance only). The 0.77-acre Lot N is at 160 Lorton Avenue and consists of 109 parking spaces.

Land Use and Zoning

In 2010, the City adopted the Downtown Specific Plan, which is a policy document and implementation guide for the downtown area. The Specific Plan sets forth strategies for change as well as regulatory policies to guide and govern future development within downtown. The Specific

¹ For the purposes of this analysis, true north is Project northeast, with Howard Avenue running in an east–west direction and Lorton Avenue running in a north–south direction.

² RNC Environmental, LLC. 2016. *Phase I Environmental Site Assessment: The Village at Burlingame, City Parking Lots F and N, APNs 029-224-270 and 029-231-060, Burlingame, San Mateo County, California 94010*. RNC Project Number 1605A. May 12.

Figure 1
Project Location

[this page left blank intentionally]

Plan details the proposed land uses and their distribution, proposed infrastructure improvements, development standards, and implementation measures required to achieve its goals. The Specific Plan is an amendment to the City's General Plan and consistent with the general land use provisions contained in the adopted General Plan.

Lot F is located within two different planning areas, as defined by the Specific Plan. The majority of the lot is located within Block 23A, which is within the Howard Avenue Mixed-Use District (HMu); the remaining portion is located within Block 23B, which is within the R-4 Incentive District. Lot N in its entirety is within Block 24B of the Specific Plan, in the R-4 Incentive District Planning Area. The HMu consists of a mix of uses, including retail, personal service, and office uses along Howard Avenue and multi-family residential uses between Howard Avenue and Peninsula Avenue. Ground-floor retail use is encouraged and housing is allowed on the upper levels above commercial uses. The interceding side streets in this area (Lorton Avenue, Park Road, Primrose Road, and Highland Avenue) act as connector streets. The height limit in this planning area is 55 feet; the maximum average residential unit size is 1,250 gsf. There are no requirements related to setbacks, maximum lot coverage, or landscape coverage, except that the R-3 side setback standards shall apply to any property line(s) with an existing residential use on the abutting property.

The R-4 Incentive District consists of properties on either side of Bayswater Avenue. The land uses for this high-density residential district are predominantly higher-density multi-family residential. These areas are regulated by R-4 zoning standards, consistent with R-4 properties citywide; however, to encourage high-density residential uses, buildings or structures of up to 55 feet in height are allowed by right.

Project Description

The Project would include construction of a five-story residential building on Lot F and a five-level concrete parking structure with 388 parking stalls on Lot N. Lot F would include a residential building with affordable housing units (78 workforce housing units and 54 senior apartment units). The broad intent is for the units to be rented to persons working in Burlingame and Burlingame seniors. Parking for residents would be provided partially below grade in stackable parking spaces. The ground floor would also include community space for the residents. A passive public park on Lot F would be accessible from Lorton Avenue. Lot N would include a five-story public parking garage for 388 vehicles, resulting in a net increase of approximately 182 parking spaces between both lots. Access to the garage would be from both Highland Avenue and Lorton Avenue. Figures 2 through 8 show the proposed site plan and elevations.

Site Plan

Lot F. All existing features associated with the City-owned parking lot would be removed, and a five-story residential building would be constructed. As summarized in Table 1-1, the building would include 78 workforce housing units³ and 54 senior housing units with a mix of unit types. Of the 132 units, approximately 131 would be affordable. The building would be 60 feet in height (with the additional height provided through application of a density bonus concession) and include approximately 137,460 gsf for residential units, private amenities, and support space. Of the gross

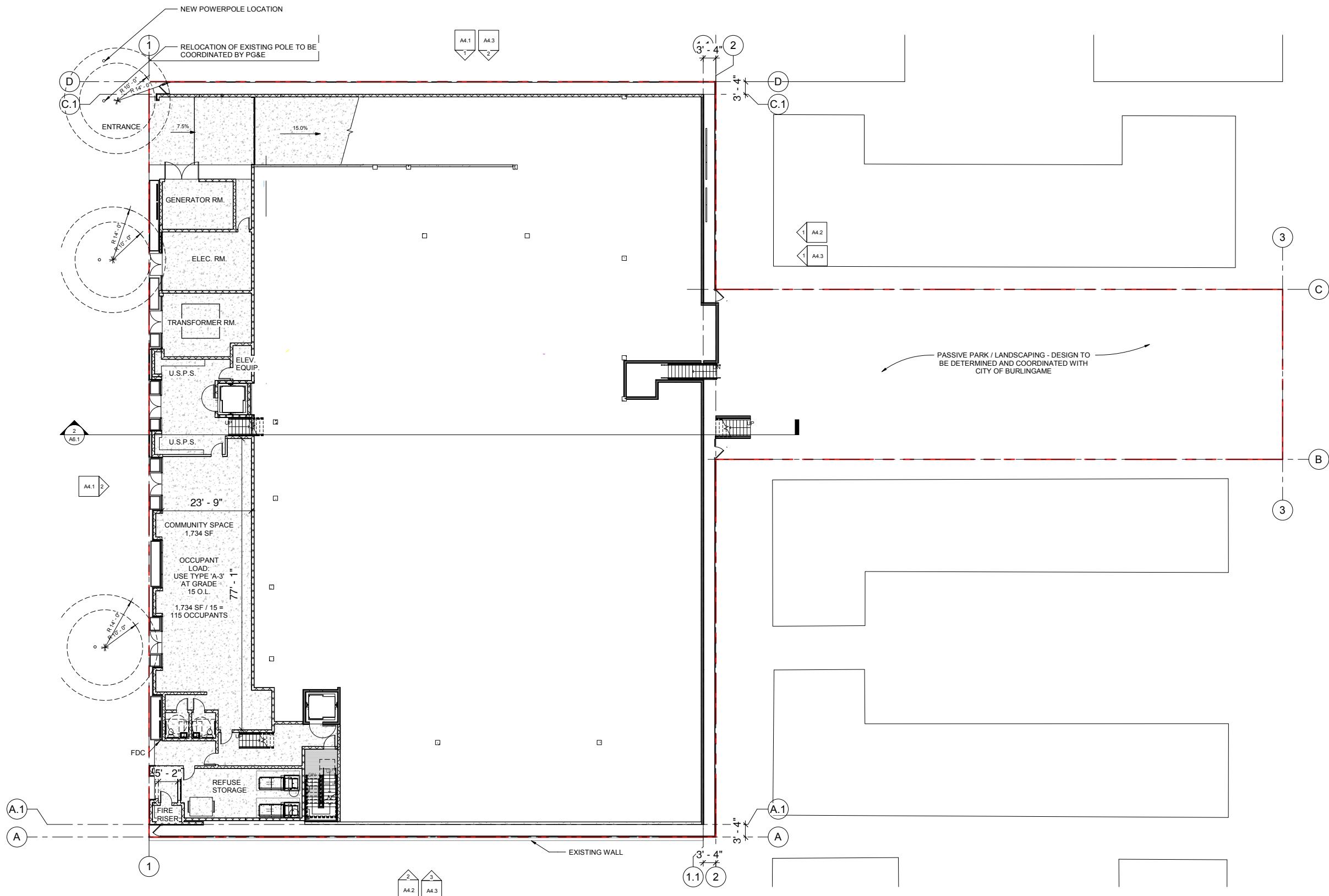
³ For the purposes of this Project, workforce housing units would be allocated to households earning between 50 and 120 percent of the area median income.

Table 1-1. Proposed Housing Unit Summary

Units			Area (gsf)			
	Senior	Workforce	Total	Senior	Workforce	Total
Studio	0 units	3 units	3 units	0 gsf	1,410 gsf	1,410 gsf
One Bedroom	49 units	53 units	102 units	28,812 gsf	30,740 gsf	59,552 gsf
Two Bedroom	5 units	22 units	27 units	3,900 gsf	16,720 gsf	20,520 gsf
Total	54 units	78 units	132 units	32,612 gsf	48,870 gsf	81,482 gsf

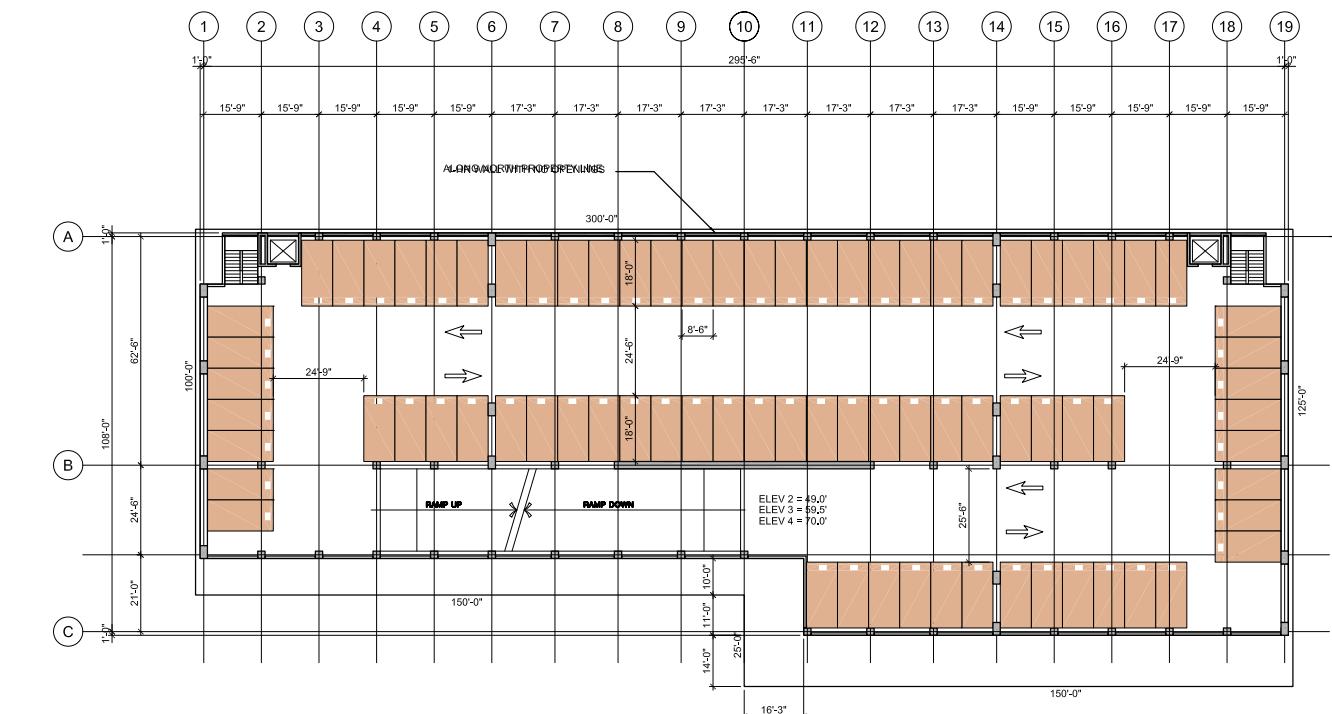
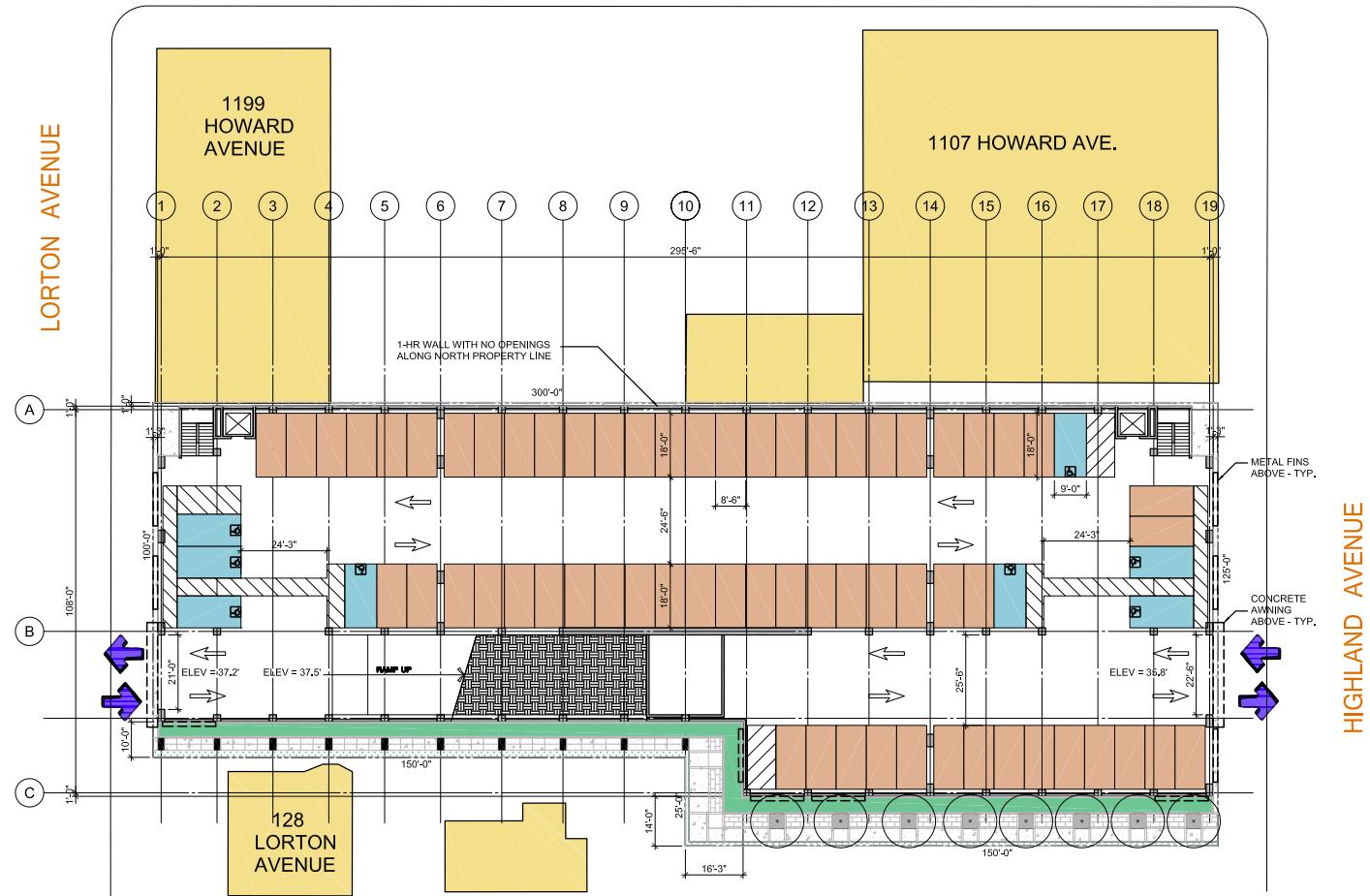
Source: Pacific West Communities, 2018

square footage, approximately 81,482 gsf would be dedicated to the residential units. The building footprint would be approximately 28,250 gsf (76.8 percent) of the site, while the proposed 6,750 gsf park amenity would encompass the rest of the site. A small courtyard would be located in the middle of the site, with pedestrian access from the ground floor and a stairwell from the parking basement and park amenity.


Onsite parking would be provided on the ground floor and in a partially below-grade basement. The parking level would be accessible from a ramp at the northwest corner of the proposed building, along Park Road. The basement would provide a total of 144 parking spaces, 137 spaces that would use a three-level stackable vehicle lift system and seven independent disabled/accessible spaces. Based on the proposed number of bedrooms per unit, a total of 146 parking spaces would be required. However, based on State of California Government Code Title 7, Division 1, Chapter 4.3, Density Bonuses and Other Incentives, if a development includes the maximum percentage of low-income or very low-income units (20 percent required; 90 percent proposed), is located within 0.5 mile of a major transit stop, and there is unobstructed access to a major transit stop from the development, then, upon request by the developer, a city cannot not impose a vehicular parking ratio that exceeds 0.5 space per bedroom. The Project meets the minimum criteria. Based on the total number of 159 bedrooms proposed by the project, a 0.5-space-per-bedroom ratio would correspond to 80 parking spaces. The 144 spaces proposed for the project significantly exceeds the off-street parking provisions of the density bonus.

The parking area would be connected to the rest of the building and the park amenity by staircases and elevators. Refuse storage, electrical rooms, and the generator would be located on the ground floor. All generators would be housed inside a Level 2 acoustic enclosure as part of the Project design.

Figure 2 includes the site plan for Lot F.



Lot N. The Project would demolish all features associated with the existing City-owned parking lot and construct a five-level cast-in-place concrete parking structure. The parking structure, which would include 388 parking stalls, would be approximately 138,950 gsf. As shown in Table 1-2, 70 to 81 stalls would be provided on each level. Per current CalGreen standards, 24 stalls (6 percent of total stalls) would have infrastructure for the future installation of electric vehicle chargers.

There would be no setbacks to the property lines parallel with Lorton Avenue, Highland Avenue, and the north side of the site. Along the south side of the site, the garage would be setback 10 feet on the eastern half of the site and 14 feet on the western half of the site. The parking garage would be accessible to vehicles from driveways on Highland Avenue, east of the building, and Lorton Avenue, west of the building. Pedestrian access would be in the northern corners of the building, along both streets, with elevators and stairwells leading to the upper levels. Figure 3 includes the site plan for Lot N.

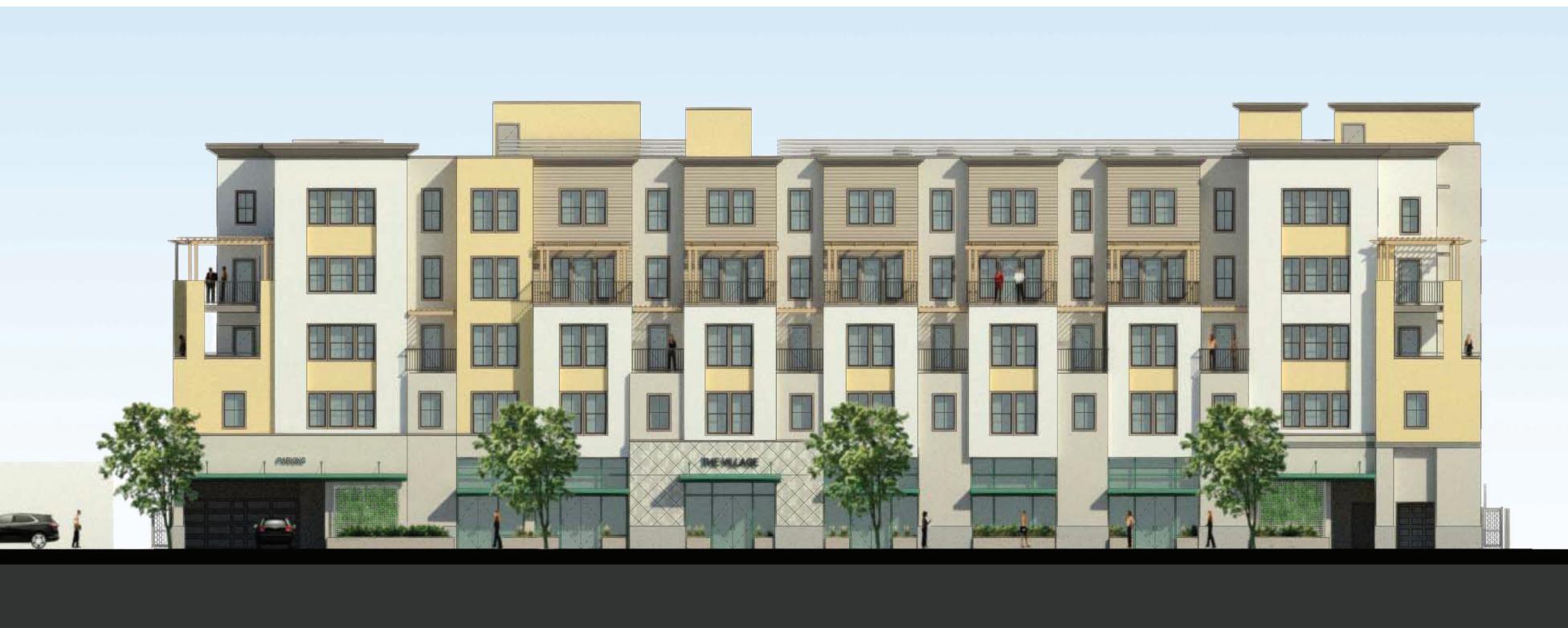


Figure 2 Lot F Site Plan

[this page left blank intentionally]

[this page left blank intentionally]

Park Road Elevation

Lorton Avenue Elevation

Graphics ... 0005218 (12/23/18) A8

Source: Pacific West Architecture, 2018

Figure 4
Lot F Park Road and Lorton Avenue Elevations

[this page left blank intentionally]

Howard Avenue Elevation

Southeast Elevation

[this page left blank intentionally]

Graphics ... 0005218 (12/4/18) AB

Source: Pacific West Architecture, 2018

Figure 6
Lot F Perspective Rendering

[this page left blank intentionally]

Lorton Avenue Elevation

Highland Avenue Elevation

Graphics ... 0005218 (12/4/18) AB

Source: Watry Design, Inc., 2018

[this page left blank intentionally]

Highland Avenue Frontage

Lorton Avenue Frontage

[this page left blank intentionally]

Table 1-2. Proposed Parking Structure Summary

Level	Area (gsf)	Standard (8'6" x 18'0")	Compact (8'0" x 17'0")	Accessible (9'0" x 18'0")	Total Parking
Ground	24,500 gsf	62 spaces	—	8	70 spaces
Level 2	28,750 gsf	79 spaces	—	—	79 spaces
Level 3	28,750 gsf	79 spaces	—	—	79 spaces
Level 4	28,750 gsf	79 spaces	—	—	79 spaces
Level 5	28,200 gsf	81 spaces	—	—	81 spaces
Total	138,950 gsf ^a	380 spaces	0 spaces	8 spaces	388 spaces

Source: Pacific West Communities, 2018

^a The total does not area does not include stairwells and storage space.

Building Design and Lighting

Lot F. The proposed residential building would front onto Lorton Avenue but, given its height of 60 feet, be visible from several adjacent streets in the vicinity. The exterior would be stucco with horizontal lap siding, wood trellises, metal fasciae, metal railings, vinyl windows, and Hardie board⁴ trim. Balconies would be provided for the majority of the units. Lighting would be affixed to the exterior of the building for safety and security. In addition to wall-mounted fixtures, bollard lighting would be installed on the pedestrian podium deck and the ground floor.

Lot N. The design of the parking garage, which would front onto Highland Avenue and Lorton Avenue, would include a natural concrete finish. The building would include metal canopies, cable rails, architectural screens, and green-screens. As measured to the top of the parapet, the proposed parking garage would be 48 feet in height; 55 feet is allowed by right in the R-4 Incentive District Subarea. The overall height to the top of the elevator enclosures would be 58 feet (rooftop enclosures, which are allowed to extend up to 10 feet above the top of the parapet, may be used only for enclosing elevators, mechanical penthouses, solar structures, antennas, or other equipment). The parking garage would use light fixtures to meet industry-standard light levels. The fixtures would incorporate cut-off shields, as required, to minimize light spillage beyond the exterior perimeter of the structure.

Landscaping

Lot F. Although there are no trees on the Project site, there is one tree adjacent to the rear of the Project site at 129 Lorton Avenue, one tree on the property line shared with 137 Lorton Avenue, and three street trees along Park Road. The Project would remove the tree on the shared property line and one of the trees in front of the Project site (two existing street trees would remain). Two street trees would be planted within the sidewalk on Park Road, with smaller shrubs and trees at the building entrances. A total of 11 small-scale trees would be planted along the sides of the building on the upper level and within the center courtyard. Landscaping within the park amenity area would be determined by and coordinated with the City of Burlingame. The majority of the Project site would be impervious surfaces; however, the building and public park amenity would include areas with self-treating pervious landscape and flow-through planters. Green-screen vine trellises would be located

⁴ Hardie board is a type of cement board siding.

on the northern exterior façade of the building. The Project would increase pervious surfaces slightly compared to existing conditions. The landscape plans for Lot F would comply with the requirements of the Model Water-Efficient Landscape Ordinance.

Lot N. Although no trees are located on the Project site, two trees are adjacent to the rear of the Project site. Five street trees along Lorton Avenue and Highland Avenue would be removed under the Project and replaced with seven new trees (three along Lorton Avenue and four along Highland Avenue). Because the parking structure would have no setbacks from the street, Project landscaping would be limited. However, it is expected that the façade of the building would include a custom pattern of wall-mounted green-screen vine support panels. The existing site consists of paved parking lots; therefore, the Project would increase pervious areas by approximately 2,000 square feet (sf). Runoff from the exposed surface at Lot N would drain directly to a flow-through planter, which would be used for treatment and flow control. Additional pervious areas would be installed to reduce runoff. Additional landscaping could include columnar-shape trees with decorative tree wells, street trees (along the sidewalks), concrete pedestrian walkways with accent and scoring patterns, ground-level planting areas, raised planters, and permeable interlocking concrete pavers. The landscape plans for Lot N would comply with the requirements of the Model Water-Efficient Landscape Ordinance.

Remediation

Contaminated groundwater is present beneath Lot F, consisting of a commingled plume from multiple offsite sources. This plume includes petroleum, volatile organic compounds (VOCs), and chlorinated solvents. VOCs are present in the soil above the contaminated groundwater plume but only in vapor form in shallower soils. VOCs dissolved in groundwater and/or adhering to soil particles appear to present only at a depth of 20 feet or more below the ground surface. Historically, depth to groundwater has varied from about 7 to 23 feet below ground surface. It is likely that VOCs were deposited in shallower soil during periods of high groundwater levels; the presence of a soil vapor treatment system onsite is presumably responsible for eliminating their continued presence in shallow soils.

Shallow soil sampling for metals, pesticides, and total petroleum hydrocarbons (TPH) indicates no adverse impact exists on the Lot N property and only a limited adverse impact on the Lot F property. Of the three soil samples collected on Lot F, one sample contained lead in excess of the residential screening level, and a second sample contained dieldrin in excess of the residential screening level. One of two groundwater samples collected from Lot N contained a low concentration of tetrachloroethylene, and elevated organic vapors were detected in the shallow soil core from the same location. This appears to be part of a groundwater plume from a known site at 1140 Howard Avenue, north of Lot N.⁵

The Project would install a sub-slab vapor barrier at Lot F and possibly a positive ventilation system in order to protect indoor air quality in the residential component. It is assumed that the vapor barrier would meet performance criteria to prevent exposure at the proposed residences. Groundwater encountered during construction would be handled and disposed of in accordance with a management plan that would be reviewed by the City and local authorities, as appropriate. The handling and disposal of any contaminated soil and groundwater would be in compliance with the regulations of the appropriate oversight agencies and the statutes governing such work.

⁵ RNC Environmental, LLC. 2017. *Phase II Environmental Site Investigation, Lots F and N, Burlingame, CA*. March 7.

Construction

The proposed construction methods are considered conceptual and subject to review and approval by the City of Burlingame. For the purposes of this environmental document, the analysis considers the construction plan described below.

Construction Schedule and Phasing

The Project would include separate construction schedules at Lot F and Lot N. The Project, as a whole, could be fully operational by 2021, pending entitlements granted by the City. Construction would occur during the hours allowed by the Burlingame Municipal Code, Section 18.07.110, specifically:

- Weekdays: 8:00 a.m.–7:00 p.m.
- Saturdays: 9:00 a.m.–6:00 p.m.
- Sunday and Holidays: No construction allowed.

Lot F would be constructed in six phases, starting in early 2019 and finishing in late 2020. The construction phases could overlap. In total, it is anticipated that construction at Lot F would have a duration of approximately 23 months, as follows:

- Demolition: 20 work days
- Site Preparation: 20 work days
- Grading: 40 work days
- Building Construction: 200 work days
- Architectural Coating: 120 work days
- Paving: 6 work days

Lot N would be constructed in four phases, starting in early 2019 and finishing in late 2019. The construction phases could overlap. In total, it is anticipated that construction at Lot N would have a duration of approximately 9 months, as follows:

- Demolition: 10 work days
- Site Preparation: 10 work days
- Grading: 30 work days
- Building Construction: 120 work days

Construction Equipment and Staging

The equipment used during Project construction would include cranes, excavators, forklifts, graders, and tractors/loaders/backhoes. This equipment would have Tier 4 engines while all other equipment would have at least Tier 2 engines. If the Project Sponsor finds that equipment with these engine tiers are not available when construction is occurring, the Project Sponsor will submit a report to the City to show that using this other equipment would result in total Project diesel particulate matter emissions over the duration of construction that are equal to or less than the emissions estimated herein. Potential construction laydown and staging areas would be located on the Project site.

The parking garage could require piles on a portion of Lot N where foundations would be in proximity to neighboring structures. However, the Project would employ drilling techniques rather than pile driving. In order to reduce potential noise impacts during construction, the Project Sponsor, as part of the Project, would develop a Construction Noise Control Plan. This plan would include measures such as:

- Using smaller equipment with lower horsepower or reducing the hourly utilization rate of equipment used on the site to reduce noise levels at 50 feet to the allowable level.
- Locating construction equipment as far as feasible from noise-sensitive uses.
- Requiring that all construction equipment powered by gasoline or diesel engines have sound control devices that are at least as effective as those originally provided by the manufacturer and that all equipment be operated and maintained to minimize noise generation.
- Prohibiting gasoline or diesel engines from having unmuffled exhaust systems.
- Not idling inactive construction equipment for prolonged periods (i.e., more than 5 minutes).
- Constructing a solid plywood barrier around the construction site and adjacent to operational businesses, residences, or other noise-sensitive land uses.
- Using temporary noise control blanket barriers.
- Monitoring the effectiveness of noise attenuation measures by taking noise measurements.
- Using “quiet” gasoline-powered compressors or electrically powered compressors and electric rather than gasoline- or diesel-powered forklifts for small lifting.

Section 2

CEQA Exemption

Article 19 of the California Environmental Quality Act (CEQA) Guidelines, Sections 15300 to 15333, identifies classes of projects that do not have a significant effect on the environment and, therefore, are exempt from review under CEQA.

Class 32 (Infill Development)

Among the classes of projects that are exempt from CEQA review are those that are specifically identified as urban infill development. CEQA Guidelines Section 15332 states that the term *infill development* (or the Class 32 exemption) is applicable to projects that meet the following conditions:

- (a) The project is consistent with the applicable general plan designation and all applicable general plan policies as well as applicable zoning designations and regulations.
- (b) The proposed development occurs within the city limits, on a project site that is no more than 5 acres and surrounded by urban uses.
- (c) The project site has no value as habitat for endangered, rare, or threatened species.
- (d) Approval of the project would not result in any significant effects related to traffic, noise, air quality, or water quality.
- (e) The site can be adequately served by all required utilities and public services.

The analysis presented in the following section provides substantial evidence that the Project qualifies for an exemption under CEQA Guidelines Section 15332, as a Class 32 urban infill development, and would not have a significant effect on the environment.

Exemptions

Even if a project is ordinarily exempt under the potential categorical exemptions, CEQA Guidelines Section 15300.2 provides specific instances where exceptions to otherwise applicable exemptions apply. Exceptions to a categorical exemption apply in the following circumstances, effectively nullifying a CEQA categorical exemption:

- (a) Location. Classes 3, 4, 5, 6, and 11 are qualified by consideration of where the project is to be located. A project that is ordinarily insignificant in its impact on the environment may, in a particularly sensitive environment, be significant. Therefore, these classes are considered to apply in all instances, except when the project may affect an environmental resource of hazardous or critical concern where designated, precisely mapped, and officially adopted pursuant to law by federal, state, or local agencies.
- (b) Cumulative Impact. All exemptions for these classes are inapplicable when the cumulative impact of successive projects of the same type and in the same place over time is significant.

- (c) Significant Effect. A categorical exemption shall not be used for an activity when there is a reasonable possibility that the activity will have a significant effect on the environment due to unusual circumstances.
- (d) Scenic Highways. A categorical exemption shall not be used for a project that may result in damage to scenic resources, including, but not limited to, trees, historic buildings, rock outcroppings, or similar resources, within a highway that has been officially designated as a state scenic highway. This does not apply to improvements that are required as mitigation by an adopted negative declaration or certified environmental impact report (EIR).
- (e) Hazardous Waste Sites. A categorical exemption shall not be used for a project located on a site that is included on any list compiled pursuant to Section 65962.5 of the Government Code.
- (f) Historical Resources. A categorical exemption shall not be used for a project that may cause a substantial adverse change in the significance of a historical resource.

The following analysis presents substantial evidence that there are no exceptions that apply to the Project or its site, that the Project would not have a significant effect on the environment, and that the Class 32 exemption remains applicable.

City of Burlingame – Standard Conditions of Approval

As stated above, the Project site is within the Burlingame Downtown Specific Plan. Therefore, the Project is subject to the Standard Conditions of Approval (SCA), which apply to all projects within the Specific Plan area. These conditions incorporate development policies and standards from several adopted plans and policies (such as the Burlingame Municipal Code, City General Plan, and other requirements of jurisdictional agencies) and substantially mitigate potential environmental impacts from projects. These conditions are included in the discussion and analysis of subsequent environmental review for all development projects within the Specific Plan area.

In reviewing project applications, the City determines which SCAs apply, depending on the specific characteristics of the project type and/or project site. Because these SCAs are mandatory City requirements, this analysis assumes that the SCAs would be imposed and implemented by the Project and not imposed as mitigation measures under CEQA. If a project is determined to have a significant environmental impact, even with implementation of these conditions, other feasible mitigation measures shall be developed.

An initial study/mitigated negative declaration (IS/MND) was prepared for the Downtown Specific Plan, which analyzed potential impacts of new infill development and included SCAs to mitigate potential environmental impacts. The SCAs for the Downtown Specific Plan have been found to mitigate environmental effects of projects proposed in the area substantially. As applicable, SCAs are adopted as requirements of individual projects when approved by the City and designed to avoid or substantially reduce a project's environmental effects.

Section 3

CEQA Exemption Checklist

Introduction

The following analysis provides substantial evidence to support a conclusion that the Project qualifies for an exemption under CEQA Guidelines Section 15332 as a Class 32 urban infill development and would not have a significant effect on the environment.

Criterion Section 15332(a): General Plan and Zoning Consistency

	Yes	No
The project is consistent with the applicable general plan designation and all applicable general plan policies as well as with applicable zoning designation and regulations.	<input checked="" type="checkbox"/>	<input type="checkbox"/>

The Specific Plan is an amendment to the City's General Plan and consistent with the general land use provisions contained in the adopted City General Plan. Downtown Burlingame is divided into a series of planning areas, which provide for different mixes and intensities. To allow for more precise distinctions, each area is further divided into blocks. The Project site is composed of a two lots (Lot F and Lot N) with two separate zoning designations, as defined by the Specific Plan: the Howard Avenue Mixed-Use District and the R-4 Incentive District. Lot F is divided into two planning areas, as defined by the Specific Plan. Block 23A, which fronts Park Road, is within the Howard Avenue Mixed-Use District, and Block 23B, which fronts Lorton Avenue, is within the R-4 Incentive District. Lot N in its entirety is within Block 24B of the Specific Plan, in the R-4 Incentive District.

Howard Avenue Mixed-Use District

The Howard Avenue Mixed-Use District consists of a mix of uses, including retail and office uses along Howard Avenue and multi-family residential uses between Howard Avenue and Peninsula Avenue. Ground-floor retail use is encouraged, and housing is allowed on the upper levels above commercial uses. The height limit in this planning area is 55 feet, with a maximum average residential unit size of 1,250 gsf. There are no requirements related to setbacks, maximum lot coverage, or landscape coverage. Parking standards for residential include one space for each studio or one-bedroom apartment and 1.5 spaces for each two-bedroom apartment; however, for group senior housing, only 25 percent of this amount is required.

The portion of Lot F that is proposed to support the residential building (Block 23A) is within the Howard Avenue Mixed-Use District, and the proposed use is consistent with the provisions in the Specific Plan. The residential building is located on Park Road between Howard Avenue and Peninsula Avenue, in an area where multi-family residential use is permitted. The building would be 60 feet tall, in a zoning district where 55 feet is the maximum height permitted (additional height provided through application of a density bonus concession). The Project would include 132 residential units with 81,482 gsf of floor space, resulting in an average unit size of 613 gsf, well below the 1,250 gsf average maximum unit size permitted. Given the number of residential units proposed and the onsite parking requirements in the general plan (including reduced requirements for senior parking), the 144 onsite parking spaces proposed would well exceed the parking requirement (the parking garage at Lot N is not included in the onsite parking total).

Design review would also be required for construction of the five-story, 132-unit affordable workforce and senior apartment development (Code Section 25.33.045 and Chapter 5 of the Downtown Specific Plan). Design review for residential buildings in the Specific Plan area includes consideration of setbacks, ground-level treatments, massing, façade treatment, roof treatment, lighting, and open space.

R-4 Incentive District

The land uses in the R-4 Incentive District are predominantly higher-density multi-family residential uses but also civic, quasi-civic, and cultural uses. The district conditionally permits corner retail stores. The R-4 Incentive District is regulated by R-4 zoning standards, consistent with R-4 properties citywide. Maximum building heights are 55 feet, and maximum lot coverage is 50 percent, with varying site setbacks. The proposed 6,750 sf park amenity on Lot F (adjacent to Lorton Avenue) and the five-level parking structure on Lot N occur in the R-4 Incentive District.

The civic, quasi-civic, and cultural uses that are permitted in the R-4 Incentive District include public buildings, public parks, and playgrounds. Per the Specific Plan, all areas of the downtown area are encouraged to have public/private partnerships to develop structured parking. The Specific Plan recognizes that, in order to accommodate some of the demand from new development, one or more parking structures may be necessary. Although the R-4 zoning standards do not specifically allow structured parking, it is understood that structure parking would be provided in the downtown area, particularly at existing surface parking lots. Because Lot N currently includes a surface parking lot, the proposed structure would adhere to the existing use as a parking area and, therefore, would be consistent with the Specific Plan and zoning.

The parking garage on Lot N would be required to adhere to design review, per Municipal Code Section 25.29.045 and the design guidelines in Chapter 5 of the Downtown Specific Plan. Per the Specific Plan guidelines, parking structures should not overwhelm the character of the surroundings or detract from the pedestrian environment. The guidelines suggest that ground-level enclosed parking should be fronted or wrapped with actively occupied spaces, such as storefronts and lobbies, and access to parking should be designed so that it is not prominent but, rather, an element that ties into the adjacent architectural style. Design review would ensure that the Project at Lot N would be consistent with the Specific Plan.

Given these facts, the Project meets the criteria of CEQA Guidelines Section 15332(a) and is consistent with the general plan and applicable zoning regulations for the site.

Criterion Section 15332(b): Project Location, Size, and Context

	Yes	No
The proposed development occurs within city limits on the project site of no more than 5 acres substantially surrounded by urban uses.	<input checked="" type="checkbox"/>	<input type="checkbox"/>

The Project is located within the incorporated limits of the city of Burlingame on two separate lots (Lot F and Lot N), totaling 1.61 acres. Both lots are entirely surrounded by properties developed with urban land uses and/or paved public streets (see Figure 1). Lot F is bounded by commercial buildings along Howard Avenue to the north, Lorton Avenue to the east, multi-family residential buildings to the south, and Park Road to the west. Lot N is bounded by commercial buildings along Howard Avenue to the north, Highland Avenue to the west, a private surface parking lot and a single-family residential unit to the south, and Lorton Avenue to the west. CEQA defines a qualified urban use as "...any

residential, commercial, public institutional, transit or transportation passenger facility, or retail use, or any combination of those uses.⁶ Given these facts, the Project adheres to the criteria of CEQA Guidelines Section 15332(b) as a site of no more than 5 acres that is substantially surrounded by urban uses.

Criterion Section 15332(c): Endangered, Rare, or Threatened Species

	Yes	No
The Project site has no value as habitat for endangered, rare, or threatened species.	<input checked="" type="checkbox"/>	<input type="checkbox"/>

As shown in Figure 1, the Project site is completely covered with paved parking lots and associated structures (pay kiosks, signage, lighting fixtures, etc.), with the exception of limited vegetation, including small shrubs and street trees. The Project site is located in the Burlingame downtown area, which has been fully developed and is not known to support habitat for any special-status species.⁷ Therefore, the existing vegetation onsite does not contribute to ecological communities that support habitat for endangered, rare, or threatened species. Given these facts, the Project adheres to the criteria of CEQA Guidelines Section 15332(c). However, the Project would remove approximately 10 trees at the site and along the adjacent streets. Therefore, the following SCAs from the Downtown Specific Plan would be applicable to the Project during the construction period, resulting in ***less-than-significant*** impacts on existing habitat.

Pre-construction Nesting Bird Survey (SCA-14). Construction under the Downtown Specific Plan shall avoid the March 15 through August 31 avian nesting period to the extent feasible. If it is not feasible to avoid the nesting period, a survey for nesting birds shall be conducted by a qualified wildlife biologist no earlier than 7 days prior to construction. The area surveyed shall include all clearing/construction areas, as well as areas within 250 ft. of the boundaries of these areas, or as otherwise determined by the biologist. In the event that an active nest is discovered, clearing/construction shall be postponed within 250 ft. of the nest, until the young have fledged (left the nest), the nest is vacated, and there is no evidence of second nesting attempts.

Protection of Street Trees and Protected Trees (SCA-15). Prior to the removal of any protected tree associated with development under the Downtown Specific Plan, an application shall be submitted to the City's Parks and Recreation Department for a tree removal permit, meeting the regulations of the City's Municipal Code, Chapter 11.06 (Urban Reforestation and Tree Protection) and Chapter 11.04 (Street Trees), including any tree replacement requirements. Included with the permit application shall be a landscaping plan that illustrates species, numbers, and sizes of replacement trees. The City's General Plan – Conservation Element, encourages the planting of "indigenous materials." While the planting of non-native, ornamental species in landscaping the Plan Area would not violate any policies, preference shall be given to planting species native to the Plan Area.

⁶ Governor's Office of Planning and Research. 2016. *California Environmental Quality Act Statutes and Guidelines*. Section 21072, p. 8.

⁷ City of Burlingame. 2010. *Burlingame Downtown Specific Plan Initial Study/Mitigated Negative Declaration*. Section G: Biological Resources, pp. 137–144.

Criterion Section 15332(d): Traffic

	Yes	No
Approval of the Project would not result in any significant effects related to traffic.	<input checked="" type="checkbox"/>	<input type="checkbox"/>

Setting

A Transportation Impact Analysis (TIA) prepared by Hexagon Transportation Consultants in May 2018 is included in this document as Appendix A. The TIA describes existing and future conditions for transportation with and without the Project. In addition, the TIA includes information on the regional and local roadway networks, pedestrian and transit conditions, and transportation facilities associated with the Project. The following traffic forecasting scenarios were considered in the analysis:

- **Existing Conditions (Scenario 1):** Existing traffic volumes at the study intersections were obtained from traffic counts in April 2016, May 2017, and February 2018.
- **Background Conditions (Scenario 2):** Background traffic volumes reflect traffic added by approved but not yet completed developments in the Project area. Background conditions are defined as conditions within the next 3 to 5 years (a horizon year of 2021–2023), just prior to completion/occupation of the Project.
- **Existing-Plus-Project Conditions (Scenario 3):** Traffic volumes with the Project were estimated by adding the additional traffic generated by the Project to existing traffic volumes.
- **Project Conditions (Scenario 4):** Background traffic volumes with the Project were estimated by adding the additional traffic generated by the Project to background traffic volumes.
- **Cumulative Conditions (Scenario 5):** Cumulative traffic volumes represent traffic growth through 2028. Cumulative traffic volumes were estimated by applying an annual growth factor of 1 percent, as well as Project-generated traffic.

For all scenarios, the TIA included an analysis of AM and PM Peak-Hour traffic conditions for 12 signalized intersections and four unsignalized intersections in the vicinity of the Project site, as follows:

1. Carolan Avenue/Broadway	9. Lorton Avenue/Howard Avenue (unsignalized)
2. Carolan Avenue/Oak Grove Avenue (unsignalized)	10. Lorton Avenue/Bayswater Avenue (unsignalized)
3. California Drive/Broadway	11. Park Road/Bayswater Avenue (unsignalized)
4. California Drive/Oak Grove Avenue	12. Park Road/Bayswater Avenue
5. California Drive/Burlingame Avenue	13. El Camino Real/Burlingame Avenue
6. California Drive/Howard Avenue	14. El Camino Real/Howard Avenue
7. California Drive/Bayswater Avenue	15. El Camino Real/Bayswater Avenue
8. California Drive/Peninsula Avenue	16. El Camino Real/Peninsula Avenue

The study also includes an analysis of site access and onsite circulation, vehicle queuing, and transit, bicycle, and pedestrian access. The discussion below summarizes the traffic conditions for all scenarios. For a more detailed analysis, including all tables and figures, please refer to Appendix A.

Trip Generation

For analysis of the Project, the TIA assumed trip generation rates for Lot F, which includes the residential building.⁸ In addition, an increase in the number of downtown patrons due to the new Lot N parking structure is expected. Trip generation estimates for the new downtown patrons were based on driveway counts conducted at existing Lots F and N. In total, the Project would generate 1,107 gross daily vehicle trips, with 83 gross trips occurring during the AM Peak Hour and 101 gross trips occurring during the PM Peak Hour. However, a transit trip reduction of 10 percent was applied to the peak-hour trip generation estimates. After applying the transit trip reduction, the Project would generate 1,045 net new daily vehicle trips, with 79 net new trips (46 inbound and 33 outbound) during the AM Peak Hour and 97 net new trips (43 inbound and 54 outbound) during the PM Peak Hour.

Intersection Levels of Service

Existing Conditions (Scenario 1). Most of the signalized study intersections currently operate at level of service (LOS) D or better during the AM and PM Peak Hours. The intersection of California Drive/Broadway operates at a substandard LOS of E during the AM Peak Hour. The unacceptable level of service at this intersection is attributed to the high traffic volumes on Broadway as well as the Caltrain railroad gate “down-times” on Broadway between California Drive and Carolan Avenue. All unsignalized study intersections currently operate at LOS A or LOS B during the AM and PM Peak Hours. All stop-controlled approaches along Carolan Avenue, Lorton Avenue, Howard Avenue, Bayswater Avenue, and Park Road also currently operate at LOS B or better during both the AM and PM Peak Hours.

Background Conditions (Scenario 2). Most of the study intersections would continue to operate at acceptable levels of service (LOS D or better) during both the AM and PM Peak Hours under background conditions. However, the intersection of California Drive/Broadway would continue to operate at an unacceptable LOS of E during the AM Peak Hour because of train interruptions. The stop-controlled approaches along Carolan Avenue, Lorton Avenue, Howard Avenue, Bayswater Avenue, and Park Road currently operate at LOS B or better during both peak hours. This indicates that, under background conditions, vehicles at the stop-controlled approaches would continue to experience minor delays.

Existing-Plus-Project Conditions (Scenario 3). Most of the study intersections would continue to operate at LOS D or better during both the AM and PM Peak Hours. The California Drive/Broadway intersection would operate at a substandard LOS of E during the AM Peak Hour. The Project would increase the delay by less than 5 seconds; therefore, the Project impact under Scenario 3 would be less than significant. All stop-controlled approaches to the unsignalized study intersections would continue to operate at LOS B or better during both peak hours. This indicates that, with the addition of Project traffic under existing conditions, vehicles at stop-controlled approaches would be expected to continue to experience minor delays.

Project Conditions (Scenario 4). With the Project, most of the study intersections would continue to operate at LOS D or better during both the AM and PM Peak Hours. The California Drive/Broadway intersection would continue to operate at an unacceptable LOS of E during the AM Peak Hour with the addition of the Project traffic. However, the addition of Project traffic would not create a significant impact

⁸ Standard trip generation rates typically come from an Institute of Transportation Engineers (ITE) publication titled *Trip Generation Manual* (10th edition [2017]). Project trip generation was estimated by applying the appropriate trip generation rates obtained from the *Trip Generation Manual* to the size and uses of the development. The average trip generation rates for “Multi-Family Housing Mid-Rise” (Land Use 221) and “Senior Adult Housing” (Land Use 252) were applied to the Project.

at this intersection because the increase in the weighted average delay per vehicle would be less than the standard threshold of 5 seconds. All stop-controlled approaches to the unsignalized study intersections would continue to operate at LOS B or better during both peak hours. Therefore, vehicles at the stop-controlled approaches would continue to experience only minor delays, similar to existing conditions.

Cumulative Conditions (Scenario 5). Most of the study intersections would operate at an acceptable LOS of D or better during both the AM and PM Peak Hours. The California Drive/Broadway intersection would operate at an unacceptable LOS of E during the AM Peak Hour. However, the addition of Project traffic would not create a significant impact at this intersection because the weighted average delay per vehicle would not be expected to increase by 5 seconds or more. All stop-controlled approaches of the unsignalized study intersections would operate at LOS C or better during both peak hours. Therefore, even with the addition of Project traffic and general future traffic growth in the area under cumulative conditions, vehicles at stop-controlled approaches would be expected to experience only moderate delays.

Overall LOS with Project. As explained above, the Project, under all conditions, would not degrade existing levels of service at signalized and unsignalized intersections to unacceptable levels. Therefore, with implementation of the Project, level-of-service impacts on intersections would be ***less than significant***.

Roadway Segments

Congestion Management Program (CMP) roadway segments in the Project vicinity include only the segment of El Camino Real between Trousdale Drive and Third Avenue in the city of San Mateo. The Project would add 14 trips to El Camino Real during the AM Peak Hour and 17 trips during the PM Peak Hour. The additional number of trips generated by the Project is expected to be considerably less than the 100-trip threshold for all CMP roadway segments in San Mateo County. Therefore, the Project would result in a less-than-significant impact on El Camino Real between Trousdale Drive and Third Avenue and would not be required to provide Travel Demand Management (TDM) measures, in accordance with the City/County Association of Governments (C/CAG) CMP checklist. The Project would result in ***less-than-significant*** impacts on roadway segments.

Access and Circulation

Lot F. Vehicular access to the Project site would be provided from a single full-access driveway on Park Road. The Project driveway would be 18 feet wide and provide access to the residential parking garage. The Project driveway is required to provide adequate access and storage space for vehicles entering the parking garage to avoid backups onto the sidewalks and streets. The full-access driveway on Park Road would provide enough stacking space for approximately one inbound vehicle. Given the low number of peak-hour trips generated by the proposed residential development, stacking space for one inbound vehicle would be adequate under most circumstances.

There are no existing trees or visual obstructions along the Project frontage that could obscure the sight distance at the Project driveway. Project access points are required to be free and clear of any obstructions to provide adequate sight distance, thereby ensuring that drivers can see pedestrians on the sidewalk and vehicles and bicycles traveling on Park Road when exiting. Any landscaping or signage would be located so as to ensure an unobstructed view for drivers when exiting the site. Based on the Project site plan, the Project driveway would meet California Department of Transportation (Caltrans) standards for stopping sight distance.

Lot N. Vehicular access to the new Lot N parking structure would be provided from one full-access driveway on Lorton Avenue and one full-access driveway on Highland Avenue. The Project driveways would be between approximately 21 and 23 feet wide, with both driveways providing access to all levels of the parking garage. Based on the City's minimum requirement for either two 12-foot-wide driveways or one 18-foot-wide driveway for parking areas with more than 30 vehicle spaces, the new parking structure would comply with the City's zoning code requirement for two-way driveways.

There are no existing trees or visual obstructions along the frontages on Highland Avenue and Lorton Avenue that could obscure sight distance at the parking structure driveways. Parking garage access points are required to be free and clear of any obstructions to provide adequate sight distance, thereby ensuring that drivers can see pedestrians on the sidewalk and vehicles and bicycles traveling on Lorton Avenue and Highland Avenue when exiting. Any landscaping or signage would be located so as to ensure an unobstructed view for drivers when exiting the garage. Adequate sight distance (i.e., sight distance triangles) should be provided at parking structure driveways, in accordance with Caltrans standards. Therefore, impacts related to access and circulation at the Project site would be ***less than significant***.

Bicycle and Pedestrian Facilities

Bicycle facilities are available in the immediate vicinity of the Project site for connections to the Burlingame Caltrain station. Bicyclists north of the Burlingame station could take California Drive and Highland Avenue to Howard Avenue, while cyclists traveling to the site from the Burlingame Caltrain station could use Burlingame Avenue as a route to Park Road. Although Burlingame Avenue is not a designated bike route, because of its low speed limit and traffic volumes, it is conducive to bicycle travel. The Project would not remove any bicycle facilities, nor would it conflict with any adopted plans or policies for new bicycle facilities, resulting in ***less-than-significant*** impacts.

Pedestrian facilities in the study area consist of sidewalks, crosswalks, and pedestrian signals at signalized intersections. The Project is expected to increase the number of pedestrians using the sidewalks and crosswalks. Project plans show existing sidewalks of approximately 5 feet in width along its Park Road and Lorton Avenue frontages. Although some sidewalk and crosswalk connections are missing in the study area, the overall network of sidewalks and crosswalks in the vicinity of the Project site has adequate connectivity, providing pedestrians with safe routes to transit services and points of interest. The Project would not remove any pedestrian facilities or conflict with any adopted plans or policies for new pedestrian facilities, resulting in ***less-than-significant*** impacts.

Transit

The Project study area is well served by SamTrans, Caltrain, and the Burlingame Trolley. The study area is served directly by one SamTrans express bus route (ECR) and two local bus routes (292 and 46). The Project (excluding the additional downtown parking spaces provided by the new parking structure) would generate about 39 person-trips during the AM Peak Hour and 48 person-trips during the PM Peak Hour. Given the Project site's proximity to transit services, it could be expected that a portion (up to 10 percent) of the trips by residents would be made by transit. Assuming that up to 10 percent of the total number of trips would be made by transit, the Project would result in a maximum of about four new transit riders during peak hours. Currently, three buses and a trolley serve the transit stops near the Project site during peak hours; therefore, the Project would result in an average of approximately one new transit rider per bus or trolley. It is assumed that the buses have sufficient capacity to accommodate this minor increase in ridership. The Project would not remove any transit facilities, nor would it conflict with any adopted plans or policies associated with new transit facilities, resulting in ***less-than-significant*** impacts.

Criterion Section 15332(d): Noise

	Yes	No
Approval of the Project would not result in any significant effects related to noise.	<input checked="" type="checkbox"/>	<input type="checkbox"/>

Overview of Noise and Sound

Noise is commonly defined as unwanted sound that annoys or disturbs people and potentially causes an adverse psychological or physiological effect on human health. Because noise is an environmental pollutant that can interfere with human activities, an evaluation of noise is necessary when considering the environmental impacts of a proposed project.

Sound is characterized by various parameters, including the rate of oscillation of sound waves (frequency), the speed of propagation, and the pressure level or energy content (amplitude). In particular, the sound pressure level is the most common descriptor used to characterize the loudness of an ambient (existing) sound level. Although the decibel scale, a logarithmic scale, is used to quantify sound intensity, it does not accurately describe how sound intensity is perceived by human hearing. The human ear is not equally sensitive to all frequencies in the entire spectrum; therefore, noise measurements are weighted more heavily toward frequencies to which humans are sensitive through a process referred to as A-weighting.

Human sound perception, in general, is such that a change in sound level of 1 decibel (dB) cannot typically be perceived by the human ear, a change in sound level of 3 dB is just noticeable, a change of 5 dB is clearly noticeable, and a change of 10 dB is perceived as doubling or halving the sound level. A doubling of actual sound energy is required to result in a 3 dB (i.e., barely noticeable) increase in noise; in practice, for example, this means that the volume of traffic on a roadway would typically need to double to result in a noticeable increase in noise.⁹

The decibel level of a sound decreases (or attenuates) exponentially as the distance from the source of that sound increases. For a point source, such as a stationary compressor or construction equipment, sound attenuates at a rate of 6 dB per doubling of distance. For a line source, such as free-flowing traffic on a freeway, sound attenuates at a rate of 3 dB per doubling of distance. Atmospheric conditions, including wind, temperature gradients, and humidity, can change how sound propagates over distance and affect the level of sound received at a given location. The degree to which the ground surface absorbs acoustical energy also affects sound propagation. Sound that travels over an acoustically absorptive surface, such as grass, attenuates at a greater rate than sound that travels over a hard surface, such as pavement. The increased attenuation is typically in the range of 1 to 2 dB per doubling of distance. Barriers, such as buildings and topography, which block the line of sight between a source and receiver, also increase the attenuation of sound over distance.

In urban environments, simultaneous noise from multiple sources may occur. Because sound pressure levels, in decibels, are based on a logarithmic scale, they cannot be added or subtracted in the usual arithmetical way. Adding a new noise source to an existing noise source, with both producing noise at the same level, will not double the noise level. If the difference between two noise sources is 10 A-weighted decibels (dBA) or more, the higher noise source will dominate, and the resultant noise level will be equal to the noise level of the higher noise source. In general, if the difference between two noise sources is 0 to 1 dBA, the resultant noise level will be 3 dBA higher than the higher noise source, or

⁹ California Department of Transportation. 2013a. *Technical Noise Supplement to the Traffic Noise Analysis Protocol*. September. Available: http://www.dot.ca.gov/hq/env/noise/pub/TeNS_Sept_2013A.pdf.

both sources if the sources are equal. If the difference between two noise sources is 2 to 3 dBA, the resultant noise level will be 2 dBA above the higher noise source. If the difference between two noise sources is 4 to 10 dBA, the resultant noise level will be 1 dBA higher than the higher noise source.

Community noise environments are generally perceived as quiet when the 24-hour average noise level is below 45 dBA, moderate in the 45 to 60 dBA range, and loud above 60 dBA. Very noisy urban residential areas are usually around 70 dBA, community noise equivalent level (CNEL). Along major thoroughfares, roadside noise levels are typically between 65 and 75 dBA CNEL. Incremental increases of 3 to 5 dB to the existing 1-hour equivalent sound level (L_{eq}), or to the CNEL, are common thresholds for an adverse community reaction to a noise increase. However, there is evidence that incremental thresholds in this range may not be sufficiently protective in areas where noise-sensitive uses are located and CNEL is already high (i.e., above 60 dBA). In these areas, limiting noise increases to 3 dB or less is recommended.¹⁰ Noise intrusions that cause short-term interior levels to rise above 45 dBA at night can disrupt sleep. Exposure to noise levels greater than 85 dBA for 8 hours or longer can cause permanent hearing damage.

Overview of Ground-borne Vibration

Ground-borne vibration is an oscillatory motion of the soil with respect to the equilibrium position. It can be quantified in terms of velocity or acceleration. Variations in geology and distance result in different vibration levels, including different frequencies and displacements. In all cases, vibration amplitudes decrease with increased distance.

Operation of heavy construction equipment creates seismic waves that radiate along the surface of and downward into the ground. These surface waves can be felt as ground vibration. Vibration from the operation of construction equipment can result in effects that range from annoyance for people to damage for structures. Perceptible ground-borne vibration is generally limited to areas within a few hundred feet of construction activities. As seismic waves travel outward from a vibration source, they cause rock and soil particles to oscillate. The actual distance that these particles move is usually only a few ten-thousandths to a few thousandths of an inch. The rate or velocity (in inches per second) at which these particles move is the commonly accepted descriptor of vibration amplitude, referred to as peak particle velocity, or PPV.

Vibration amplitude attenuates (or decreases) over distance. This attenuation is a complex function of how energy is imparted into the ground as well as the soil or rock conditions through which the vibration is traveling (variations in geology can result in different vibration levels). The following equation is used to estimate the vibration level at a given distance for typical soil conditions. PPV_{ref} is the reference PPV at 25 feet.

$$PPV = PPV_{ref} \times (25/Distance)^{1.5}$$

Table 3-1 summarizes typical vibration levels generated by construction equipment (excluding pile drivers [pile driving is not anticipated for Project construction]) at a reference distance of 15 feet and other distances, as determined with use of the attenuation equation above.

¹⁰ Federal Transit Administration. 2006. *Transit Noise and Vibration Impact Assessment*. FTA-VA-90-1003-06. Office of Planning and Environment. Available: http://www.fta.dot.gov/documents/FTA_Nonse_and_Vibration_Manual.pdf.

Table 3-1. Vibration Source Levels for Construction Equipment

Equipment	PPV at 25 Feet	PPV at 50 Feet	PPV at 75 Feet	PPV at 100 Feet	PPV at 175 Feet
Caisson drill	0.089	0.0315	0.0171	0.0111	0.0048
Large bulldozer	0.089	0.0315	0.0171	0.0111	0.0048
Loaded trucks	0.076	0.0269	0.0146	0.0095	0.0041
Jackhammer	0.035	0.0124	0.0067	0.0044	0.0019
Small bulldozer	0.003	0.0011	0.0006	0.0004	0.0002

Source: Federal Transit Administration. 2006. Transit Noise and Vibration Impact Assessment. FTA-VA-90-1003-06. Office of Planning and Environment. Available: https://www.transit.dot.gov/sites/fta.dot.gov/files/docs/FTA_Noise_and_Vibration_Manual.pdf. Accessed: July 10, 2018.

Tables 3-2 and 3-3 summarize the guidelines developed by the California Department of Transportation (Caltrans) for damage and annoyance potential from transient and continuous vibration associated with construction activity. Activities that are typical of continuous vibration include the use of excavation equipment, static compaction equipment, tracked vehicles, vehicles on a highway, vibratory pile drivers, pile-extraction equipment, and vibratory compaction equipment. Note that people are generally more sensitive to vibration during nighttime hours (when sleeping) than during daytime hours.

Table 3-2. Vibration Damage Potential Threshold Criteria Guidelines

Structure and Condition	Maximum PPV (in/sec)	
	Transient Sources ^a	Continuous/Frequent Intermittent Sources ^b
Extremely fragile historic buildings, ruins, ancient monuments	0.12	0.08
Fragile buildings	0.2	0.1
Historic and some old buildings	0.5	0.25
Older residential structures	0.5	0.3
New residential structures	1.0	0.5
Modern industrial/commercial buildings	2.0	0.5

Source: California Department of Transportation. 2013. Transportation and Construction Vibration Guidance Manual. September. Available: http://www.dot.ca.gov/hq/env/noise/pub/TCVGM_Sep13_FINAL.pdf. Accessed: January 7, 2016.

Notes:

- a. Transient sources create a single, isolated vibration event (e.g., blasting or drop balls).
- b. Continuous/frequent intermittent sources include impact pile drivers, pogo-stick compactors, crack-and-seat equipment, vibratory pile drivers, and vibratory compaction equipment.

Table 3-3. Vibration Annoyance Potential Criteria Guidelines

Structure and Condition	Maximum PPV (in/sec)	
	Transient Sources^a	Continuous/Frequent Intermittent Sources^b
Barely perceptible	0.04	0.01
Distinctly perceptible	0.25	0.04
Strongly perceptible	0.9	0.10
Severe	2.0	0.4

Source: California Department of Transportation. 2013. Technical Noise Supplement to the Traffic Noise Analysis Protocol. September. Available: http://www.dot.ca.gov/hq/env/noise/pub/TeNS_Sept_2013A.pdf. Accessed: October 6, 2015.

Notes:

- a. Transient sources create a single, isolated vibration event (e.g., blasting or drop balls).
- b. Continuous/frequent intermittent sources include impact pile drivers, pogo-stick compactors, crack-and-seat equipment, vibratory pile drivers, and vibratory compaction equipment.

Regulatory Setting

There are no federal noise standards that are directly applicable to the Project. With regard to state regulations, Title 24 of the California Code of Regulations, Part 2 (California Noise Insulation Standards), establishes minimum noise insulation standards to protect persons within new hotels, motels, dormitories, long-term care facilities, apartment houses, or dwellings other than single-family residences. Under this regulation, interior noise levels that are attributable to exterior noise sources cannot exceed 45 dBA, day-night level (L_{dn}), in any habitable room. When such residences are located in an environment where exterior noise is 60 dBA L_{dn} or greater, an acoustical analysis is required to ensure that interior levels do not exceed the 45 dBA L_{dn} interior standard.

With respect to local noise standards, two regulation sources are applicable to the Project: the City General Plan and the City Municipal Code. The applicable regulations from these two sources are described below.

City of Burlingame General Plan

The Noise Element of the City General Plan establishes noise and land use compatibility standards to guide development. It also provides goals and policies to reduce the harmful and annoying effects of excessive noise in the city. According to the Noise Element, public, quasi-public, and residential land uses are compatible with outdoor noise levels of up to 60 dBA CNEL and indoor noise levels of up to 45 dBA CNEL. Refer to Table 3-4, below, for the outdoor noise levels that are suitable for the various land use categories.

Table 3-4. City of Burlingame Outdoor Noise Level Planning Criteria

Land Use Categories	CNEL (dBA)
Public, Quasi-Public, and Residential: schools, hospitals, libraries, auditoriums, intensively used parks and playgrounds, public buildings, single-family homes, multi-family apartments and condominiums, mobile home parks	60

Land Use Categories	CNEL (dBA)
Passively Used Open Space: wilderness-type parks, nature or contemplation areas in public parks	45
Commercial: shopping centers, self-generative businesses, commercial districts, offices, banks, clinics, hotels and motels	65
Industrial: non-manufacturing industry, transportation, communications, utilities, manufacturing	75

Source: City of Burlingame General Plan, Noise Element, Table 4-2.

In addition, the General Plan also recommends noise standards for construction equipment operating within the city. The standards are summarized in Table 3-5.

Table 3-5. Maximum Allowable Noise Levels from Construction Equipment

Equipment	Peak Noise Level (dBA at 50 Feet)
<i>Earthmoving</i>	
Front-end loaders	75
Backhoes	75
Dozers	75
Tractors	75
Scrapers	80
Graders	75
Trucks	75
Pavers	80
<i>Material Handling</i>	
Concrete mixers	75
Concrete pumps	75
Cranes	75
Derricks	75
<i>Stationary</i>	
Pumps	75
Generators	75
Compressors	75
<i>Impact</i>	
Pile drivers	95
Jackhammers	75
Rock drills	80
Pneumatic tools	80
<i>Other</i>	
Saws	75
Vibrators	75

Source: City of Burlingame General Plan, Noise Element, Table 4.6.

The Noise Element also contains policies, recommendations, and actions to avoid or reduce noise effects resulting from development within the city. Development of the Project would be subject to applicable General Plan policies, including those listed below.

N(A): Preserve peaceful noise conditions in the city where they do exist.

N(B): Reduce annoying levels of noise for existing situations; aircraft, motor vehicle, and domestic animal noise were identified by a noise questionnaire to be the most annoying at present.

N(C): Achieve a peaceful acoustic environment in portions of the city to be developed.

City of Burlingame Municipal Code

The Building Construction Section of the City Municipal Code establishes daily hours for construction in the city. Chapter 18.07.110 states that no person shall erect, demolish, alter, or repair any building or structure other than between the hours of 8:00 a.m. and 7:00 p.m. on weekdays or 9:00 a.m. and 6:00 p.m. on Saturdays; no construction shall take place on Sundays and holidays, except under circumstances of urgent necessity in the interest of public health and safety. An exception, which must be approved in writing by a building official, shall be granted for a period of no more than 3 days for structures with a gross floor area of less than 40,000 square feet when reasonable to accomplish erection, demolition, alteration, or repair; the exception shall not exceed 20 days for structures with a gross floor area of 40,000 square feet or greater. In addition to the restriction on hours for construction, Section 10.40.039 of the Municipal Code identifies time periods when loading and unloading activities are prohibited (i.e., between 10:00 p.m. Sunday, Monday, Tuesday, Wednesday, or Thursday and 7:00 a.m. the following day; between 10:00 p.m. Friday and 8 a.m. the following Saturday; between 10:00 p.m. Saturday and 8:00 a.m. the following Sunday; and between 10:00 p.m. the day before a holiday and 8:00 a.m. on the holiday).

The Municipal Code also contains standards that limit noise from mechanical equipment, such as air-conditioners and generators, to 60 dBA during the daytime hours of 7:00 a.m. to 10:00 p.m. and 50 dBA during the nighttime hours of 10:00 p.m. to 7:00 a.m. (Section 25.58.050).

Existing Noise Levels

The primary existing source of noise in the Project area is traffic on adjacent roadways. There is also some noise from cars as they access the existing parking lots.

To determine the existing noise environment at the site, continuous noise measurements were taken at three locations in the Project area, as shown in Figure 9. The measurements were taken on February 27 and 28, 2018, for a continuous period of 24 hours at each location using Larson Davis Model 812 precision integrating sound-level meters. The measured 1-hour L_{eq} noise levels are shown in Appendix B-1.

The recorded hourly noise-level ranges at the measurement locations were as follows:

- **Location 1:** 188 feet from centerline of Park Road, at the easterly corner of Lot F.
 - Daytime: L_{eq} noise levels ranged from 49.5 to 55.2 dBA.
 - Evening: L_{eq} noise levels ranged from 51.0 to 53.6 dBA.
 - Nighttime: L_{eq} noise levels ranged from 42.8 to 53.6 dBA.
 - CNEL Noise Level: 57 dB CNEL.

- **Location 2:** 40 feet from the centerline of Park Road, at the parking lot across from the site.
 - Daytime: L_{eq} noise levels ranged from 57.2 to 60.8 dBA.
 - Evening: L_{eq} noise levels ranged from 56.2 to 58.9 dBA.
 - Nighttime: L_{eq} noise levels ranged from 48.3 to 57.4 dBA.
 - CNEL Noise Level: 62 dB CNEL.
- **Location 3:** 65 feet from the centerline of Lorton Avenue, adjacent to the residential receptor closest to Lot N.
 - Daytime: L_{eq} noise levels ranged from 51.5 to 54.9 dBA.
 - Evening: L_{eq} noise levels ranged from 50.6 to 53.1 dBA.
 - Nighttime: L_{eq} noise levels ranged from 41.8 to 52.2 dBA.
 - CNEL Noise Level: 56 dB CNEL.

Noise Effects

Roof-top Heating, Ventilation, and Air-Conditioning (HVAC) Equipment Noise. The Project would have roof-mounted HVAC units to provide heating and cooling for future residents. Two types of HVAC equipment are proposed for Project use: a 2-ton Mitsubishi unit (Mitsubishi MXZ-3C24NA) and a 3-ton Mitsubishi unit (Mitsubishi MXA-4C36NA). According to information from the manufacturer (Mitsubishi Electric Corporation 2014), the 2-ton unit would generate a noise level of up to 55 dBA at a distance of 3.3 feet, and the 3-ton unit would generate a noise level of up to 56 dBA. Conservatively assuming that an HVAC unit, some of which in portions of the building are as tall as five stories, could be installed as close as 15 feet away from an adjacent occupied unit, noise from the larger of the two units would decrease from 56 dBA to 43 dBA. Therefore, noise from the proposed HVAC equipment would be below both the 60 dBA allowable daytime noise level and the 50 dBA allowable nighttime noise level for mechanical equipment, according to the City Municipal Code. Noise impacts from rooftop HVAC equipment would be ***less than significant***.

Generator Noise. The Project may include an emergency generator for the residential portion of the development. During the once-monthly 30-minute generator test, which would occur only during daytime hours, this piece of equipment could generate noise that would be audible outside of the generator room. The generator proposed for use with implementation of the Project is a Generac SG150 150-kilowatt standby generator (Generac Power Systems 2014). This generator would be located in a generator room on the first (ground) floor of the proposed residential structure.

According to information from the manufacturer, noise from the proposed generator, when housed inside a Level 2 acoustic enclosure, which is part of the Project design, would be approximately 72 dBA at a distance of 23 feet (i.e., the approximate distance to the edge of the property). In addition to being housed in a Level 2 acoustic enclosure, the generator would be housed inside a generator room. Shielding provided by this room could reduce generator noise outside the building by approximately 15 dB. Therefore, with the Level 2 acoustic enclosure and the shielding provided by the generator room, generator noise at the property line would be approximately 57 dBA. Because this noise level would be below the allowable 60 dBA level specified in the City Municipal Code, noise impacts from generator testing would be ***less than significant***.

Figure 9
Noise Measurement Locations

[this page left blank intentionally]

Parking Structure Noise. According to the Project traffic study (Appendix A), approximately 483 vehicles would enter and exit the Project garage on a given day. Per Table 6 of the Traffic Impact Assessment, the AM peak hour traffic volume (utilizing the garage) is expected to be 44 vehicles and the PM peak hour volume is expected to be 53 vehicles.

The nearest noise-sensitive receptor is located approximately 16 feet away from the closest ramps at the parking garage. According to the Federal Transit Administration's (FTA's) *Transit Noise and Vibration Impact Assessment Manual*,¹¹ 1,000 cars in a peak activity hour would generate a noise level of 92 dBA at 50 feet. This value was converted to an hourly L_{eq} and used to calculate the L_{eq} noise level of the worst-case 53 peak-hour vehicles utilizing the garage. At a distance of 50 feet, 53 vehicles using the garage per hour would result in an hourly L_{eq} of 43.6 dBA.

Conservatively assuming that the highest peak-hour of 53 vehicles would enter or exit the parking garage every hour between the hours of 7:00 a.m. and 10:00 p.m., use of the parking garage could result in a noise level of approximately 43 dBA CNEL at a distance of 50 feet. At a distance of 16 feet, the distance to the closest receptor, the garage-generated noise level could be as high as 53 dBA CNEL. This noise level is below the City of Burlingame outdoor noise level planning criterion of 60 dBA CNEL for residential land uses. Therefore, noise impacts from the proposed parking structure usage would be ***less than significant***.

Traffic Noise. Traffic would increase in the area as a result of Project implementation. Note that traffic noise increases with increasing traffic volumes, but a 20 percent increase in average daily traffic (ADT) equates to less than a 1 dB increase in noise. As discussed above, an increase of less than 1 dB cannot typically be perceived by the human ear and is not considered to be substantial. Roadway segments that would experience less than a 20 percent increase in traffic were therefore screened out and considered to be segments that would not experience significant traffic noise impacts as a result of the Project. Refer to Appendix B-2 for the traffic noise screening table.

Only one roadway segment analyzed in the traffic study would see traffic volumes increase by more than 20 percent. Lorton Avenue between Howard Avenue and Bayswater Avenue, which runs between Lot F and Lot N, would see an increase in ADT of approximately 28 percent with implementation of the Project. Modeling was conducted to determine the sound-level increase that would occur with a 28 percent increase in traffic volumes. Existing noise levels along this segment of Lorton Avenue were modeled to be 52.9 dBA L_{dn} , and existing-plus-Project noise levels along this segment were modeled to be 53.5 dBA L_{dn} . As with the other roadways segments that were screened out, this traffic increase would also result in a less than 1 dB increase in noise. As mentioned above, a 1 dB change in sound level cannot typically be perceived by the human ear. Therefore, traffic noise impacts resulting from Project implementation would be ***less than significant***.

Construction Noise. As discussed in the *Regulatory Setting* section, the City of Burlingame has maximum allowable noise thresholds for specific pieces of construction equipment. To assess the potential for significant construction noise impacts, the Federal Highway Administration's source noise levels for construction equipment were compared to the applicable City noise thresholds for individual pieces of equipment at 50 feet. Table 3-6, below, shows the average noise levels (at 50 feet) for the equipment that is expected to be used for Project construction.

¹¹ Federal Transit Administration. 2006. *Transit Noise and Vibration Impact Assessment Manual*.

Table 3-6. Individual Construction Equipment Noise Levels and Potential Exceedances

Construction Equipment	Federal Highway Administration Source Noise Levels L_{max} at 50 feet (dBA)	Maximum Allowable Noise Levels from Construction Equipment	Delta (dB)	Utilization Factor	L_{eq} at 50 feet Adjusted for Utilization	In Excess of Threshold?
Backhoe	78	75	3	40%	74	No
Concrete Mixer Truck	79	75	4	40%	75	No
Concrete Pump Truck	81	75	6	20%	74	No
Concrete Saw	90	80 ^a	10	20%	83	Yes
Crane	81	75	6	20%	73	No
Dozer	82	75	7	40%	78	Yes
Dump/Haul Truck	76	75	1	40%	72	No
Excavator	81	75 ^b	6	40%	77	Yes
Forklift	84	75 ^b	9	40%	80	Yes
Front-end Loader	79	75	4	40%	75	No
Grader	85	75	10	40%	81	Yes
Paver	77	80	3	50%	74	No
Roller	80	80 ^c	0	20%	73	No
Tractor	84	75	9	40%	80	Yes

Source: Federal Highway Administration. 2006. *Roadway Construction Noise Model User's Guide*. Available: http://www.fhwa.dot.gov/environment/noise/construction_noise/rchnm/rchnm.pdf.

^a "Pneumatic tools" threshold of 80 dBA used for concrete saw.

^b "Dozer" and "backhoe" thresholds of 75 dBA used for excavator and forklift.

^c "Paver" threshold of 80 dBA used for roller.

L_{max} = maximum noise level

dBA = A-weighted decibels

L_{eq} = average A-weighted sound level during a 1-hour period

Utilization Factor = The percentage of time during a construction noise operation that a piece of construction equipment is operating at full power during a 1-hour period.

As shown in Table 3-6, above, without incorporation of noise reduction measures, some construction equipment would have the potential to exceed the allowable individual equipment noise standards at a distance of 50 feet. Specifically, the concrete saw, dozer, excavator, forklift, grader, and tractor could all exceed the applicable standard. However, with implementation of the Project design feature (i.e., develop a Construction Noise Control Plan, as outlined in the Project Description), all equipment would comply with the applicable thresholds. As described in the Project Description, the Construction Noise Control Plan would be developed by the Project Sponsor and include measures such as:

- Using smaller equipment with lower horsepower or reducing the hourly utilization rate of equipment used on the site to reduce noise levels at 50 feet to the allowable level.
- Locating construction equipment as far as feasible from noise-sensitive uses.
- Requiring that all construction equipment powered by gasoline or diesel engines have sound control devices that are at least as effective as those originally provided by the manufacturer and that all equipment be operated and maintained to minimize noise generation.
- Prohibiting gasoline or diesel engines from having unmuffled exhaust systems.
- Not idling inactive construction equipment for prolonged periods (i.e., more than 5 minutes).
- Constructing a solid plywood barrier around the construction site and adjacent to operational businesses, residences, or other noise-sensitive land uses.
- Using temporary noise control blanket barriers.
- Monitoring the effectiveness of noise attenuation measures by taking noise measurements.
- Using “quiet” gasoline-powered compressors or electrically powered compressors and electric rather than gasoline- or diesel-powered forklifts for small lifting.

With the Construction Noise Control Plan incorporated as part of the Project design, all equipment would comply with the applicable individual equipment thresholds, and construction noise impacts would be ***less than significant***.

Vibration Effects. Although pile driving would not be required for the Project, construction would require the use of other equipment that may generate vibration. The two pieces of equipment proposed for Project construction that would generate the greatest vibration levels are the drill (i.e., to install piles [pile driving is not proposed]) and bulldozer. As indicated in Table 3-1, these two pieces of equipment generate approximately the same vibration levels.

A large bulldozer or a caisson drill could operate at a distance of approximately 15 feet from the older residential buildings adjacent to both Lot N and Lot F. Although it is possible that the equipment could be used closer to the adjacent properties, because of the setbacks, 15 feet is a reasonable worst-case distance for the purposes of this analysis.

Using the source levels in Table 3-1 as well as the vibration attenuation equation shown in the *Overview of Ground-borne Vibration* section, vibration levels from construction equipment at a distance of 15 feet can be calculated. Vibration generated by a caisson drill or a large bulldozer at a distance of 15 feet would be 0.19 PPV inch per second.

Damage

With regard to damage caused by vibration, as shown in Table 3-2, above, the damage threshold for continuous vibration sources is 0.25 PPV inch per second for “historic and some old buildings” and 0.3 PPV inch per second for “older residential structures.” Because Project equipment would not be expected to generate vibration levels above 0.19 PPV inch per second at the adjacent buildings, vibration from Project construction equipment is expected to be below the damage threshold for both historic and older residential buildings. Vibration impacts related to damage would be ***less than significant***.

Annoyance

The estimated vibration level of the drill proposed for Project construction of 0.19 PPV inch per second at a distance of 15 feet from the nearest occupied residential structure would exceed the “strongly perceptible” annoyance level of 0.1 PPV inch per second shown in Table 3-3, above, but would be less than the “severely perceptible” annoyance level of 0.4 PPV inch per second.

The nearest residential properties to potential drilling activity are 129 Lorton Avenue and 137 Lorton Avenue, located along the northeast perimeter of the Project site. The drill would be located within 15 feet of occupied residences for a short period of time. Approximately 13 holes would be drilled just south of the portion of the Project perimeter closest to 129 Lorton Avenue, and approximately seven holes would be drilled along the northwest portion of the Project perimeter closest to 137 Lorton Avenue. It is estimated that two holes would be drilled per day, on average, resulting in approximately 4 to 5 days of drilling within 15 feet of 129 Lorton Avenue and 7 to 8 days of drilling within 15 feet of 137 Lorton Avenue.

The distance between the drilling equipment and the nearest sensitive receptors would often be much greater 15 feet, and vibration at nearby receptors would be less perceptible in these instances. For example, at a distance of 25 feet, vibration from this type of equipment would be reduced to 0.089 PPV inch per second, which is below the “strongly perceptible” level identified in Table 3-3. Furthermore, the drill would often be more than 25 feet from nearby residences, and vibration levels would be even less perceptible. In addition, vibration-generating activities would be limited to daytime hours and would not occur during nighttime hours. People are generally more sensitive to vibration during the evening and nighttime when they may be sleeping. For these reasons, the impact of construction vibration related to annoyance at adjacent buildings is considered **less than significant**.

Criterion Section 15332(d): Air Quality

	Yes	No
Approval of the Project would not result in any significant effects related to air quality.	<input checked="" type="checkbox"/>	<input type="checkbox"/>

Regulatory Setting

The Project site is in the San Francisco Bay Area Air Basin (SFBAAB), which is under the jurisdiction of the Bay Area Air Quality Management District (BAAQMD). The BAAQMD adopted thresholds of significance to assist lead agencies in the evaluation and mitigation of air quality impacts under CEQA. The BAAQMD thresholds, which are incorporated in the 2017 *CEQA Air Quality Guidelines*,¹² establish the levels at which emissions of ozone precursors (reactive organic gases [ROGs] and nitrogen oxides [NO_x]), particulate matter (PM), local carbon monoxide (CO), and toxic air contaminants (TACs) would cause significant air quality impacts. The regulation of two fractions of PM emissions is based on aerodynamic resistance diameters equal to or less than 10 microns (PM₁₀) and 2.5 microns (PM_{2.5}).

The BAAQMD adopted updated *CEQA Air Quality Guidelines*, including new thresholds of significance, in June 2010, then revised them in May 2011. The guidelines advised lead agencies regarding the evaluation of potential air quality impacts, including the establishment of quantitative and qualitative thresholds of significance. However, the 2011 BAAQMD resolutions for adopting and revising

¹² Bay Area Air Quality Management District. 2017. *California Environmental Quality Act Air Quality Guidelines*. May. Available: http://www.baaqmd.gov/~/media/files/planning-and-research/ceqa/ceqa_guidelines_may2017-pdf.pdf?la=en. Accessed: July 26, 2018.

significance thresholds were set aside by a judicial writ of mandate on March 5, 2012.¹³ In May 2012, the BAAQMD updated its *CEQA Air Quality Guidelines* to continue to provide direction on recommended analysis methodologies but without recommended quantitative significance thresholds.¹⁴ The air district published a new version of its guidelines in May 2017. The BAAQMD guidelines state that local agencies may rely on thresholds designed to reflect the impact of locating development near areas of toxic air contamination where such an analysis is required by CEQA or where the agency has determined that such an analysis would assist in making a decision about a project. However, the thresholds are not mandatory, and agencies should apply them only after determining that they reflect an appropriate measure of a project's impacts. The BAAQMD guidelines for implementation of the thresholds are for informational purposes only (i.e., to assist local agencies). The air quality analysis below uses the 2017 BAAQMD thresholds to evaluate the potential impacts of the Project.

Operational Emissions

During Project operation, emissions of ozone precursors as well as exhaust PM₁₀ and PM_{2.5} could contribute to existing violations of ambient air quality standards in the SFBAAB; these emissions would be primarily from mobile sources (i.e., vehicle trips). Other common sources of emissions include energy use (e.g., natural gas), consumer products, architectural coatings, and landscape equipment.

In the BAAQMD guidelines,¹⁵ BAAQMD provides screening-level sizes for land use projects in Table 3-1. As stated in the guidelines, "If a project meets the screening criteria in Table 3-1, a project would not result in the generation of operational-related criteria air pollutants and/or precursors that exceed the Thresholds of Significance." If a project meets these criteria, then a detailed analysis of operational criteria air pollutants (CAPs) is not required. The screening-level size for operational CAPs at mid-rise apartments¹⁶ is 494 dwelling units (DUs). Because the Project would provide 132 DUs, it meets the screening criteria, and a detailed analysis is not required.

Table 3-1 of the BAAQMD guidelines does not include a screening-level size for parking structures. Parking structures emit CAPs only from area sources, including architectural coatings, consumer products, landscaping, and vehicle trips. The parking structure would be much smaller in square footage than the proposed residential building. As discussed in Section 15332(d), *Traffic*, 50 percent of the net new parking spaces would generate new trips outside of the existing parking demand. However, the parking structure would generate fewer trips than the proposed residential building. Thus, the parking structure would be expected to have much lower emissions than the proposed residential building, and it is assumed that analysis of operational CAP emissions from the parking structure is not required.

¹³ The thresholds BAAQMD adopted were called into question by a minute order issued January 9, 2012, in *California Building Industry Association v. Bay Area Air Quality Management District*, Alameda Superior Court Case No. RGI0548693. The minute order states that "The Court finds [BAAQMD's adoption of thresholds] is a CEQA Project, the court makes no further findings or rulings." The claims made in the case concerned the CEQA impacts of adopting the thresholds, particularly, how the thresholds would affect land use development patterns. Petitioners argued that the thresholds for health risk assessments encompassed issues not addressed by CEQA.

¹⁴ Bay Area Air Quality Management District. 2012. *California Environmental Quality Act Air Quality Guidelines*. May. Available: www.baaqmd.gov/~/media/Files/Planning%20and%20Research/CEQA/BAAQMD%20CEQA%20Guidelines%20May%202011.ashx?la=en. Accessed: July 26, 2018.

¹⁵ Bay Area Air Quality Management District. 2017. *California Environmental Quality Act Air Quality Guidelines*. May.

¹⁶ According to the CalEEMod User's Guide, "Mid-rise apartments are units located in rental buildings that have between three and 10 levels." The Project would be five levels; therefore, it would be considered a mid-rise apartment.

The Project, which includes both the proposed residential building and parking structure, meets the screening criteria and would not result in the generation of operational CAPs and/or precursors that would exceed the thresholds of significance. The Project would have a ***less-than-significant*** impact on air quality during operation.

Construction Emissions

During construction, emissions of fugitive dust (PM₁₀ and PM_{2.5}) from earthmoving and ROG, NO_x, PM₁₀, and PM_{2.5} from the exhaust of off-road construction equipment and on-road vehicles could contribute to existing violations of ambient air quality standards in the SFBAAB. The construction schedule is shown in Appendix C.

Similar to operational CAP emissions, the BAAQMD provides screening-level guidance for construction exhaust emissions. The screening-level size for construction criteria pollutants at mid-rise apartments is 240 DUs. The Project would result in 132 DUs; therefore, it meets the screening criteria.

There are no published screening-level sizes for parking structures. However, as shown in Appendix C, the intensity of construction for the parking structure would be much less than that for the proposed residential building. Furthermore, the proposed residential building meets the screening criteria. Construction emissions associated with the parking structure are expected to be much lower than those of the residential building. Therefore, the Project, which includes both the proposed residential building and parking structure, would meet the screening criteria and would not result in the generation of construction-related CAPs that would exceed the thresholds of significance. The Project would have a ***less-than-significant*** impact on air quality during construction.

The BAAQMD does not have any quantitative threshold values for fugitive dust (PM_{2.5} and PM₁₀) emissions from earthmoving; however, the BAAQMD considers implementation of best management practices for fugitive dust during construction adequate for reducing related air quality impacts to a less-than-significant level. The best management practices from the BAAQMD are copied below.

Compliance with the BAAQMD best management practices, which are also included as SCA-3 in the Downtown Specific Plan, would ensure that the Project's impact related to emissions of fugitive dust during construction would be reduced to a ***less-than-significant*** level.

Implement Feasible Control Measures for Construction Emissions of Criteria Pollutants (SCA-3).

Ongoing during Construction. The Project Sponsor shall ensure implementation of the following mitigation measures during Project construction, in accordance with BAAQMD standard mitigation requirements:

- All exposed surfaces (e.g., parking areas, staging areas, soil piles, graded areas, and unpaved access roads) shall be watered two times per day.
- All haul trucks transporting soil, sand, or other loose material offsite shall be covered.
- All visible mud or dirt track-out onto adjacent public roads shall be removed using wet power vacuum street sweepers at least once per day. The use of dry power sweeping shall be prohibited.
- All vehicle speeds on unpaved roads shall be limited to 15 mph.

- All roadways, driveways, and sidewalks to be paved shall be completed as soon as possible. Building pads shall be laid as soon as possible after grading, unless seeding or soil binders are used.
- Idling times shall be minimized, either by shutting equipment off when not in use or reducing the maximum idling time to 5 minutes (as required by the California Airborne Toxics Control Measure, Title 13, Section 2485 of California Code of Regulations [CCR]). Clear signage shall be provided for construction workers at all access points.
- All construction equipment shall be maintained and properly tuned in accordance with manufacturer's specifications. All equipment shall be checked by a certified mechanic and determined to be running in proper condition prior to operation.
- A publicly visible sign with the name and telephone number of the person to contact at the lead agency regarding dust complaints shall be posted. This person shall respond and take corrective action within 48 hours. The BAAQMD's phone number shall also be visible to ensure compliance with applicable regulations.

Generation of Toxic Air Contaminants

The Project could contribute to the exposure of sensitive populations to substantial pollutant concentrations from the generation of TACs during Project construction and operation. Construction of the Project would emit TACs in the form of diesel particulate matter (DPM) from heavy-duty vehicles and construction equipment. Operation of the Project would emit TACs in the form of DPM from vehicular traffic as well as maintenance and testing of the emergency generator.

The BAAQMD recommends evaluating the potential impacts of TAC emissions on sensitive receptors within 1,000 feet of a project.¹⁷ Based on the BAAQMD's thresholds, significant impacts on sensitive receptors include more than 10 cancer cases per 1 million people, an acute or chronic non-cancer Hazard Index (HI) greater than 1.0, or ambient PM_{2.5} concentrations greater than an annual average of 0.3 microgram per cubic meter ($\mu\text{g}/\text{m}^3$).

Construction Health Risk Assessment

A health risk assessment (HRA) was performed to analyze the impact of DPM and PM_{2.5} emissions from heavy-duty vehicles and construction equipment on sensitive receptors. In accordance with guidance from the BAAQMD and the Office of Environmental Health Hazard Assessment (OEHHA), an HRA was conducted to calculate the incremental increase in cancer risk, chronic HI, and PM_{2.5} concentrations and determine the impacts on sensitive receptors from onsite DPM emissions during construction. The acute HI for DPM was not calculated because an approved acute reference exposure level has not been developed by OEHHA and the California Air Resources Board (CARB); the BAAQMD does not recommend analysis of acute non-cancer health hazards from construction activity. The annual average concentration of DPM at the maximally exposed individual resident (MEIR) was used to provide a conservative assessment of potential health risks for nearby sensitive receptors. Concentrations of PM₁₀ were used as the basis for calculating health risks associated with DPM.

¹⁷ Bay Area Air Quality Management District. 2012. *California Environmental Quality Act Air Quality Guidelines*. May.

In addition to residential receptors, the following categories of sensitive receptors were identified within the “zone of influence” of the Project (up to approximately 1,000 feet):

- Children at daycare centers
- School children
- Recreational receptors at nearby parks

An evaluation of long-term health impacts (cancer risk, chronic HI, and PM_{2.5} concentrations) for children at daycare centers, schools, residences, and recreational areas is presented below. Emissions during Project construction were estimated using the Project-specific equipment list and schedule provided by the Project Sponsor, as shown in Appendix C. The analysis assumes a 2-year schedule for construction of the proposed residential building, which includes 9 months of construction for the parking structure. The details of this schedule and analysis are further outlined in Appendix C.

As discussed in Section 1, *Project Description*, cranes, excavators, forklifts, graders, and tractors/loaders/backhoes would have Tier 4 engines; all other equipment will have at least Tier 2 engines. If the Project Sponsor finds that equipment with the aforementioned engine tiers is not available when construction is occurring, the Project Sponsor will submit a report to the City to show that other equipment would result in total DPM emissions over the duration of construction that would be equal to or less than the Project’s estimated emissions. Off-road equipment and on-road vehicle emissions and methodologies are shown in Appendix C. Emissions are based on CalEEMod, version 2016.3.2, methodologies.¹⁸

Air dispersion was modeled using the U.S. Environmental Protection Agency (EPA) Air Quality Dispersion Modeling (AERMOD) system. The dispersion of PM₁₀ (DPM) and PM_{2.5} emissions was modeled using area and line sources on the Project site. The release height for each onsite area source for off-road equipment was assumed to be 16.4 feet, which represents the mid-range of the expected plume rise from frequently used construction equipment during daytime atmospheric conditions. The release height for line sources, representing on-road trucks, was 8.37 feet, based on guidance from EPA.¹⁹ Daily emissions from construction equipment were assumed to occur over a 9-hour period between 8:00 a.m. and 5:00 p.m. Monday through Friday. A grid of receptors spaced 65.6 feet apart, with receptor heights of 5.9 feet, were used to represent people at ground level in nearby residential areas. Nearby multi-story buildings were modeled using higher receptors to represent people on upper levels, assuming each floor was 10 feet high. The AERMOD input parameters included 5 years of surface meteorological data from the San Francisco International Airport station, located about 3.2 miles north of the Project site, and 5 years of vertical profile meteorological data from the Oakland Airport station. A summary of modeling assumptions is shown in Appendix C.

The cancer risk from onsite DPM emissions was assessed for children under the age of 2 at a nearby residence because the construction period would be 2 years. Children under the age of 2 are the most sensitive, according to OEHHA’s age-sensitivity factors for cancer risk. The high-end (95th-percentile) daily breathing rate estimated by OEHHA for a child under the age of 2 (i.e., 1,090 liters per kilogram per day) was assumed for the HRA, consistent with guidance from CARB and the

¹⁸ California Air Pollution Control Officers Association. 2016. *CalEEMod*. Version 2016.3.2. Available: <http://www.caleemod.com/>.

¹⁹ U.S. Environmental Protection Agency. 2012. *Haul Road Workgroup Final Report Submission*. March 2. Available: https://www3.epa.gov/scram001/reports/Haul_Road_Workgroup-Final_Report_Package-20120302.pdf.

California Air Pollution Control Officers Association.²⁰ It was assumed that child receptors would be continuously exposed to average concentrations of DPM over the entire duration of Project construction.

OEHHA recommends applying an adjustment factor to the annual average concentration determined through dispersion modeling by assuming continuous emissions (i.e., 24 hours per day, 7 days per week). Actual emissions occur less than 24 hours per day, and exposures are concurrent with emissions-generating activities occurring at the Project site. The modeling adjustment factors are discussed in Appendix C.

The impact on excess lifetime cancer risk, chronic HI, and annual average concentrations of PM_{2.5} from Project construction at the MEIR for each population are summarized and compared to the BAAQMD's thresholds in Table 3-7. All impacts are below the thresholds, and impacts would be **less than significant** with respect to construction health risks and hazards.

Table 3-7. Summary of Health Risk Assessment for DPM and PM_{2.5} Emissions during Construction

Receptor Designation	Maximum Annual Average PM _{2.5} Concentration (µg/m ³)	Excess Lifetime Cancer Risk (in a million)	Maximum Chronic HI
Offsite Resident	0.033	9.4	0.0065
Daycare	0.00021	0.16	0.000035
Recreational	0.00031	0.042	0.000048
School	0.012	1.1	0.0023
BAAQMD's Thresholds	0.3	10	1

Notes: µg/m³ = micrograms per cubic meter

Source: Ramboll 2018, Appendix C.

Operational Health Risk Assessment

An HRA was performed to analyze the impact of DPM and PM_{2.5} emissions from maintenance and testing of the emergency generator in the residential building. The Project would also release TACs through vehicular travel associated with the Project. The BAAQMD recommends analyzing traffic on roadways with more than 10,000 vehicles per day. The Project would be expected to generate 1,045 trips per day, which is considerably less than the 10,000 vehicles per day. Thus, the release of TACs from Project traffic would be minimal.

Methods similar to the construction HRA were used to analyze the health impacts of the emergency generator. AERMOD was used to estimate concentrations of DPM and PM_{2.5} at the same offsite sensitive receptors noted above. Because the Project would create new sensitive receptors, the Project impact on the additional onsite receptors was also analyzed. A point source at the generator's exhaust was modeled using stack parameters from the BAAQMD guidance.²¹

²⁰ California Air Resources Board and California Air Pollution Control Officers Association. 2015. *Risk Management Guidance for Stationary Sources of Air Toxics*. July 23. Available: <https://www.arb.ca.gov/toxics/rma/rmgssat.pdf>.

²¹ Sonoma Technology Inc. April 1, 2011—memorandum to the Bay Area Air Quality Management District, *Default Modeling Parameters for Stationary Sources*.

The cancer risk from DPM emissions associated with maintenance and testing of the emergency generator was assessed for residential exposure, consistent with guidance from OEHHA. It was assumed that a baby would begin to be exposed to generator emissions during the third trimester in utero and for 30 years after birth (i.e., the receptor would be continuously exposed to annual average concentrations of DPM for 30 years).

Similar to the construction HRA, impacts were also analyzed for children at daycare centers and recreational areas. Because of generator ordinances, an emergency generator is not allowed to be operational during school hours when the school is in proximity to the generator.²² Because of this, there would be no health risks for schools from generator operation. Furthermore, generator operation would not be concurrent with operation of the daycare center because of the restriction. Therefore, a modeling adjustment factor was not used to account for overlap between the generator and daycare operations in the operational HRA.

Excess lifetime cancer risk, chronic HI, and annual average concentrations of PM_{2.5} at the MEIR from Project operation are summarized and compared to the BAAQMD's thresholds in Table 3-8. All impacts would be below the thresholds, and the Project would have a ***less-than-significant*** impact with respect to operational health risks and hazards.

Table 3-8. Summary of Health Risk Assessment for DPM and PM_{2.5} Emissions during Operation

Receptor Designation	Maximum Annual Average PM _{2.5} Concentration (µg/m ³)	Excess Lifetime Cancer Risk (in a million)	Maximum Annual Chronic HI
Onsite Resident	0.0032	2.4	0.00065
Offsite Resident	0.0047	3.5	0.00094
Daycare	0.00035	0.12	0.000070
Recreational	0.00017	0.023	0.000034
School ^a	—	—	—
BAAQMD's Thresholds	0.3	10	1

Notes: µg/m³ = micrograms per cubic meter

^a Because of generator ordinances, an emergency generator is not allowed to be operational during school hours when the school is in proximity to the generator (17 CCR Section 93115.6(a)(1)). Because of this, there would be no health risks from generator operation at the school.

Source: Ramboll 2018, Appendix C.

Cumulative Health Risk Assessment

For this analysis, health impacts from the Project have been combined with health impacts from offsite sources to create an estimate of the cumulative impact. This combination of risks is conservative in that it assumes that the impacts from all sources are occurring in the same time frame.

The BAAQMD recommends using its online screening tools to evaluate TAC emissions from stationary and mobile sources within 1,000 feet of a project site. The screening tools provide conservative estimates of how much existing TAC sources contribute to cancer risk, HI, and/or PM_{2.5} concentrations

²² See 17 CCR Section 93115.6(a)(1).

in a community. As summarized in Table 3-9, sources of TAC emissions near the Project site include three gas dispensing facilities, three generators, and vehicles along adjacent roadways. Screening values for the gas stations and generators were determined using the BAAQMD's Stationary-Source Screening Analysis Tool. The screening values were refined for gasoline stations located more than 66 feet away using the BAAQMD's Gasoline Dispensing Facility Distance Multiplier Tool and Diesel Internal Combustion Engine Multiplier Tool. Five additional stationary sources were also included in the analysis without adjustment multipliers (see Appendix C for further information). Screening values for cancer risk and PM_{2.5} concentrations were determined using data provided by the BAAQMD, which is based on risk and PM_{2.5} in a 20- by 20-meter grid across the San Francisco Bay Area. These discrete values were then interpolated to estimate, and individual contributions at the MEIR were extracted. The cumulative increase in cancer risk, chronic HI, and PM_{2.5} concentrations at the Project's MEIR from existing TAC sources and the Project are compared to the BAAQMD's cumulative thresholds in Table 3-9. The cumulative health risks to future receptors on the Project site would be below the BAAQMD's cumulative thresholds; therefore, cumulative impacts would be ***less than significant***.

Table 3-9. Summary of Risks and Hazards from nearby TAC Sources

Source	Cancer Risk (in a million)	Chronic HI	PM _{2.5} Concentration ($\mu\text{g}/\text{m}^3$)
Project Construction	0.32	0.00021	0.001
Project Operation	3.5	0.00094	0.0047
Stationary Sources	18	0.014	0.018
Railways	5.1	—	0.010
Highways	6.3	—	0.14
Roadways	0.079	—	0.0020
Total:	33	0.01	0.18
BAAQMD Cumulative Threshold:	100	10	0.80
Exceeds?	No	No	No

Notes: $\mu\text{g}/\text{m}^3$ = micrograms per cubic meter

The cancer risk, chronic HI, and PM_{2.5} for gas stations and generators are scaled, based on the Gasoline Dispensing Facility Distance Multiplier Tool and Diesel Internal Combustion Engine Multiplier Tool, respectively, per the BAAQMD guidance.

Source: Ramboll 2018, Appendix C.

Odors

Typical odor sources are generally associated with municipal, industrial, or agricultural land uses, such as wastewater treatment plants, landfills, confined animal facilities, composting stations, food manufacturing plants, refineries, and chemical plants. The occurrence and severity of odor impacts depend on the nature, frequency, and intensity of the source; the wind speed and direction; and the sensitivity of receptors. As a residential development, the Project would not be expected to generate significant odors. Land uses surrounding the Project site include mixed residential and commercial land uses, which would also not be expected to generate significant odors. Therefore, the Project would have a ***less-than-significant*** impact related to odors.

Criterion Section 15332(d): Water Quality

	Yes	No
Approval of the Project would not result in any significant effects related to water quality.	<input checked="" type="checkbox"/>	<input type="checkbox"/>

Existing Conditions

The Project site is located within the San Mateo Creek-Frontal San Francisco Bay Estuaries watershed, which drains much of the eastern portion of San Mateo County into San Francisco Bay (Bay). The Bay is approximately 1 mile north of the Project site. Local drainage is managed by urban storm sewers. The existing sites consist of paved parking lots. Groundwater onsite occurs at a depth of 7 to 23 feet below ground surface.²³ The groundwater gradient is generally toward the north-northeast but shows significant seasonal variability. There are a large number of leaking underground storage tank sites and several other cleanup sites in the vicinity of the Project site, which have contributed to groundwater contamination at the site. Active extraction wells and a treatment system are located on the property due to groundwater contamination present beneath Lot F.²⁴ The full extent of groundwater and other contamination is further discussed in Criterion 15300.2(e): Hazardous Waste Sites.

Project Conditions

Stormwater runoff from the Project site would ultimately drain into the Bay. Currently, the Project site includes two surface parking lots. The Project would not increase the amount of impervious surfaces and, therefore, would not be expected to substantially increase the rate or amount of surface water runoff. The majority of Lot F would be impervious surfaces; however, the building and public park amenity would include areas with self-treating pervious landscape and flow-through planters. Because of these features, the Project would slightly increase pervious surfaces compared to existing conditions. In addition, on Lot N, the Project would increase pervious areas by approximately 2,000 sf. Runoff from the exposed surface at Lot N would drain directly to a flow-through planter, which would be used for treatment and flow control. Additional pervious areas would be installed to reduce runoff. Additional landscaping could include columnar-shape trees with decorative tree wells, street trees (along the sidewalks), concrete pedestrian walkways with accent and scoring patterns, ground-level planting areas, raised planters, and permeable interlocking concrete pavers.

Surface water runoff from the Project site would be regulated under the National Pollutant Discharge Elimination System (NPDES) Program, which is enforced locally by the San Francisco Bay Regional Water Quality Control Board (Regional Water Board) and the City's SCAs. Due to groundwater contamination onsite, any work on the site will need to be conducted in coordination with the San Mateo County Department of Environmental Health and the Regional Water Board. Compliance with existing stormwater control regulations and the City's SCAs would ensure that the Project would not result in any significant effects related to water quality. Therefore, the Project would be consistent with the requirement of the Class 32 exemption under CEQA Guidelines Section 153332(d) regarding Project impacts to water quality.

²³ RNC Environmental, LLC. 2017. *Phase II Environmental Site Investigation Lots F and N, Burlingame, CA*. March 7, p. 1.

²⁴ RNC Environmental, LLC. 2016. *Phase I Environmental Site Assessment: The Village at Burlingame, City Parking Lots F and N, APNs 029-224-270 and 029-231-060, Burlingame, San Mateo County, California 94010*. May 12. Prepared For Pacific West Communities, Inc.

Stormwater Runoff

Since the Project would involve construction activities that would disturb over 1 acre, the Project would be required to comply with the NPDES General Permit for Storm Water Discharges Associated with Construction and Land Disturbance Activity (Construction General Permit [CGP]). The CGP requires development and implementation of a Stormwater Pollution Prevention Plan (SWPPP) for the site. The SWPPP must list best management practices (BMPs) to reduce or eliminate pollutants associated with construction activities in stormwater runoff, including operating procedures and practice to control site runoff, measures to reduce the risk of spills or leaks from reaching the receiving waters, and procedures to address minor spills of hazardous materials.

Stormwater runoff during the operational phase of the Project would be subject to Low-Impact Design measures in Provision C.3 of the NPDES Municipal Regional Permit (MRP) under Regional Water Board Order R2-2015-0049. These measures include source control, site design, and treatment requirements to reduce the amount of stormwater runoff and improve the quality of the stormwater runoff.

Project implementation of the control measures for pollutants and stormwater runoff required under the CGP and MRP during construction and operation, respectively, are also enforced by the City under SCA-3 from the Downtown Specific Plan (as included under Criterion Section 15332(d): Air Quality). Further, water quality impacts would be minimized through implementation of BMPs and other measures specified in the CGP SWPPP and NPDES MRP. Compliance with SCA-3, as well as existing regulations, would ensure that the Project's potential impact related to water quality would ***less than significant***.

Groundwater

If construction occurs during a period of high groundwater levels, temporary dewatering may be required during construction of the below-grade parking garage at Lot F. Any groundwater pumped from the site would likely be contaminated. However, special handling and disposal of contaminated groundwater will be required and the Regional Water Board would need to be notified if dewatering would occur. In addition, the contractor may be subject to dewatering requirements in addition to what is outlined in the CGP, including discharge sampling and reporting. Because there is potential for groundwater to be contaminated with VOCs or fuel products at the Project site, the Project Sponsor would be required to comply with the Regional Water Board's VOC and Fuel General Permit (Order No. R2-2017-0048).

In addition, all residential subgrade structures would be elevated to above the seasonal high water table, in accordance with SCA-1 from the Downtown Specific Plan (below). All non-residential subgrade structures would be flood-proofed and anchored, in accordance with floodplain development requirements. Prior to receiving a building permit or other construction-related permit, final design would be approved by the Burlingame Department of Public Works. Further, no permanent groundwater dewatering is allowed in accordance with SCA-1. Due to existing soil and groundwater contamination onsite, the Project would be required to prepare and implement a Soil and Groundwater Management Plan. Compliance with SCA-1 and existing regulations would ensure that the Project's potential impact related to groundwater would be reduced to a ***less-than-significant*** level.

Prohibit Permanent Groundwater Dewatering (SCA-1). For development under the Downtown Specific Plan, if subgrade structures are proposed, the Project Sponsor shall prepare a Geotechnical Study identifying the depth to the seasonal high water table at the Project site. No permanent

groundwater dewatering would be allowed. Instead, all residential uses must be elevated to above the seasonal high water table and all areas for non-residential uses shall be flood-proofed and anchored, in accordance with floodplain development requirements, to the design depth as recommended by geotechnical engineer. Final design shall be prepared by a qualified professional engineer and approved by the Burlingame Department of Public Works prior to receiving a building permit.

Criterion Section 15332(e): Utilities and Public Services

	Yes	No
The site can be adequately served by all required utilities and public services.	<input checked="" type="checkbox"/>	<input type="checkbox"/>

The Project is situated in an urban area already served by all necessary municipal utilities (i.e., water, wastewater, stormwater, solid waste) and public services (i.e., fire, police, schools). The city currently has a population of approximately 30,294 residents, which are served by existing utilities and public service providers. The Project would include the construction of 132 units on Lot F and a new parking structure on Lot N. While the parking structure would not induce a new population, using the citywide persons per household ratio of 2.41,²⁵ the Project at Lot F could induce a population of up to 318 residents.²⁶ However, the anticipated population at the Project site would be consistent with the growth anticipated in the Burlingame General Plan Housing Element and the Burlingame Downtown Specific Plan. As discussed below, the Project would be adequately served by all required utilities and public services.

Water. The City of Burlingame purchases all of its potable water from the San Francisco Public Utilities Commission (SFPUC) regional water system. Approximately 85 percent of the water supply originates in the Hetch Hetchy watershed in Yosemite National Park, then flows down the Tuolumne River to Hetch Hetchy Reservoir. The remaining 15 percent of the water supply originates locally in the Alameda and Peninsula watershed and is stored in six different reservoirs in Alameda and San Mateo Counties.²⁷ According to the City of Burlingame 2015 Urban Water Management Plan (UWMP), the city's average water demand between 2011 and 2015 was a total of 1,458 million gallons, which is equivalent to 3.99 million gallons per day (mgd) of water, or 76 percent of the city's allotted 5.23 mgd.²⁸

According to the 2015 Urban Water Management Plan for the city of Burlingame, daily per capita water use was 113 gallons per day (gpd). The confirmed daily per capita water use target for 2020 is 135 gpd. Using 135 gpd as a conservative figure, and assuming a conservative onsite population of 318 persons, daily water demand would be approximately 42,930 gpd. As explained above, the city uses an average of 3.99 mgd of its 5.23 mgd water supply; therefore, sufficient water supplies are available to serve the Project and no expanded or new potable water facilities would be required, resulting in a **less-than-significant** impact.

²⁵ California Department of Finance. 2018. *E-5 Population and Housing Estimates for Cities, Counties, and the State, January 1, 2011–2018*. Sacramento, CA. May. Available: <http://www.dof.ca.gov/Forecasting/Demographics/Estimates/E-5/>. Accessed: August 13, 2018.

²⁶ The addition of 318 residents as a result of the Project is conservative. The citywide average is 2.41 persons per household, which includes single-family residences, multi-family residences, and mobile homes. Because the Project is a multi-family use, with mainly one-bedroom units, and would include housing for seniors, it is expected that the household size would be significantly smaller.

²⁷ Erler & Kalinowski, Inc. 2016. *2015 Urban Water Management Plan for the City of Burlingame*. Available: https://www.burlingame.org/document_center/Water/2015%20Urban%20Water%20Management%20Plan.pdf. Accessed: April 17, 2018.

²⁸ Ibid. (see Table 3-2 of the UWMP).

Wastewater. The City's Public Works Department services Burlingame's wastewater system. Wastewater flows are carried to the wastewater treatment plant (WWTP) at 1103 Airport Boulevard, which serves the entire city of Burlingame as well as approximately one-third of Hillsborough. The average dry-weather flow of wastewater treated at the WWTP has remained fairly constant, at approximately 3.0 to 3.5 mgd, which is approximately 55 to 64 percent of the facility's 5.5 mgd capacity.²⁹ As discussed above, the Project would demand approximately 42,930 gpd of water; therefore, assuming a one-to-one ratio, the Project would generate approximately 42,930 gpd of wastewater. Since the WWTP treats a fraction of its permitted wastewater capacity, sufficient wastewater treatment capacity is available and the Project would not exceed wastewater treatment requirements. Impacts would be ***less than significant***.

Stormwater. Stormwater collection within the Downtown Specific Plan area is provided by a system of storm drains that eventually feed into the Bay. Currently, the Project site includes two surface parking lots. The Project would not increase the amount of impervious surfaces and, therefore, would not be expected to substantially increase the rate or amount of surface water runoff. The majority of Lot F would be impervious surfaces; however, the building and public park amenity would include areas with self-treating pervious landscape and flow-through planters. In addition, on Lot N, the Project would increase pervious areas by approximately 2,000 sf. Runoff from the exposed surface at Lot N would drain directly to a flow-through planter, which would be used for treatment and flow control. Additional pervious areas would be installed to reduce runoff. Because the Project would reduce the amount of stormwater runoff compared to existing conditions, existing stormwater infrastructure has sufficient capacity to serve the Project and no expanded or new offsite drainage facilities would be required. Impacts related to stormwater drainage would be ***less than significant***.

Solid Waste. The city is within the service area of RethinkWaste, also known as the South Bayside Waste Management Authority. Recology San Mateo County provides recycling, composting, and garbage collection services for residents and businesses in the RethinkWaste service area. Recyclables and organic solid waste are taken by Recology trucks to the Shoreway Environmental Center in San Carlos for sorting. The Shoreway Environmental Center is owned by Rethink Waste and operated by South Bay Recycling on behalf of Rethink Waste. Solid waste and recyclables received at the Shoreway Environmental Center are processed and sent to the appropriate facility, including the Ox Mountain Landfill, which is in Half Moon Bay. The Ox Mountain Landfill had a maximum permitted capacity of 60,500,000 cubic yards and as of December 31, 2015, and a remaining capacity of 22,180,000 cubic yards. The Ox Mountain Landfill has an estimated closure date of 2034.³⁰

The construction of the Project would result in demolition waste from the existing parking lot pavement. The Project would be required to comply with the City of Burlingame Construction and Demolition Recycling Ordinance (Chapter 8.17 of the Municipal Code), which requires salvage or recycling of at least 60 percent of construction-related solid waste. Therefore, construction of the Project is not expected to have an impact on existing landfills. The Project would also generate waste during operation, particularly in the residential building. Residential uses in the city generate approximately 7.1 pounds per person per day (ppd). Therefore, with a conservative anticipated population of up to 318 residents, the Project could generate approximately 2,258 ppd (1.13 tons per day). Although trash receptacles would be provided in the parking structure on Lot N, this use is not expected to generate a significant

²⁹ Ibid. (see page 56 of 120).

³⁰ California Department of Resources Recycling and Recovery. 2018. *Facility/Site Summary Details: Corinda Los Trancos Landfill (Ox Mtn) (41-AA-0002)*. Available: <http://www.calrecycle.ca.gov/SWFacilities/Directory/41-AA-0002/Detail/>. Accessed: July 20, 2018.

amount of waste. Shoreway is permitted to receive 3,000 tons of refuse per day.³¹ Once collected and sorted at Shoreway, solid waste is transported to Ox Mountain, which is permitted to receive 3,598 tons per day.³² Solid waste generated by operation of the Project would represent approximately 0.04 percent and 0.03 percent of the permitted capacity of Shoreway and Ox Mountain, respectively. As such, Shoreway and the Ox Mountain would have sufficient capacity to serve the Project, resulting in a ***less-than-significant*** impact.

Fire Protection Services. The Central County Fire Department (CCFD) provides fire protection services within Burlingame, Millbrae, and Hillsborough. In total, the service area covers almost 15 square miles, with a residential population of approximately 61,344 individuals.³³ CCFD has 86 full-time employees, including 76 uniformed personnel.³⁴ There are six fire stations in the CCFD's jurisdiction, two of which are in Burlingame. The closest is Fire Station No. 34, at 799 California Drive, approximately 0.5-mile northwest of the Project site.

In accordance with standard city practices, the CCFD would review Project plans prior to the issuance of permits to ensure compliance with all applicable fire and building code standards. The Project would be required to comply with all applicable CCFD codes and regulations and to meet CCFD standards related to fire hydrants (e.g., fire-flow requirements, hydrant spacing) and the design of driveways and access points. Under CEQA, the need for additional equipment and/or personnel to support fire services is not considered a significant impact unless new facilities would need to be constructed, resulting in physical impacts. The increase in the number of residents at the Project site would be minor compared with the CCFD service population. Therefore, The Project would not increase the need for fire services, staffing, and/or equipment to the extent that new fire facilities would need to be constructed, resulting in a ***less-than-significant*** impact.

Police Protection Services. The Burlingame Police Department (BPD) provides emergency police services with a 5-square-mile area with approximately 30,000 residents. BPD has one police station at 1111 Trousdale Drive. BPD employs 60 employees, including 40 sworn officers,³⁵ resulting in a ratio of 1.33 officers per 1,000 residents. The Burlingame General Plan does not designate a standard ratio for police officers to residents or a standard emergency response time.

The Project site is currently served by the BPD. The addition of up to 318 residents would not significantly degrade the existing police service ratio. Under CEQA, the need for additional equipment and/or personnel to support police services is not considered a significant impact unless new facilities would need to be constructed, resulting in physical impacts. The increase in the number of residents would be minor compared with the BPD service ratio. Therefore, The Project would not increase the need for police services or staffing to the extent that new police facilities would need to be constructed, resulting in a ***less-than-significant*** impact.

³¹ RethinkWaste. 2018. *About Shoreway*. Last revised: 2018. Available: <http://www.rethinkwaste.org/shoreway-facility>. Accessed: July 20, 2018.

³² California Department of Resources Recycling and Recovery. 2018. *Facility/Site Summary Details: Corinda Los Trancos Landfill (Ox Mtn) (41-AA-0002)*. Available: <http://www.calrecycle.ca.gov/SWFacilities/Directory/41-AA-0002/Detail/>. Accessed: July 20, 2018.

³³ Central County Fire Department. 2017. *Fiscal Year 2017–2018 Adopted Budget*. Available: <http://www.ccfdonline.org/wp-content/uploads/2013/07/ADOPTEDBUDGET-Web.pdf>. Accessed: March 27, 2018.

³⁴ Yballa, Rocque. Fire marshal, Central County Fire Department. March 27, 2018—phone conversation with Diana Roberts, ICF, San Jose, CA.

³⁵ Mateucci, Mike. Captain, Burlingame Police Department. March 15, 2018—phone conversation with Diana Roberts, ICF, San Jose, CA.

Schools. The Burlingame School District (BSD) includes six elementary schools and one intermediate school,³⁶ with a total enrollment of approximately 3,350.³⁷ In addition, Burlingame High School, part of the San Mateo Union High School District (SMUHSD), is located in Burlingame.³⁸ In total, the SMUHSD serves approximately 9,000 students, and enrollment grows every year.³⁹

The Project would include 132 units, 54 of which would be dedicated to senior housing and would not generate new students. Using the most conservative student generation rate used by the BSD,^{40,41} the remaining 78 workforce housing units could result in up to 16 new students,⁴² which would not have a significant impact on either school district. In addition, non-residential development, including the Project, is subject to Senate Bill 50 school impact fees (established by the Leroy F. Greene School Facilities Act of 1998). Section 65996 of the State Government Code states that the payment of the school impact fees established by Senate Bill 50, which may be required by any state or local agency, is deemed to constitute full and complete mitigation for school impacts from development. Therefore, impacts related to schools would be ***less than significant***.

³⁶ Burlingame School District. 2018. *Burlingame School District*. Available: <https://www.bsd.k12.ca.us/>. Accessed: March 30, 2018.

³⁷ SchoolWorks, Inc. 2016. *Level 1 – Developer Fee Justification Study for Burlingame School District*. Available: <http://bsd-ca.schoolloop.com/file/1236520987086/1403330967436/5172072493375788958.pdf>. Accessed: May 7, 2018.

³⁸ Burlingame High School. 2018. *Burlingame High School*. Available: <https://www.smuhsd.org/burlingamehigh>. Accessed: March 30, 2018.

³⁹ San Mateo Union High School District. 2018. *Welcome to the San Mateo Union High School District!* Available: <https://www.smuhsd.org/domain/46>. Accessed: May 7, 2018.

⁴⁰ The student generation rate for the Burlingame School District for transitional kindergarten through sixth grade is 0.2067 student per household.

⁴¹ SchoolWorks, Inc. 2016. *Level 1 – Developer Fee Justification Study for Burlingame School District*. Available: <http://bsd-ca.schoolloop.com/file/1236520987086/1403330967436/5172072493375788958.pdf>. Accessed: May 7, 2018.

⁴² The student generation for this Project is considered conservative because 61 of the 78 proposed units would be one-bedroom and would most likely not result in new students.

This page intentionally left blank.

Section 4

Exceptions to Categorical Exemptions Checklist

In addition to investigating the applicability of CEQA Guidelines Section 15332 (Class 32), this CEQA document also assesses whether any of the exemptions to qualifying for the Class 32 categorical exemption for an Infill Project are present. The following analysis compares the criteria of CEQA Guidelines Section 15300.2 (Exceptions) to the Project.

Criterion 15300.2(a): Location

	Yes	No
Is there an exception to the Class 32 exemption for the project due to its location in a particularly sensitive environment, such that the project may impact an environmental resource of hazardous or critical concern where designated, precisely mapped, and officially adopted pursuant to law by federal, state, or local agencies?	<input type="checkbox"/>	<input checked="" type="checkbox"/>

This possible exception applies only to CEQA exemptions under Classes 3, 4, 5, 6 or 11. Since the Project qualifies as a Class 32 Urban Infill exemption, this criterion is not applicable. The Project is located within an urban developed area and is not located within a sensitive environment. However, environmental resources of hazardous or critical concern that are designated in the vicinity of the Project site are evaluated under Criterion 2(e) regarding Hazardous Materials, below.

Criterion 15300.2(b): Cumulative Impact

	Yes	No
Is there an exception to the Class 32 exemption for the project due to significant cumulative impacts of successive projects of the same type and in the same place, over time?	<input type="checkbox"/>	<input checked="" type="checkbox"/>

The effects of the Project would generally be beneficial, because the Project would help the City increase its affordable workforce and senior housing supply, as well as downtown parking. The Project would place new residents in an area well served by existing transit, thereby reducing vehicle miles travelled by residents. The Project would repurpose a parking lot in an urban neighborhood that is already served by utilities and public services, as well as transportation. Any construction effects would be temporary, confined to the Project vicinity, and reduced to a less-than-significant level by implemented Downtown Specific Plan SCAs and other applicable regulatory requirements. No successive projects of the same type in the same place are known or expected to occur over time that would result in cumulatively considerable impacts. Therefore, the exception under CEQA Guidelines Section 15300.2(b) does not apply to the Project.

Criterion 15300.2(c): Significant Effect

	Yes	No
Is there an exception to the Class 32 exemption for the project because there is a reasonable possibility that the project will have a significant effect on the environment due to unusual circumstances?	<input type="checkbox"/>	<input checked="" type="checkbox"/>

There are no known unusual circumstances applicable to the Project or its site that may result in a significant effect on the environment (see also the further discussion under Criterion 2[e] regarding Hazardous Materials, below). Therefore, the exception under CEQA Guidelines Section 15300.2(c) does not apply to the Project.

Criterion 15300.2(d): Scenic Highway

	Yes	No
Is there an exception to the Class 32 exemption for the project because project may result in damage to scenic resources including but not limited to, trees, historic buildings, rock outcroppings or similar resources, within a highway officially designated as a state scenic highway?	<input type="checkbox"/>	<input checked="" type="checkbox"/>

The Project site has no trees, historic buildings, rock outcroppings or similar visual resources within a highway officially designated as a state scenic highway. The nearest scenic highway, Interstate 280, is located approximately 2.3 miles west of the Project site, and the Project site is not visible from that freeway. Therefore, the exception under CEQA Guidelines Section 15300.2(d) does not apply to the Project.

Criterion 15300.2(e): Hazardous Waste Sites

	Yes	No
Is there an exception to the Class 32 exemption for the project because the project is located on a site which is included on any list compiled pursuant to Section 65962.5 of the Government Code?	<input type="checkbox"/>	<input checked="" type="checkbox"/>

The provisions of Government Code Section 65962.5 are commonly referred to as the "Cortese List." The provisions require the Department of Toxic Substance Control (DTSC), the State Water Resources Control Board (SWRCB), the California Department of Public Health (DPH),⁴³ and the California Department of Resources Recycling and Recovery (CalRecycle) to submit information pertaining to sites associated with solid waste disposal, hazardous waste disposal, leaking underground tank sites, and/or hazardous materials releases to the Secretary of California Environmental Protection Agency (CalEPA). As summarized in Table 4-1, the Project site is not identified on any lists compiled pursuant to Section 65962.5 of the Government Code; therefore, an exception to the Class 32 exemption under CEQA Guidelines Section 15300.2(e) does not apply to the Project.

⁴³ Formerly the California Department of Health Services.

Table 4-1. Summary of Cortese List Search Results for Lot F and Lot N, Burlingame, California

Government Code Section	Responsible Agency	List Description	Project Identified on List?
65962.5(a)(1)	DTSC	List of hazardous waste facilities where DTSC have taken or contracted for corrective action because the owner failed to comply with an order or DTSC determined that immediate corrective action was necessary to abate an imminent or substantial endangerment.	No
65962.5(a)(2)	DTSC	List of all land designated as hazardous waste property or border zone property.	No
65962.5(a)(3)	DTSC	List of probable unauthorized disposal of hazardous waste on, under or into the land which the city, county, or state agency owns or leases. As of 1 April 2016, DTSC has not maintained or submitted a list of these records to Cal/EPA, but has indicated that they plan to in the future.	No
65962.5(a)(4)	DTSC	List of sites where a hazardous substance release has been confirmed by onsite sampling and a response action is required.	No
65962.5(a)(5)	DTSC	List of sites in the Abandoned Site Assessment Program. DTSC concluded the Abandoned Site Assessment Program in the 1990s and no longer maintains or submits a list of these records to Cal/EPA.	No
65962.5(b)	DPH	List of all public drinking water wells that contain detectable levels of organic contaminants or require water quality analysis. Because all required analyses required for this list were to have been completed by 1988, DHS no longer submits a list of these records to Cal/EPA. In addition, DHS does not provide the location of public drinking water wells to the public.	No
65962.5(c)(1)	SWRCB	List of all underground storage tanks for which an unauthorized release report is filed. The SWRCB provides information about "Leaking Underground Storage Tank Cleanup Sites" in its GeoTracker database, which includes reports filed each year going back to fiscal year 1996/1997. According to SWRCB, both "active" and "closed" sites are included on the list.	No
65962.5(c)(2)	SWRCB	List of all solid waste disposal facilities from which there is a migration of hazardous waste into water.	No
65962.5(c)(3)	SWRCB	List of sites for which either a Cease and Desist Order or a Cleanup or Abatement Order was issued that concerns the discharge of wastes that are hazardous materials.	No

Government Code Section	Responsible Agency	List Description	Project Identified on List?
65962.5(d)	CalRecycle	Former list of solid waste disposal facilities from which there is a known migration of hazardous waste. Subsequent legislation (Assembly Bill 1220, Solid Waste Disposal Regulatory Reform Act of 1993) superseded this requirement, and lists compiled under Sections 65962.5(c)(2) and/or(c)(3) should capture this information.	No

Although the site has not been identified on any lists compiled pursuant to Government Code Section 65962.5, previous environmental assessments and investigations have identified residual soil and groundwater contamination on the Project site. These potential hazardous materials concerns associated with the Project site are discussed further below.

In May 2016, a Phase I Environmental Site Assessment (ESA) was prepared for the Project site in accordance with ASTM Practice E1527-13. The Phase I ESA reported that a *recognized environmental condition*⁴⁴ exists in the form of leaking underground storage tanks (LUSTs) at 1200 and 1234 Howard Avenue and 200 Park Road that have created a commingled plume of contaminants in the groundwater.⁴⁵ This Phase I ESA did not identify whether the plume extended beneath the Project site.

In March 2017, a Phase II ESA was prepared for the Project site to determine whether the contamination directly affected the site.⁴⁶ It determined that this contamination plume extends beneath Lot F. The contaminated groundwater contains petroleum, VOCs, and chlorinated solvents. In addition to contaminating the groundwater, these contaminants are present in the surrounding soil, including in vapor form in shallow soil. In addition to this recognized environmental condition, one of two groundwater samples collected from Lot N contained a low concentration of tetrachloroethylene, and a shallow soil sample collected from the same location showed elevated levels of organic vapors.⁴⁷ The source of these readings appears to be a known offsite groundwater plume from 1140 Howard Avenue, north of Lot N. However, these readings are low and the plume itself is not beneath Lot N.

Any groundwater pumped from the Project site during construction dewatering, if required, would be contaminated, and would require special handling and disposal.⁴⁸ Similarly, excavation shortly after a period of high groundwater would encounter VOC-contaminated soils, if a vapor-extraction system has

⁴⁴ A *recognized environmental condition*, according to ASTM E1527-13 standard, indicates “the presence or likely presence of any hazardous substances or petroleum products in, on, or at a property: (1) due to release to the environment; (2) under conditions indicative of a release to the environment; or (3) under conditions that pose a material threat of a future release to the environment. *de minimis* conditions are not recognized environmental conditions.”

⁴⁵ RNC Environmental, LLC. 2016. *Phase I Environmental Site Assessment: The Village at Burlingame City Parking Lots F and N, APNs 029-224-270 and 029-231-060, Burlingame, San Mateo County, California*. May 12. (RNC Project Number 1605A.) Prepared for Pacific West Communities, Inc., Eagle, ID.

⁴⁶ RNC Environmental, LLC. 2017. *Phase II Environmental Site Investigation: Lots F and N, Burlingame, CA*. March 7. (RNC Project Number 1605B.) Prepared for Pacific West Communities, Inc., Eagle, ID.

⁴⁷ RNC Environmental, LLC. 2017. *Phase II Environmental Site Investigation: Lots F and N, Burlingame, CA*. March 7. (RNC Project Number 1605B.) Prepared for Pacific West Communities, Inc., Eagle, ID.

⁴⁸ RNC Environmental, LLC. 2017. *Phase II Environmental Site Investigation: Lots F and N, Burlingame, CA*. March 7. (RNC Project Number 1605B.) Prepared for Pacific West Communities, Inc., Eagle, ID.

not yet had time to remove VOCs deposited by the high groundwater. If soil is excavated to sufficient depth that VOC-contaminated soil is exposed, BAAQMD Rule 8-40, Aeration of Contaminated Soil and Removal of Underground Storage Tanks, would apply. In addition to disposal of groundwater and soil contaminated by the groundwater plume, limited excavation and disposal of limited areas of lead- and/or pesticide-contaminated soil may be necessary. The Project would also install a sub-slab vapor barrier at Lot F, and possibly include a positive ventilation system in order to protect indoor air quality in the residential component. It is assumed that the vapor barrier would meet the performance criteria to prevent exposure to the proposed residents.

Since the Project site is not on any list pursuant to Section 65962.5 of the Government Code, the exception under CEQA Guidelines Section 15300.2(e) does not apply to the Project. Impacts would be *less than significant*.

Criterion 15300.2(f): Historical Resources

	Yes	No
Is there an exception to the Class 32 exemption for the project because the project may cause a substantial adverse change in the significance of a historical resource?	<input type="checkbox"/>	<input checked="" type="checkbox"/>

The Project site is located immediately to the southeast of Burlingame's central business district, within one half-block's distance of the Howard Avenue commercial corridor. The Project site has a surrounding setting comprised of one- to two-story commercial and residential buildings that represent a range of construction eras. The Project site encompasses two parking lots, Lot F and Lot N, and contains no buildings, structures, or objects that can be considered historical resources for the purposes of CEQA review. As a result, the Project would not cause a substantial adverse change in the significance of any historical resources located within the Project site.

However, projects may have the potential to cause a substantial adverse change in the significance of adjacent historical resources. Substantial adverse change would occur if new construction within the Project site would alter the setting of adjacent resources or if project-related construction were to create ground-borne vibrations that would damage the resource's physical characteristics that convey its historical significance. There are no properties located adjacent to the Project site that have previously been listed in, or determined to be eligible for listing in, the National Register of Historic Places (NRHP) or California Register of Historical Resources (CRHR). Furthermore, none of the adjacent properties are included in a local register of historical resources or have been identified in a qualified historical resources survey. Therefore, no property adjacent to the Project site has previously been determined to qualify as a historical resource for the purposes of CEQA review.

Four properties that lie adjacent to Lot F were constructed prior to 1968, based on information provided by the City of Burlingame, and have not previously been considered for CEQA historical resource status. The four properties are located at the following addresses: 1209 Howard Avenue, 121 Lorton Avenue, 125 Lorton Avenue, and 129 Lorton Avenue. The buildings at 121 Lorton Avenue, 125 Lorton Avenue, and 129 Lorton Avenue are three-story, multi-unit residential buildings, designed in the Mid-Century Modern architectural style and incorporating exterior walkways and balconies as well as ground-level tuck-under parking. The building at 1209 Howard Avenue is a two-story commercial building that has been substantially altered at the primary (Howard Avenue) façade. These four properties are more than 50 years old and may qualify for listing in the CRHR. No properties lying adjacent to Lot N are over 50 years old.

Although none of the four adjacent properties constructed before 1968 has previously been evaluated for eligibility for listing in the CRHR, the Project does not have the potential to cause a substantial adverse change in the significance of the adjacent properties. The construction of adjacent multi-story buildings within the Project site, which currently contains surface parking lots, would not be expected to degrade the setting of adjacent age-eligible properties to the point that their significance would be materially impaired, were they to be historical resources under CEQA. The Project would reinforce the separation of commercial uses along Howard Avenue from the residential buildings on surrounding blocks.

The Project also does not have the potential to damage any of the four adjacent age-eligible properties, were they to be found to be eligible historical resources under CEQA. Construction activities related to the Project would occur less than 15 feet from the adjacent age-eligible buildings. As described in greater detail in Section 15332(d), Noise, construction equipment is anticipated to include a bulldozer or caisson drill. At the identified distance, ground-borne vibrations created by Project-related construction activities would be expected to attenuate to the degree that the vibrations would remain below the damage thresholds for "historic and some old buildings" and "older residential structures" (the two property categories specified in the California Department of Transportation's *Transportation and Construction Vibration Guidance Manual* that could apply to the four adjacent age-eligible properties). As a result of the vibration analysis, ICF has determined that construction related to the Project is not expected to cause damage to the four adjacent age-eligible buildings, such that the Project would alter any physical characteristics of these buildings. Therefore, the Project would not cause a substantial adverse change in the historical significance of the adjacent age-eligible buildings, were they to be historical resources under CEQA.

In consideration of the analysis outlined above, the exception under CEQA Guidelines Section 15300.2(d) does not apply to the Project. Impacts would **be less than significant**.

Section 5 Conclusions

On the basis of the evidence provided above, the Project is eligible for a Class 32 categorical exemption, in accordance with Section 15332, Infill Development Projects, of the CEQA Guidelines. Based on City of Burlingame threshold criteria, no additional substantial adverse impacts beyond those discussed above are anticipated. Because the Project meets the criteria for categorically exempt infill development projects, and because it would not have a significant effect on the environment, this analysis finds that a Notice of Exemption may be prepared for the Project. No further review is needed.

This page intentionally left blank.