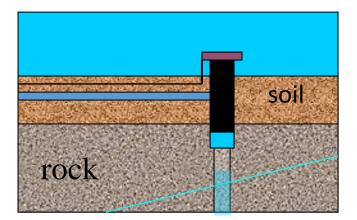
<u>Draft Proposal to Assess</u> <u>Fracture Flow Conditions in 6</u> Wells in Town of Sherman, CT

> Presented by Dr. Gary Robbins, Professor of Geology Dept. of Natural Resources and the Environment University of Connecticut Storrs, CT 06269 Gary.robbins@uconn.edu

### Background of UCONN Involvement

- Since 2016
- Helping to analyze salt and nitrate contamination as to the source of the well problems
- Provided analysis of major ion data collected by the town
- Collected water samples for novel assessments field parameters, recalctrant constituents and bacteria as source tracers)
- General notes
  - Salt contamination is become a more common contaminant in wells
  - The nature of fracture rock and bedrock wells makes it difficult to determine sources of problems from well water samples


#### Fractured Bedrock Aquifer



#### Bedrock Well







#### **Proposal Objectives**

- Determine which fractures are contaminated with Salt and or Nitrate Shallow fractures—problem local Deep fractures—problem from distance
- Determine surface source areas based on fracture properties and chemistry of fracture water
- Assess means to curtail problem

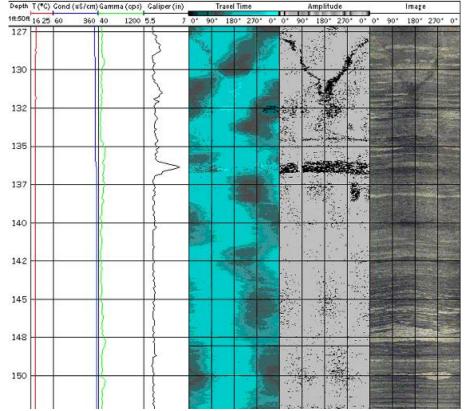
Shallow fractures—E.g. extend casing, drill deeper, cement contaminated zones, new wells make deeper with deeper casing

Deep fractures—cement borehole

#### Team

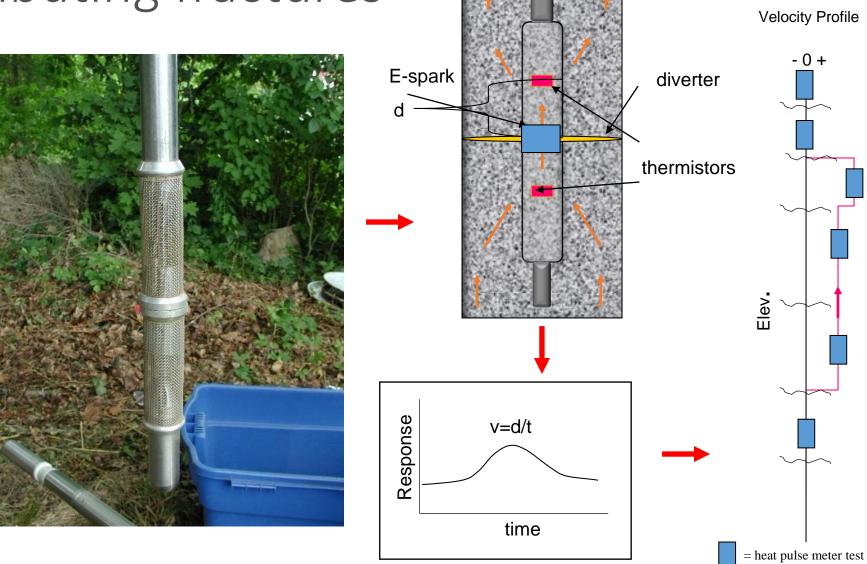
- Driller ( pull pumps and reinsert)
- Dr. Edwin A. Romanowicz, State University of New York, Plattsburg (downhole fracture identification and characterization)
- Dr. Gary Robbins (Manage project, analyze data)
- Two graduate students from UCONN (perform field work for water quality characterization)
- Dr. Meredith Metcalf, Eastern Connecticut State University (supervise downhole water quality collection and analysis)
- Undergraduates from ECSU to assist with field work.

#### Wells


| Address    | Locations           | Well Depth (ft.) | Depth to Bedrock<br>(ft.) | Depth to Water<br>(ft.) | Yield (gpm) |
|------------|---------------------|------------------|---------------------------|-------------------------|-------------|
| 15 rt 39 N | Day Care            |                  |                           |                         |             |
| 2 rt 37 E2 | School - New Well   | 405              | 10                        | 27                      | 10          |
| 2 Rt 37 E1 | School - Older Well |                  |                           |                         |             |
| 2 rt 39 n  | Fire Department     | 380              | 13                        | 16                      | 40          |
| 9 rt 39 n  | Mallory Town Hall   | 300              | 2                         | 25                      | 15          |
| 8 rt 37 c  | Senior Center       |                  |                           |                         |             |

## Pull Pump and Tubing

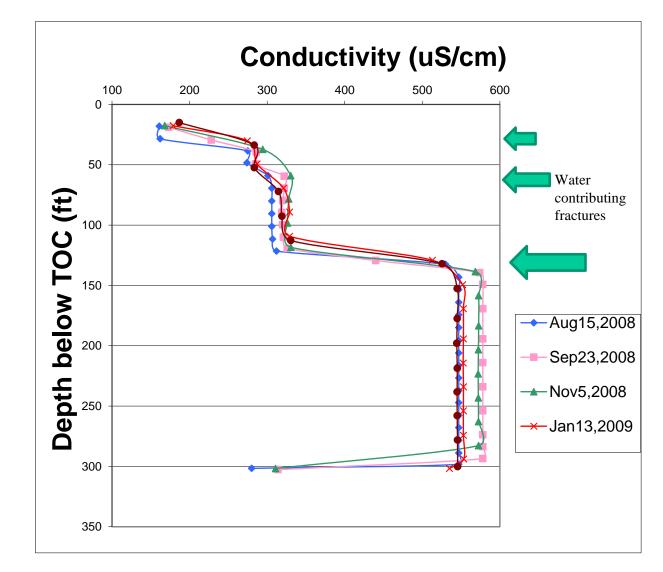



# Lower tools in well to locate fractures and determine properties

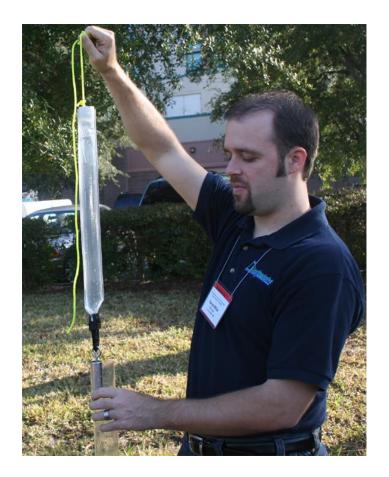




Depth Angles of tilt


## Downhole flow meter to determine water contributing fractures




#### Downhole Water Quality Profiling



#### Salinity vs. Depth



#### Hydrasleeve Water Quality Sampling





#### Characterize fracture water quality to determine nitrate and salt content

#### Pump Back in and Disinfect



#### Budget and Schedule

- Total estimated cost: **\$55,770**
- Driller—\$12,000-\$15,000 depending on the depth of the wells and how the pumps are set with pipe.
- SUNY Plattsburg for downhole geophysics and flow meter work --\$6784
- •

UCONN-\$31,620 and includes: support for Dr. Robbins and 2 graduate assistants, UCONN fringe benefits, travel, supplies and indirect costs (20%).

• ECSU: \$2,366 (hourly wages for undergrads and indirects)

#### • <u>Schedule</u>

• Field work would be conducted in early summer. We would issue a report before the end of August.

#### **Recommendations and Findings**

- Provide an assessment as to salt and nitrate sources
- Possible fixes for the 6 wells
- Define an approach useful for assessing solutions for other wells
- Recommendations on salt practices