PHASE II ENVIRONMENTAL SITE ASSESSMENT

FORMER TINLEY PARK MENTAL HEALTH CENTER TINLEY PARK, ILLINOIS

Prepared for:

Klein, Thorpe & Jenkins Limited Suite 1600 20 North Wacker Drive Chicago, Illinois, 60606

Prepared by:

Tetra Tech Inc.
1 S. Wacker Drive, 37th Floor
Chicago, IL 60606

TABLE OF CONTENTS

Section	<u>on</u>		<u>Page</u>		
1.0	INTR	ODUCTION	1		
2.0	SITE	SITE BACKGROUND INFORMATION			
3.0	INVE	INVESTIGATION ACTIVITIES			
	3.1	UTILITY LOCATING AND GROUND PENETRATING RADAR SURVEY	8		
	3.2	SAMPLING METHODOLOGY	9		
	3.3	FORMER LUST AND ACTIVE UST AREAS – POWER PLANT AND			
		MAINTENANCE BUILDING AREAS	10		
	3.4	AST AND FORMER UST/LUST AREAS – WATER TREATMENT PLANT, PINI	E		
		HALL, MAPLE HALL, WILLOW HALL, OAK HALL, AND HDC	12		
	3.5	OUTSIDE DRUM ACCUMULATION AREAS – POWER PLANT AND CEDAR			
		HALL	14		
	3.6	FILL AREA – ELEVATED SOCCER FIELDS	16		
	3.7	FILL AREAS – WEST OF POWER PLANT	16		
	3.8	LIME PIT	18		
	3.9	TRANSFORMERS	18		
	3.10	FLUORESCENT LIGHT BULB BREAKING AREA	19		
	3.11	LEAD-CONTAINING PAINT DEBRIS AREAS	20		
	3.12	GEOLOGY AND HYDROGEOLOGY	20		
4.0	SAMPLE RESULTS				
	4.1	SAMPLE RESULTS FROM FORMER LUST AND ACTIVE USTS			
		POWER PLANT AND MAINTENANCE AREAS	21		
	4.2	SAMPLE RESULTS FROM AST AND FORMER UST/LUST AREAS – WATER			
		TREATMENT PLANT, PINE HALL, MAPLE HALL, OAK HALL, AND HDC	22		
	4.3	SAMPLE RESULTS FROM OUTSIDE DRUM ACCUMULATION AREAS –			
		POWER PLANT AND CEDAR HALL	22		
	4.4	RESULTS FROM SAMPLING FILL AREA – ELEVATED SOCCER FIELDS	23		
	4.5	RESULTS FROM SAMPLING FILL AREAS – WEST OF POWER PLANT	24		
	4.6	SAMPLING RESULTS FROM LIME PIT AREA SAMPLING	25		
	4.7	SAMPLE RESULTS – TRANSFORMER AREAS SOIL SAMPLING	25		
	4.8	SAMPLE RESULTS – FLUORESCENT LIGHT BULB BREAKING AREA	26		
	4.9	SAMPLE RESULTS – LEAD IN SOIL POWER PLANT AREA	26		
5.0	SUMMARY OF FINDINGS2				
6.0	REFERENCES				

TABLES	
TABLE 1A	SOIL RESULTS, MAINTENANCE AREA USTS
TABLE 1B	GROUNDWATER RESULTS, MAINTENANCE AREA USTS
TABLE 2	SOIL SAMPLE RESULTS FROM THE POWER PLANT AREA UST/LUST
TABLE 3	SOIL SAMPLE RESULTS FROM THE HDC AREA AND OTHER UST/LUST AND AST AREAS
TABLE 4	SOIL SAMPLE RESULTS FROM OUTSIDE CONTAINER ACCUMULATION AREAS
TABLE 5	SOIL SAMPLE RESULTS FROM THE SOCCER FIELD AREA
TABLE 6	TEST PIT SOIL DATA
TABLE 7A	LIME PIT SOIL DATA
TABLE 7B	LIME PIT SLUDGE DATA
TABLE 8	TRANSFORMER SOIL DATA
TABLE 9	SOIL SAMPLE DATA FROM FLUORESCENT BULB BREAKING AREA
TABLE 10	DATA FROM LEAD IN SURFACE SOIL SAMPLING IN POWER PLANT AREA
FIGURES	
FIGURE 1	SITE LAYOUT
FIGURE 2	RECOGNIZED ENVIRONMENTAL CONCERNS/ENVIRONMENTAL ISSUES
FIGURE 3	FORMER LUST AND ACTIVE UST INVESTIGATION AREA
FIGURE 4	AST AND FORMER UST/LUST INVESTIGATION AREAS
FIGURE 5	OUTSIDE DRUM ACCUMULATION INVESTIGATION AREAS
FIGURE 6	SOIL BORING LOCATIONS IN ELEVATED SOCCER FIELDS – NORTH
FIGURE 7	SUSPECTED DFILL AND FILL AREAS TEST TRENCH LOCATIONS
FIGURE 8	LIME PIT SAMPLING LOCATIONS
FIGURE 9A	TRANSFORMER SAMPLING LOCATIONS
FIGURE 9B	TRANSFORMER SAMPLING LOCATIONS – HDC
FIGURE 10	BROKEN FLUORESCENT LIGHT BULB INVESTIGATION AREA
FIGURE 11	LEAD BASED PAINT SOIL INVESTIGATION AREA
FIGURE 12	GEOLOGIC AND HYDROGEOLOGIC INVESTIGATION SAMPLING LOCATIONS
FIGURE 13	SOIL AND GROUNDWATER RESULTS, LUST AND ACTIVE UST INVESTIGATION AREA
FIGURE 14	SAMPLE RESULTS FOR AST AND FORMER UST/LUST INVESTIGATION AREAS

FIGURE 15 SAMPLE RESULTS OUTSIDE DRUM ACCUMULATION INVESTIGATION **AREAS** FIGURE 16 SAMPLE RESULTS IN ELEVATED SOCCER FIELDS SAMPLE RESULTS FOR TEST TRENCH LOCATIONS FIGURE 17 LIME PIT BORINGS AND WASTE SAMPLE RESULTS FIGURE 18 FIGURE 19A SAMPLE RESULTS SURFACE SOIL SAMPLES TRANFSORMER AREA OUTISDE OF HDC AREA FIGURE 19B SAMPLE RESULTS SURFACE SOIL SAMPLES TRANSFORMERS FROM HDC **AREA** FIGURE 20 SURFACE SOIL SAMPLE RESULTS BROKEN FLUORESCENT LIGHT BULB **BREAKING AREA** SURFACE SOIL SAMPLE RESULTS LEAD BASED PAINT INVESTIGATION FIGURE 21 **AREA**

APPENDICES

- A SOIL BORING AND TEMPORARY WELL LOGS
- B PHOTOGRAPHIC LOG
- C LABORATORY DATA

1.0 INTRODUCTION

This Phase II environmental site assessment (ESA) report presents results of Tetra Tech, Inc.'s (Tetra Tech) investigation of recognized environmental conditions (REC) to the subject property (or site)—the former Tinley Park Mental Health Center, at 7400 to 7600 W. 183rd Street, Tinley Park, Illinois. This report furnishes site background information, describes RECs and historical RECs (HREC), recounts investigative methods used to sample soil and/or groundwater, provides results of the investigation, and discusses the results.

RECs are the presence or likely presence of any hazardous substances or petroleum products in, on, or at a subject property: (1) due to any release to the environment, (2) under conditions indicative of a release to the environment, or (3) under conditions that pose a material threat of a future release to the environment. The term includes hazardous substances or petroleum products, even under conditions in compliance with laws. The term is not intended to include de minimis conditions that generally do not present a material risk of harm to public health or the environment and that generally would not be the subject of an enforcement action if brought to the attention of appropriate governmental agencies (Section 1.1.1 E 1527-13, ASTM International [ASTM] 2013). An HREC is a past release of any hazardous substances or petroleum products that has occurred in connection with the subject property and has been addressed to the satisfaction of the applicable regulatory authority or has met unrestricted use criteria established by a regulatory authority, without subjecting the site to any required controls (Section 3.2.42 E 1527-13, ASTM 2013).

2.0 SITE BACKGROUND INFORMATION

Environmental Consulting Group (ECG) conducted a Phase I ESA in 2013 for Jones Lang LaSalle (ECG 2013a), acting on behalf of the site owner, the State of Illinois. ECG also conducted a hazardous materials assessment (ECG 2013b), a lead-based paint assessment (ECG 2013c), and a pre-demolition asbestos abatement survey (ECG 2013d), and prepared a summary of environmental issues (ECG 2014). In May 2014, Tetra Tech was tasked to conduct additional due diligence activities, including a Phase I ESA, a hazardous materials assessment, and an asbestos quantification. Reports of these activities are submitted under separate cover. Information obtained from the assessments by both ECG and Tetra Tech has been incorporated into this report.

The site encompasses about 275 acres of land and includes about 45 structures, including a power plant, water treatment plant, well buildings, water tower, maintenance building, storage facilities, hospital, and patient facilities. The property also has additional features including an in-ground water reservoir, lime pits, approximately 1.6 miles of underground tunnels, elevated soccer fields, and areas of fill. The site is within a mixed use area including commercial, municipal, and residential properties. Significant site features are shown on Figure 1.

Initially agricultural land, the property was developed as a Mental Health Facility in the 1950s with construction of facilities on the northern, eastern, and southern portions of the site. Around 1974, the western portion of the site was developed with residences, offices, a community center, and recreational facilities, which together were termed the "Howe Development Center (HDC)." The HDC and the mental health facility operated until about 2012, when the HDC and mental health facility were closed by the State of Illinois. The facility has been vacant since that time; however, portions of the site continue to be used for law enforcement training exercises. The soccer fields are also reportedly used by local youth soccer leagues.

The Phase I ESA identified a number of RECs that may have resulted in contamination of soil and/or groundwater. Phase I ESA activities also identified other environmental concerns, including presence of universal waste and hazardous materials, and presence of asbestos and lead in building materials (undergoing separate assessments). Ten RECs and one HREC are listed below, and then summarized. These RECs and the HREC are shown on Figure 2.

REC	Nature of Concern	Investigation Objectives
Leaking Underground Storage Tank (LUST) Incidents	Release of petroleum constituents to soil and/or groundwater	Investigate LUST areas to delineate extents of subsurface soil and groundwater contamination
Removed Underground Storage Tanks (UST)	Release of petroleum constituents to soil and/or groundwater	Investigate former UST areas, as necessary, to delineate extent of subsurface soil and groundwater contamination
Active USTs	Release of petroleum constituents to soil and/or groundwater	Investigate active UST areas to delineate extent of subsurface soil and groundwater contamination
Outside Drum Accumulation Areas	Release of hazardous constituents to soil and subsurface soil	Investigate accumulation areas to delineate extents of surface and subsurface soil contamination
Fill Areas	Extent of fill, type of fill, and release of hazardous constituents to subsurface soil	Delineate extent of fill, types of fill materials, and extent of subsurface soil contamination
Lime Pit	Presence of caustic material in unprotected area and potential for release or accidental exposure	Determine depth of material and disposal/management characteristics/soil types/presence and depth of groundwater
Aboveground Storage Tanks (AST)	Possibility of historical release; possible presence of USTs	Investigate outdoor AST areas to determine extent of soil contamination and potential threat to groundwater
Transformers	Historical release of polychlorinated biphenyls (PCB) to soil	Investigate extent of PCBs in shallow soil
Fluorescent Light Bulb Breaking Area	Possible release of mercury to soil	Investigate extent of mercury in shallow soil
Lead-containing Paint Areas	Possible release of lead to soil	Investigate extent of lead in shallow soil
Site-wide Geology and Hydrogeology	Important factor in determining whether releases have resulted in soil and groundwater contamination	Investigate soil lithology and groundwater, if present, in the upper 25 feet of soil

Closed Leaking Underground Storage Tank (LUST) Incident

LUST Incident No. 941705 was reported in 1994, reportedly involving fuel oil leaking at an abandoned sewage treatment plant on 80th Avenue. This LUST likely relates to the property associated with the City of Tinley Park's municipal parking lot west of the site, which was formerly part of the site but was sold and converted into a public parking lot for rail use. A no further remediation (NFR) letter regarding the LUST was issued on May 8, 1995. This is considered a closed HREC that will require no further investigation.

Open Leaking LUST Incidents

Two LUST incidents occurred at the site in 1995 (No. 951781 and No. 952428). LUST Incident No. 951781 occurred as a result of planned removal of USTs from near the Power Plant, Willow Hall, Maple Hall, and Cedar Hall. The UST removed from the Power Plant Area, northwest of the main building, contained gasoline and had a capacity of 5,200 gallons. The UST from near Willow Hall, near the southwestern portion of the building, was used to store diesel fuel for an emergency generator, and had a capacity of 560 gallons. The UST from near Maple Hall, north of the building, had a capacity of 500 gallons of diesel fuel, and served an emergency generator. The UST from near Cedar Hall, on the southwest side of the main building, had a capacity of 500 gallons of diesel fuel, and served an emergency generator.

Contaminated soil and backfill was removed during the UST removal operations, and sidewall and base samples were collected and analyzed for benzene, toluene, ethylbenzene (BTEX); polynuclear aromatic hydrocarbons (PAH); and toxicity characteristic leaching procedure (TCLP) lead. Groundwater was not encountered during soil and UST removal activities. Naphthalene was detected above remediation objectives (1,131 milligrams per kilogram (mg/kg) in one base sample (8-G)) collected within the Power Plant UST Area. Naphthalene was also detected at above remediation objectives (6.6 mg/kg) in the east sidewall sample (19-3) collected within the UST removal area at Willow Hall. No other samples contained PAHs, BTEX, or TCLP lead at levels of concern. Only 45-day reports were submitted, and no additional investigation or remediation was reported. The results suggest that contamination may remain at the UST removal areas near the Power Plant and Willow Hall.

LUST Incident No. 942428 occurred as a result of planned removals of USTs from near the Water Treatment Plant, the Power Plant, Oak Hall, and Pine Hall. A 1,450-gallon diesel fuel UST was removed from near the southwest side of the Water Treatment Plant. Two 11,800-gallon USTs containing No. 2 fuel oil were removed from near the north side of the Power Plant. Two 500-gallon diesel fuel USTs serving an emergency generator were removed from near the west side of Oak Hall. A 500-gallon diesel fuel UST serving an emergency generator was removed from near the northwest side of Pine Hall.

Contaminated soil and backfill was removed during the UST removal operations, and sidewall and base samples were collected and analyzed for BTEX and PAHs. Groundwater was also encountered within the Water Treatment Plant and Willow Hall UST excavations. Groundwater samples were collected from these excavations and analyzed for BTEX and PAHs. One sample from the south sidewall of the Wastewater Treatment Plant excavation area was detected above a remediation objective (2.1 mg/kg) for

naphthalene. One sample from the eastern base of the Pine Hall excavation area contained an elevated concentration above a remediation objective (14.8 mg/kg) fornaphthalene. All other results did not indicate BTEX or PAHs at concentrations of concern. Only 45-day reports were submitted, and no additional investigation or remediation was reported. The results suggest that contamination may remain at the UST removal areas at the Wastewater Plant and Pine Hall.

Removed USTs: Previous removals of 10 USTs were identified. Most of these USTs were removed in 1995 and 1996, as documented in the 45-day reports for the LUST Incidents identified above (Gannett Fleming 1995, 1996). The removed USTs included the following nine USTs:

- 1,450-gallon diesel UST removed near the Wastewater Treatment Building
- 5,200-gallon gasoline UST and two 11,800-gallon No. 2 fuel oil USTs removed near the Power Plant Building
- 560-gallon diesel UST removed near Willow Hall
- 500-gallon diesel UST removed near Oak Hall
- 500-gallon diesel UST removed near Maple Hall
- 500-gallon diesel UST removed near Cedar Hall
- 500-gallon diesel UST removed near Pine Hall.

The tenth identified UST removal appears to have been an additional 11,800-gallon diesel UST near the Power Plant. This UST may have been removed and replaced by an additional UST that may be one of the Active USTs identified below; this UST may still be present north of the former Power Plant Building.

Active USTS: Currently, three USTs are active, two of which (10,000-gallon diesel and 10,000-gallon gasoline) are on the western side of the maintenance facility. A 15,000-gallon heating oil UST is just north of the power plant. These USTs were installed during the same time frame (1995-96) of removals of the former USTs cited above.

Outside Drum Accumulation Areas: Outside drum accumulation areas were observed north of the power plant and within the fenced area around the prison building (Cedar Hall). The drums were stored directly on the soil surface and contained hazardous materials including oils, treatment chemicals, cleaners, lubricants, and other chemicals used in facility maintenance.

Fill Areas: The elevated soccer fields (northeast portion of the site), the area just west of the Power Plant, and a poorly defined area (further southwest of the power plant along the property boundary) reportedly contain fill from unknown sources.

Lime Pit: Concrete pits are present (east of the water treatment plant and north of the elevated soccer fields) that were used to store lime treatment sludge from the water treatment plant. The material was reportedly generated as a result of removal of excess iron from water extracted from on-site wells. The material likely contains primarily lime residual, which may be caustic.

Aboveground Storage Tanks (AST): A number of currently present and former ASTs are/were used to store diesel for emergency generators. These include the following: (1) outdoor ASTs now stored on pads at Pine Hall, Maple Hall, and Oak Hall; (2) five removed ASTs formerly located outdoors on storage pads in the HDC; and (3) an indoor AST now within the basement of Spruce Hall. Other small ASTs are present in hydraulic fluid storage reservoirs for elevators and also are associated with air compressors in basement areas. Generally, only the outdoor ASTs pose RECs because of likelihood that they replaced formerly present USTs. The other ASTs are present within basements with concrete floors, and are unlikely to pose threats of significant releases.

Transformers: Oil-filled transformers were noted in the HDC, near Spruce Hall, south of the Administration Building, and near the Power Plant. According to Commonwealth Edison (ComEd), all transformers are free of polychlorinated biphenyls (PCB), and are currently owned by the utility; however, these transformers likely contained PCB oils in the past, and whether they leaked is not known. The definition of non-PCB oil is "containing less than 50 parts per million (ppm) PCB."

In addition, the site engineer noted about five transformers present outside of the HDC Area; these transformers had been installed by the State of Illinois and are not-utility owned. Thus, these transformers are a concern, as they may have contained or now contain PCB dielectric fluids. Finally, the transformer observed near Spruce Hall is leaking, and staining was observed. As a result, these transformers and associated areas pose RECs to the subject property.

Fluorescent Light Bulb Breaking Area: An area was observed on the southern side of Cedar Hall where a debris pile is present from breaking of fluorescent light bulbs. Because the light bulbs may have contained mercury vapor, release of mercury within this area is a possibility.

Lead-containing Paint Areas: Lead in paint was identified during a lead-based paint assessment conducted by ECG (2013c) near the Power Plant and Water Treatment Plant areas. Possible release of lead from flaking paint to soil within these areas poses a REC to the subject property.

Moreover, site geology and hydrogeology are important factors in determining whether releases associated with RECs have resulted, or could result in contamination to groundwater. As a result, investigation activities to evaluate site-wide geology and hydrogeology were proposed.

3.0 INVESTIGATION ACTIVITIES

This section discusses investigation activities that were part of the Phase II Investigation. Sampling activities occurred during the weeks of July 21 and July 28, 2014. Utility location was initiated on July 17th and completed on July 21st.

3.1 UTILITY LOCATING AND GROUND PENETRATING RADAR SURVEY

Tetra Tech and its drilling subcontractor requested a public utility locate about 72 hours prior to initiating Phase II investigation activities. The site utilities include public utilities (gas, water, electric, and cable) within the HDC Area and elsewhere on the property, and private utilities (those managed, installed, and operated by the State of Illinois) including former steam generation tunnels, electric distribution outside of the HDC Area, water, and sewer.

The public utilities were first located, and included a Nicor high-pressure gas line on the southern right of way (ROW) of the northern east-west roadway; this gas line enters the property from Harlem Avenue and then crosses the east-west roadway east of the Power Plant Area, where a gas utility feed is present that enters the Gas House. This gas line also has a north lateral that crosses the western side of the Soccer Field Area and services the Cottages Area. The public gas utility also services the HDC, and these utilities were marked by the public utility locator. A small gas line that services Pine Hall was also noted by a private utility locator procured by Tetra Tech to support the investigation.

A public water line also accesses the site and parallels the gas line from Harlem Avenue to the area south of the Power Plant; this water line extends farther east on the southern ROW of the northern east-west roadway. The public utility locators were apparently unaware of this line, but the location was generally known to the site engineer (Mr. Sergio Cappello), and was identified prior to drilling.

A major electrical feed is present north of the Power Plant, where a ComEd substation provides service to the site electrical system. The electrical line feeds the Water Treatment Plant and the Power Plant, and then the site via a series of transformers and switch gear boxes. Two duct bank access areas were also noted on the north ROW of the northern east-west roadway between the Power Plant and Cedar Hall. This feed may also ultimately extend to the HDC.

Exact locations of the power services outside of the HDC were not known by the public utility locator, but were generally known to the site engineer. In addition, the private utility locator identified electrical lines in and around investigation areas. Ground penetrating radar (GPR) was used to identify locations of currently present USTs, and also to identify former UST and current AST areas for buried utilities. The utility locator used a wand to evaluate these areas for presence of electrical and other utilities. Electrical feeds and lateral locations were identified within investigation areas before drilling.

The site also includes utility services related to discontinued operations. This includes the old water distribution lines from the Water Treatment Plant and the abandoned wells and the water treatment sludge conveyance lines between the Water Treatment Plant and the Lime Sludge Pit. These lines are no longer active—the Water Tower is reportedly empty, and according to the site engineer, no pressurized connections are present between these defunct lines.

GPR was also conducted to evaluate areas of fill and to identify former UST excavation areas. Performing transects with the GPR across the areas, the operator succeeded in identifying locations of current USTs and had less success identifying locations of former excavations. Relevant GPR findings are discussed in the following sections.

3.2 SAMPLING METHODOLOGY

Tetra Tech conducted surface soil, subsurface soil, waste, and groundwater sampling from July 17th until July 28th.

Surface soil samples were collected from the upper 6 inches of the soil within three areas: (1) the Fluorescent Bulb Breaking Area in the Cedar Hall Area; (2) transformer areas throughout the site; and (3) lead-containing paint debris areas in the Power Plant and surrounding area.

Surface soil samples were collected as grab or composite samples. Grab samples were collected at specific locations within the Cedar Hall and Power Plant areas that had been pre-determined or were selected based on observations. Composite samples were collected around the bases of transformers unless evidence of release was noted, in which case a grab sample was collected from the area of suspected release.

Subsurface soils were collected either by use of a hydraulic push probe equipped with a Macropore sampler or as grab samples during test pitting activities. Test pitting occurred only within the suspected

fill areas west of the Power Plant. Subsurface soil samples were collected by use of the hydraulic push probe at all other locations.

Waste samples were collected from the Lime Sludge Pit as composite samples from several locations.

Groundwater samples were collected only within one area—the Maintenance Building Area—as part of the sampling around the active UST system in that area. Groundwater samples were not collected elsewhere because: (1) soils generally did not extend to depth of groundwater, (2) groundwater was not observed during drilling, or (3) no evidence of soil contamination was observed during drilling.

Dedicated equipment was used to collect samples, so field equipment blanks were not collected.

Duplicate and matrix spike duplicate samples were collected at an approximate rate of 1 per 10 and 1 per 20 samples, respectively.

Sampling procedures within each investigation area are discussed below.

3.3 FORMER LUST AND ACTIVE UST AREAS – POWER PLANT AND MAINTENANCE BUILDING AREAS

Former LUST incidents occurred near the Power Plant, near the Wastewater Treatment Building (see Figure 3), and near Pine Hall and Willow Hall (see Figure 4).

In addition, active USTs are just north of the Power Plant and west of the Maintenance Building. Approximate locations of these USTs are shown on Figure 3.

A GPR survey was first conducted within the Maintenance Building Area and the Power Plant Area to confirm locations of the USTs and former LUST areas. A single large UST was noted north of the Power Plant, and two USTs were identified within the Maintenance Area.

Maintenance Area Investigation: Five soil borings were advanced in the area around the gasoline USTs and the former dispensing units. The investigation encompassed the area including the USTs, the dispensers, piping between the USTs and the dispensers, and the vent pipes running between the USTs and the aboveground vent caps on the adjacent building wall.

Borings were advanced to a minimum depth of about 24 feet beet below ground surface (bgs) by use of a track-mounted, direct-push probe equipped with a Macrocore sampling system. At each soil boring location, 4-foot, acetate-lined tubes were advanced, retrieved, and evaluated by a geologist/scientist for soil type and evidence of contamination. Boring logs are in Appendix A. No visual or olfactory evidence of contamination was noted, but elevated photoionization detector (PID) readings occurred that may have been false positives as a result of soil moisture and high humidity. Two samples were collected from each boring for analyses for BTEX, PAHs, and total lead, and measurement of soil pH. Samples were collected from a shallow interval and deeper interval based on the probable depth of the UST base. Samples were placed on ice and submitted to STAT Analysis under strict chain of custody (COC).

Most borings encountered fill material including pea gravel, sand, and sandy gravel to depths between 8 and 12 feet bgs. This coarse fill was underlain by a silty clay or clay till to depths between 16 and 24 feet bgs. At one boring (SB-5), predominantly clay was encountered from just below the asphalt surface to 16 feet bgs. The boring log data suggest that the USTs are within coarse aggregate fill that is surrounded by the largely clay and silty clay till outside of the UST cavities. Groundwater, likely perched, was encountered within the coarse backfill material. A groundwater sample was also collected from SB-1, where groundwater was identified within what appeared to be gravel fill around the UST cavity. A temporary well was first installed consisting of 1-inch-inner-diameter polyvinyl chloride (PVC) screen and riser pipe at about 16 feet bgs. After completion of purging by use of a peristaltic pump and application of low flow collection techniques using dedicated, Teflon-lined tubing, a groundwater sample was collected into pre-preserved volatile organic analysis (VOA) containers.

Power Plant UST Areas: A former gasoline UST/LUST and an active fuel oil UST are, respectively, north and northwest of the Power Plant building. Five soil borings were advanced including two within the former UST/LUST excavation area and three respectively north, northeast, and west of the active fuel oil UST.

Borings were advanced to maximum depth of about 16 feet bgs by use of a hydraulic direct-push probe equipped with a Macrocore sampling system. At each location, 4-foot, acetate-lined tubes were advanced in 4-foot intervals from ground surface to the bottom of the boring, and were logged by a geologist/scientist for soil type and evidence of contamination. A PID was also used to assess presence of volatile organics. Boring logs are in Appendix A. A slight fuel odor was detected in SB-3 at 16 feet bgs, but recovery was insufficient for sampling. A temporary well was set at this location, but did not yield water. Two soil samples were collected from each boring, generally one shallow and the other at or near

the base of the UST invert; these samples were submitted for analyses for BTEX, PAHs, and total lead, and for measurement of soil pH. Samples were placed on ice and submitted to STAT Analysis under strict COC.

No groundwater was encountered and no groundwater samples were collected.

As within the Maintenance area, coarse aggregate including sand and pea gravel was observed within borings installed near the UST system. This coarse material was encountered to 15 feet bgs, and was underlain by silty clay or clay.

3.4 AST AND FORMER UST/LUST AREAS – WATER TREATMENT PLANT, PINE HALL, MAPLE HALL, WILLOW HALL, OAK HALL, AND HDC

Active or former ASTs and former USTs or LUSTs are/were present at the Water Treatment Plant, Pine Hall, Willow Hall, Oak Hall, and Maple Hall. At Pine Hall, and Maple Hall, locations of former USTs or LUSTs are the same as current locations of active ASTs. At Willow Hall, the location of the former UST/LUST is adjacent to the building within a courtyard area with a shed and play equipment—a location different from that of the current AST. The location of the former UST was not accessible to sample because of presence of a large hedge that did not allow access to the area. Moreover, utility clearance in this area was not considered acceptable, so the area was not investigated (see Figure 4).

Active ASTs – Pine Hall, Maple Hall, and Oak Hall: Generally, access for sampling around existing ASTs was restricted to areas outside of the fenced enclosures and within areas where no subsurface utilities were present. At each location, subsurface electrical lines were present between the AST and the adjacent buildings. A natural gas line was additionally present at Pine Hall, and a sewer line was present at Oak Hall.

At each location, a single boring was advanced proximate to the AST to assess potential presence of contamination. Borings were advanced to maximum depth of 12 feet bgs by use of a hydraulic direct-push probe equipped with a Macrocore sampling system. At each location, 4-foot, acetate-lined tubes were advanced continuously in 4-foot intervals, from ground surface to the bottom of the boring, and were evaluated by a geologist/scientist for soil type and evidence of contamination. Boring logs are in Appendix A. A PID was used to evaluate headspace for presence of VOCs. No elevated PID readings or

visual or olfactory evidence of contamination was noted. One sample was collected from each boring and submitted for analyses for BTEX, PAHs, and total lead, and measurement of soil pH. Samples were placed on ice and submitted to STAT Analysis under strict COC.

Soil conditions at the Pine Hall UST location included fill material (aggregate and gravel) to about 8 feet bgs, underlain by dense, dark-gray clay to 12 feet bgs. No evidence of contamination was noted, and groundwater was not observed. The soil sample was collected within the interval of 10 to 12 feet bgs.

Soil conditions at the Maple Hall UST location included topsoil underlain by grey silty clay to 12 feet bgs. No evidence of contamination was noted, and groundwater was not encountered. The soil sample was collected within the interval of 10 to 12 feet bgs.

Soil conditions at the Oak Hall UST location included topsoil underlain by clay to 12 feet bgs; a thin, 2-inch silty sand layer was observed at about 7.5 feet bgs; no evidence of contamination was noted, and groundwater was not observed. The soil sample was collected within the interval of 10 to 12 feet bgs.

Inactive UST – Water Treatment Plant Area: A former heating oil UST had been at the southwestern corner of the Water Treatment Plant. A GPR was used to identify the approximate location of the former UST excavation cavity. Access to the location was restricted by the presence of a fence, the Water Tower, and possible subsurface utilities.

A single boring was advanced near the location where the former sidewall sample had been collected (see Figure 3). The boring was advanced to 8 feet bgs by use of a hydraulic, direct-push probe equipped with a Macrocore sampling system. Four-foot, acetate-lined tubes were advanced at 4-foot intervals from ground surface to the bottom of the boring, and were evaluated by a geologist/scientist for soil type and evidence of contamination. The boring log is in Appendix A. No visual or olfactory evidence of contamination was noted, and elevated PID readings were not observed. One sample was collected from the 6- to 8-foot bgs interval for analyses for BTEX and PAHs. Samples were placed on ice and submitted to STAT Analysis under strict COC.

The soil at this location consisted of topsoil underlain by clay, with no evidence of contamination. No groundwater was observed, and no groundwater samples were collected.

Inactive ASTs – HDC Area: Five pads are within the HDC Area (the HDC Area is depicted on Figure 4; however, the specific location of the five pads is not shown on the figure). Each pad is now bare because of removals of the former ASTs that served backup generators. No evidence of surface staining was observed. Utilities are present near the former pads. Access was generally unrestricted except where utilities were identified.

At each location, a single boring was advanced proximate to the location of the former AST to assess potential for presence of contamination. Borings were advanced to maximum depth of 8 feet bgs by use of a hydraulic push probe equipped with a Macropore sampling system. At each location, 4-foot, acetate-lined tubes were advanced at 4-foot intervals from ground surface to the bottom of the boring, and were evaluated by a geologist/scientist for soil type and evidence of contamination. Boring logs are in Appendix A. No visual or olfactory evidence of contamination was noted except for a slight petroleum odor detected at the HDC-AST-3 location. One sample was collected from each boring, at about 6 feet bgs or where evidence of contamination was observed in boring SB-3 at about 3 feet bgs, for analyses for BTEX, PAHs, and total lead, and measurement of soil pH. Samples were placed on ice and submitted to STAT Analysis under strict COC.

No groundwater was observed, and thus no groundwater samples were collected.

Soil conditions were observed to include silt and silty clay underlying topsoil, and some gravel fill at most locations. At boring SB-3, debris was noted and refusal was encountered at 4 feet bgs, just below an oily stained layer at 3 feet bgs.

3.5 OUTSIDE DRUM ACCUMULATION AREAS – POWER PLANT AND CEDAR HALL

Drums or containers were stored on the ground surface within three areas, as identified during the Phase I ESA. This includes one area north of the Power Plant and two areas within the former prison area (Cedar Hall). A total of 11 soil borings were advanced in the accumulation areas – 6 at Cedar Hall and 5 within the Power Plant Area (see Figure 5).

Cedar Hall: Six borings were installed in the Cedar Hall investigation areas, with three borings in each of the two drum or container storage areas (see Figure 5). Borings were advanced within the areas where empty containers, drums, and cylinders were observed. No evidence of spillage or staining was observed, so the locations were chosen to provide representative geographic coverage.

Borings were advanced to 12 feet bgs by use of a track-mounted hydraulic push probe equipped with a Macropore sampling system. At each location, 4-foot, acetate-lined tubes were advanced in 4-foot intervals from ground surface to the bottom of the boring, and were evaluated by a geologist/scientist for soil type and evidence of contamination. Boring logs are in Appendix A. No visual or olfactory evidence of contamination was detected; nor were elevated PID readings noted. One sample was collected from each boring, generally from the shallow intervals (0 to 3 feet or 1 to 4 feet bgs), and samples were submitted for analyses for VOCs, semivolatile organic compounds (SVOC), and Target Analyte List (TAL) Metals, and for measurement of soil pH. Samples were placed on ice and submitted to STAT Analysis under strict COC.

At all locations, topsoil was underlain by a dark- to light-yellowish brown clay to 12 feet bgs. No evidence of groundwater was observed, and thus no groundwater samples were collected.

Power Plant Area: Five borings were advanced within the Power Plant Area outside the container investigation area (see Figure 5). Three borings (Power-OD-SB-1 through SB-3) initially had been advanced at locations within the drum storage area; evidence of oil staining on the ground surface induced advancement of borings in areas of suspected release. Because contamination was noted in two borings (Power-OD-SB-1 and SB-2), two stepout borings were also advanced (PP-SB-1A and PP-SB-2A).

Borings were advanced to a maximum depth of 20 feet bgs by use of a hydraulic push probe equipped with a Macropore sampling system. At each location, 4-foot, acetate-lined tubes were advanced at 4-foot intervals from ground surface to the bottom of the boring, and were evaluated by a geologist/scientist for soil type and evidence of contamination by use of a PID. Boring logs are in Appendix A. Visual and olfactory evidence of contamination was noted in borings SB-1 and SB-2, and samples were collected within the intervals that had evidenced contamination. One sample was collected from each boring for analyses for VOCs, SVOCs, and TAL Metals, and measurement of soil pH. Samples were placed on ice and submitted to STAT Analysis under strict COC.

Boring Power-OD-SB-1 was advanced to 20 feet bgs. The soil type was observed as predominantly clay with a layer of sand at between 6 and 7 feet bgs, which had a petroleum odor. Boring Power-OD-SB-2 also had a sandy interval at 5 to 6 feet bgs that had a petroleum odor. The other borings—Power-OD-SB-3, PP-SB-1A, and PP-SB-2A—did not contain a sandy layer and did not evidence contamination.

No evidence of groundwater was observed, and thus no groundwater samples were collected.

3.6 FILL AREA – ELEVATED SOCCER FIELDS

The Soccer Field Area is an elevated area about 6 feet above the local topography. In the 1980s, the Soccer Field Area reportedly had been filled in with construction-related material from an unknown source. The investigation area is shown on Figure 6.

Prior to initiation of drilling activities, GPR transects were run across the Soccer Field Area on July 21st. The transects identified a generally smooth subsurface profile with irregularities that might signify rubble or construction type debris. According to the GPR operator, most of the fill appeared to be soil, but as much as 10 to 20 percent could contain larger debris, such as concrete or other debris.

Eight soil borings were advanced to a minimum 8-foot depth through the fill material and into the underlying native soil. Borings were advanced to maximum depth of 18 feet bgs by use of a hydraulic push probe equipped with a Macropore sampling system. At each location, 4-foot, acetate-lined tubes were advanced in 4-foot intervals from ground surface to the bottom of the boring, and were evaluated by a geologist/scientist for soil type and evidence of contamination by use of a PID. Boring logs are in Appendix A. No visual and olfactory evidence of contamination was noted. Observations of soil are summarized below. At least one sample was collected from each boring for analyses for VOCs, SVOCs, and TAL Metals, and measurement of soil pH. Samples were placed on ice and submitted to STAT Analysis under strict COC.

Boring SF-SB-01 was advanced to 18 feet bgs; fill material consisting of about 1 foot of topsoil was underlain by a clayey fill with concrete and gravel to about 5 feet bgs, then a stiff gray clay to 18 feet bgs. The other borings were advanced to between 8 and 12 feet bgs and encountered similar conditions, with an upper 1-foot layer of topsoil underlain by fill consisting of clay with concrete, aggregate, and brick overlying native clay encountered at about 6 feet bgs in some borings and at about 4 and 5 feet bgs in other borings. No evidence of groundwater was observed, and thus groundwater was not sampled.

3.7 FILL AREAS – WEST OF POWER PLANT

Two areas with fill materials are present west of the Power Plant. In one area to the immediate west, soil and other material has been dumped on the ground or parking lot surface. A second area of suspected

landfilling is farther southwest along the northern property boundary. This area reportedly was historically used for landfilling; but the area is flat with no obvious fill boundary or noticeable elevations, except on the north side where a sharp dropoff of about 4 feet occurs above the adjacent drainage way. Locations of the fill investigation areas are shown on Figure 7.

Seven test trenches were installed, including four in the larger area to the west (TP-1 through TP-4) and three in the area just west of the Power Plant (TP-5 through TP-7). The investigation areas are discussed separately below.

Prior to initiating test trenching in the larger area, GPR was used to conduct east-to-west and north-to-south transects across the fill area. According to the GPR readings, the underlying fill appears to be predominantly soil, which was placed in lifts. No indication of debris was noted. Four test pits were advanced to obtain a representative sampling of fill material. At each location, the trench was first advanced through the fill into the underlying native soil—in all cases this was brown or tan clay. The base of excavations extended to a maximum depth of about 4 feet bgs, as no evidence of significant filling was noted. At one location were the remains of what appeared to be a drainage culvert; otherwise, material observed was free of debris. For photographs documenting observations in the test trenches see the Photographic Log contained in Appendix B.

Three test trenches were advanced in the area just west of the Power Plant. In this area, fill appears to have been dumped on the parking lot or ground surface and contains primarily concrete and asphalt debris. Other items, such as a TV, mattress, and wood debris, were observed scattered around the fill area. To evaluate the material, test trenches were advanced through the debris piles at three locations.

At Test Pit 5, predominantly soil debris with some concrete, rubber, brick, and other debris were identified. A single lead-acid battery was also observed in this area.

At Test Pit 6, approximately equal amounts of soil and debris including a sewer pipe, brick, rubber, stone, and concrete debris were identified.

At Test Pit 7, some rock and asphalt were identified in the southern portion, but also considerable ash and lime material—perhaps debris from a fire or possibly open burning that had occurred in this area.

One sample was collected from each test trench for analyses for VOCs, SVOCs, and TAL Metals, and measurement of soil pH. Samples were placed on ice and submitted to STAT Analysis under strict COC.

3.8 LIME PIT

The lime pit (see Figure 8) is a rectangular series of concrete pits that were used to store water treatment sludge generated from the on-site water treatment plant. The material appears to be homogenous and to consist primarily of lime. The area around the pits is low lying and contains wetland type vegetation. Accessibility to sampling was limited to the south and west sides. In some cases, the lime sludge appears to have overtopped the pit and spilled onto the surrounding ground surface.

Three soil borings were advanced to approximately 8 feet bgs. At each location, 4-foot, acetate-lined tubes were advanced from the ground surface to the bottom of the boring, and were evaluated by a geologist/scientist for soil type and evidence of contamination by use of a PID. Boring logs are in Appendix A. No visual and olfactory evidence of contamination was noted, other than presence of lime sludge in the upper portions of the soil borings. At least one sample was collected from each boring for analyses for TAL Metals and measurement of soil pH. Samples were placed on ice and submitted to STAT Analysis under strict COC.

A waste sample was also collected as a composite from three sample locations. This sample was submitted for TAL Metals and waste characteristic analyses (toxicity characteristic leaching procedure [TCLP] metals, reactive cyanide, and reactive sulfide; for measurements of flash point and pH; and for performance of paint filter test. The sample was placed on ice and submitted to STAT Analysis under strict COC.

Lime-SB-1, SB-2, and SB-3 encountered clay from ground surface to 8 feet bgs. The upper portions of each boring had some gravel and lime staining, but the clay below the upper 2 feet was native gray clay.

3.9 TRANSFORMERS

There are 22 transformers present throughout the site, including about 17 in the HDC area, 1 in the Spruce Hall Area, 1 in the Power Plant Area, 1 in the Pine Hall Area, 2 in the Administrative Building Area, and 1 in the Cottages Area (see Figures 9A and 9B). One transformer was observed to be leaking near Spruce

Hall, and an older inactive transformer is present near the Administrative Building along with the newer transformer.

Transformers in the HDC Area are on pads. The transformers are currently owned by ComEd, but historical releases of PCBs to soil could result in remediation and disposal costs.

Transformers elsewhere on the property are not marked as ComEd-owned, and according to the site engineer, were installed and are still owned by the State of Illinois. Transformers outside of the HDC Area are not marked as containing PCBs. It is not clear if the dielectric fluids contain PCBs or if the transformers have been retrofitted since their original installation. Transformers installed in the 1950s, the time at which the property was constructed, may have contained PCBs. To determine their content, the fluids would have to be accessed and sampled directly after the units would be de-energized. At this time, only the newer transformer at the Administrative Building should be assumed to not contain PCBs.

Composite soil samples were collected around each transformer unless staining was observed, in which case, a grab sample was collected. In all cases except one (Spruce Hall, where staining was observed), composite samples were collected. Subsamples were collected from 0 to 6 inches bgs, just below the grass turf, by use of dedicated sampling spoons or trowels. Subsamples were then placed in a plastic bag and mixed, and then placed in the appropriate pre-cleaned containers. At Spruce Hall, a sample was collected within the area of staining. All samples were submitted for PCB analysis. Samples were containerized, placed in an iced cooler, and delivered to STAT Analysis under strict COC.

3.10 FLUORESCENT LIGHT BULB BREAKING AREA

An area was observed outside of Cedar Hall (the former prison) that had been used for breaking fluorescent light bulbs (see Figure 10). The broken bulb debris was observed to be scattered on the ground surface.

Four surface soil samples were collected from within and around the debris area for analysis for total mercury and measurement of soil pH. Samples were collected from 0 to 6 inches bgs at discrete random locations within and around the debris area by use of dedicated spoons. Samples were containerized, placed in an iced cooler, and delivered to STAT Analysis under strict COC.

3.11 LEAD-CONTAINING PAINT DEBRIS AREAS

Lead-containing paint was identified in sampling by ERG within the Water Treatment Building and Power Plant areas (ERG 2013c). Based on presence of lead-containing paint on metal structures and potential for flaking of lead-containing paint from these structures, from areas around the Power Plant, and from the Water Treatment Building, sampling for lead in soil was conducted.

Twenty surface soil samples were collected at pre-determined locations around and below painted structures around the Power Plant, the Water Treatment Plant, the Water Tower, and other associated structures in this area. Sample locations are shown on Figure 11.

Samples were collected at discrete random locations within and around the debris area by use of dedicated spoons from a 0 to 6 inches bgs. Samples were containerized, placed in an iced cooler, and delivered to STAT Analysis under strict COC for analyses for total lead and measurement of soil pH.

3.12 GEOLOGY AND HYDROGEOLOGY

Tetra Tech installed four deep borings at locations around the perimeter of the site (see Figure 12); one of the borings in the Maintenance Area was drilled to approximately 25 feet bgs. These borings were advanced to evaluate site lithology and to evaluate whether groundwater may be present within the upper 25 feet of soil. Borings were advanced to maximum depth of 24 feet bgs by use of a hydraulic push probe equipped with a Macropore sampling system. At each location, 4-foot, acetate-lined tubes were advanced continuously from the ground surface to the bottom of the boring, and were evaluated by a geologist/scientist for soil type. Soil boring logs are in Appendix A.

The soil underlying the site appears to consist primarily of a silty clay or clay from the ground surface to 24 feet bgs. At most locations, some thin sand or silt seams were observed at intermediate depths. The sand or silt seams appear to be variable in nature and not continuous across the site. No evident of free groundwater was observed in native deposits, but perched groundwater likely is present within discontinuous sand seams.

4.0 SAMPLE RESULTS

This section discusses the sample results by investigation area

4.1 SAMPLE RESULTS FROM FORMER LUST AND ACTIVE USTS POWER PLANT AND MAINTENANCE AREAS

The results are discussed below separately for the Maintenance Area and Power Plant Area.

Maintenance Area: Sample results from subsurface soil sampling are listed in Table 1A. Sample results from groundwater sample collected from the Maintenance Area temporary well are listed in Table 1B. Sample results were compared to Tiered Approach to Corrective Action (TACO) Tier I residential or construction worker remediation objectives (RO). Results are also shown on Figure 13. In addition, soil sample results were compared to the Maximum Allowable Concentrations (MAC) for clean soil reuse. The MAC can be to determine appropriate reuse of soil during project development.

BTEX was not detected in soil samples or in the groundwater sample collected from the Maintenance Area temporary well.

PAHs were not detected at most locations, but where detected, they were at concentrations below all applicable Tier I residential and construction worker ROs and the MAC criteria for soil reuse.

Total lead was detected, but at concentrations below all applicable Tier I residential and construction worker ROs, as well as the soil component of the groundwater ingestion RO, which is the MAC criterion for soil reuse.

Power Plant Area: Sample results from subsurface soil sampling are listed in Table 2. Results were compared to TACO Tier I residential or construction worker ROs in the table, and also are shown on Figure 13. In addition, soil sample results were compared to the MAC for clean soil reuse. BTEX was not detected in soil samples collected from the Power Plant UST/LUST Area.

PAHs were not detected at most locations, but where detected, were at concentrations below all applicable Tier I residential and construction worker ROs and the MAC criteria for soil reuse.

Total lead was detected, but at concentrations below all applicable Tier I residential and construction worker ROs, as well as the soil component of the groundwater ingestion RO, which is the MAC criterion for soil reuse.

4.2 SAMPLE RESULTS FROM AST AND FORMER UST/LUST AREAS – WATER TREATMENT PLANT, PINE HALL, MAPLE HALL, OAK HALL, AND HDC

Sample results from subsurface soil sampling in the UST/LUST Areas for the Water Treatment Plant, Pine Hall, Maple Hall, Oak Hall, and the HDC are listed in Table 3. Results were compared to TACO Tier I residential or construction worker ROs in the table, and also are shown on Figure 13 (Water Treatment Plant only) and Figure 14. In addition, soil sample results were compared to the MAC for clean soil reuse.

BTEX was not detected in most soil samples collected within the UST/LUST or AST areas. Benzene was detected in a shallow soil sample at HDC-AST-SB-3, within the HDC Area, which was also the area where a slight odor was noted. The result (0.039 mg/kg) slightly exceeds the soil component of the groundwater ingestion RO of 0.03 mg/kg.

VOCs were not detected at the Oak Hall AST.

PAHs were not detected at most locations, but where detected, were at concentrations below all applicable Tier I residential and construction worker ROs and the MAC criteria for soil reuse.

Total lead was detected, but at concentrations below all applicable Tier I residential and construction worker ROs, as well as the soil component of the groundwater ingestion RO, which is the MAC criterion for soil reuse. Lead was not an analyte for samples collected at all locations, but lead is not usually associated with fuel oil, which was used at all of the locations.

4.3 SAMPLE RESULTS FROM OUTSIDE DRUM ACCUMULATION AREAS – POWER PLANT AND CEDAR HALL

Sample results from soil sampling at the outside drum accumulation areas within the Cedar Hall Area and also north of the Power Plant are listed in Table 4 and shown on Figure 15. Results exceeding TACO Tier I residential or construction worker ROs are highlighted in the table and also appear on Figure 15. In addition soil sample results that exceed the MAC for clean soil reuse are listed and highlighted in the table and figure.

VOCs or SVOCs were not detected above ROs or the MAC.

Arsenic was detected in one soil sample in the Power Plant Area (Power-OD-SB-3-5-7) above the Tier I residential ingestion RO. This result was not associated with observed evidence of contamination and is probably associated with naturally occurring arsenic.

No other metals were detected at concentrations above TACO Tier I ROs. Iron and manganese, however, were detected above the MAC soil reuse criteria. The MAC criteria would apply only if this soil would be reused elsewhere on site.

4.4 RESULTS FROM SAMPLING FILL AREA – ELEVATED SOCCER FIELDS

Sample results from the Elevated Soccer Field Area are listed in Table 5 and shown on Figure 16. Results exceeding TACO Tier I residential or construction worker ROs are highlighted in the table, and also appear on the figure. In addition, soil sample results that exceed the MAC for clean soil reuse are listed and highlighted in the table and figure.

VOCs were not detected at concentrations above ROs or MAC criteria for soil reuse.

Benzo(a)anthracene and dibenzo(a,h)anthracene were detected in one sample (SF-SB-2-0003) from boring SF-SB-2 at concentrations above the residential ingestion ROs and also above Metropolitan Statistical Averages (MSA), which are the MACs for these compounds. Detections above ROs in one of nine samples suggests that this is not indicative of a larger concern with the material, but does indicate that some of the material may have to be screened to remove possibly present contamination if the area is disturbed.

Arsenic was detected in one soil sample (SF-SB-2-0003) at a concentration above the Tier I residential ingestion RO. This result was not associated with observed evidence of contamination and may be associated with naturally occurring arsenic; however, the result is associated with fill material, the source of which is unknown.

No other metals were detected at concentrations above TACO Tier I ROs. Iron and manganese, however, were detected above MAC soil reuse criteria. The MAC criteria could apply only if this soil would be reused elsewhere on site; however, the MACs are not risk-based standards for these metals, so the soil, if managed in place, would meet TACO Tier I ROs except for arsenic at one location, as noted above.

4.5 RESULTS FROM SAMPLING FILL AREAS – WEST OF POWER PLANT

Sample results from the fill areas west of the Power Plant are listed in Table 6 and shown on Figure 17. Results exceeding TACO Tier I residential or construction worker ROs are highlighted in the table and also appear on the figure. In addition, soil sample results that exceed the MAC for clean soil reuse are shown and highlighted in the table and figure.

Samples were collected within two areas; the materials in both areas are different, and are discussed separately.

Large Fill Area – West of Power Plant: The larger fill area was investigated by use of four Test Pits (TP-1 through TP-4).

No samples for analyses for VOCs were collected due to lack of any observed evidence of contamination or suspect fill.

No PAHs, SVOCs, PCBs, pesticide compounds, or herbicide compounds were detected.

No metals were detected at concentrations above TACO Tier I ROs. Iron and chromium manganese, however, were detected above the MAC soil reuse criteria. Tetra Tech notes that the chromium MAC criteria is based on the most conservative pH-specific TACO Tier I RO for the soil component of the groundwater ingestion pathway. The MAC criteria for chromium is not exceeded as the pH-specific RO is not exceeded for any of the samples. In addition, the MAC criteria could apply only if this soil would be reused elsewhere on site; however, the MACs are not risk-based standards for these metals, so the soil, if managed in place, would meet TACO Tier I ROs.

Fill Area Just West of Power Plant: The smaller fill area was investigated by use of three Test Pits (TP-5 through TP -7).

No samples for analyses for VOCs were collected due to lack of any observed evidence of contamination or suspect fill.

PAHs were detected at concentrations above Tier I ROs and the MSA in one of three samples. This sample was from the area that had been noted to have lime sludge and ash. Benzo(a)antracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene were detected at concentrations above the Tier I ROs in the sample from Test Pit 7.

Mercury was detected at one location (Test Pit 7) at a concentration above the TACO Tier I RO for construction worker inhalation. This RO is based on presence of elemental mercury, which would be unlikely in ash, a combustion product; however, this material is inherently waste-like and would likely have to be managed as such.

Iron and chromium, however, were detected above the MAC soil reuse criteria. As noted above, the pH specific RO is not exceeded for chromium, so the MAC criteria is not applicable for chromium. In addition, the MAC criteria could apply only if this soil would be reused elsewhere on site; however, as noted above, this material consists of largely rubble and ash and possibly contains hazardous debris (like a lead-acid battery), so management in place is not a reasonable option for this material.

4.6 SAMPLING RESULTS FROM LIME PIT AREA SAMPLING

Sample results from the soil around the Lime Pit and Lime Pit sludge are listed in Tables 7A and 7B, respectively, and are shown on Figure 18. Results from the soil samples that exceed TACO Tier I residential or construction worker ROs or the MAC for clean soil reuse are also shown and highlighted in the table and figure.

No TAL metals were detected at concentrations above TACO Tier I ROs in soil samples. Iron and manganese, however, were detected above the MAC soil reuse criteria. The MAC criteria could apply only if this material would be reused elsewhere on site; however, the soil meets TACO Tier I ROs and can be managed in place.

Samples were also investigated for waste disposal characteristics. The results indicate that if managed as a waste, the material would meet disposal criteria for non-special or special waste. The material may have value for reuse, as it can be used as a nutrient supplement on crop land.

4.7 SAMPLE RESULTS – TRANSFORMER AREAS SOIL SAMPLING

Transformer results are listed in Table 8 and shown on Figures 19A and 19B.

PCBs were not detected at most locations; all results, however were below the TACO Tier I RO and the MAC criteria for clean soil reuse.

PCBs were detected at low concentrations in soils near the Pine Hall transformer and the Power Plant transformer. Detection of PCBs suggests that these transformers may contain PCB fluids or may have contained PCB fluids in the past; however, the definition of non-PCB containing transformers includes PCB concentrations up to 50 milligrams per liter, so the transformer fluids would have to be tested to evaluate whether they contain PCBs.

The soil results suggest that the transformer use has not resulted in a release to surface soils requiring any further action.

4.8 SAMPLE RESULTS – FLUORESCENT LIGHT BULB BREAKING AREA

Soil sample results from the Fluorescent Light Bulb Breaking Area are listed in Table 9 and shown on Figure 20.

Results from all samples of mercury content exceed an applicable Tier I RO construction worker inhalation and the MAC criterion for clean soil reuse. The result from one sample (44 mg/kg) also exceeds the residential ingestion RO of 23 mg/kg for mercury.

The mercury-contaminated soil would have to be remediated in this area prior to site development.

4.9 SAMPLE RESULTS – LEAD IN SOIL POWER PLANT AREA

Soil sample results from the Power Plant and surrounding areas are listed in Table 10 and shown on Figure 21.

Results from about half the samples (14 of 22) indicated exceedance by lead concentration of the Tier I RO for the soil component of groundwater ingestion, which is also the MAC criterion for soil reuse. One sample result (at location SS-18) also exceeded the Tier I residential ingestion RO.

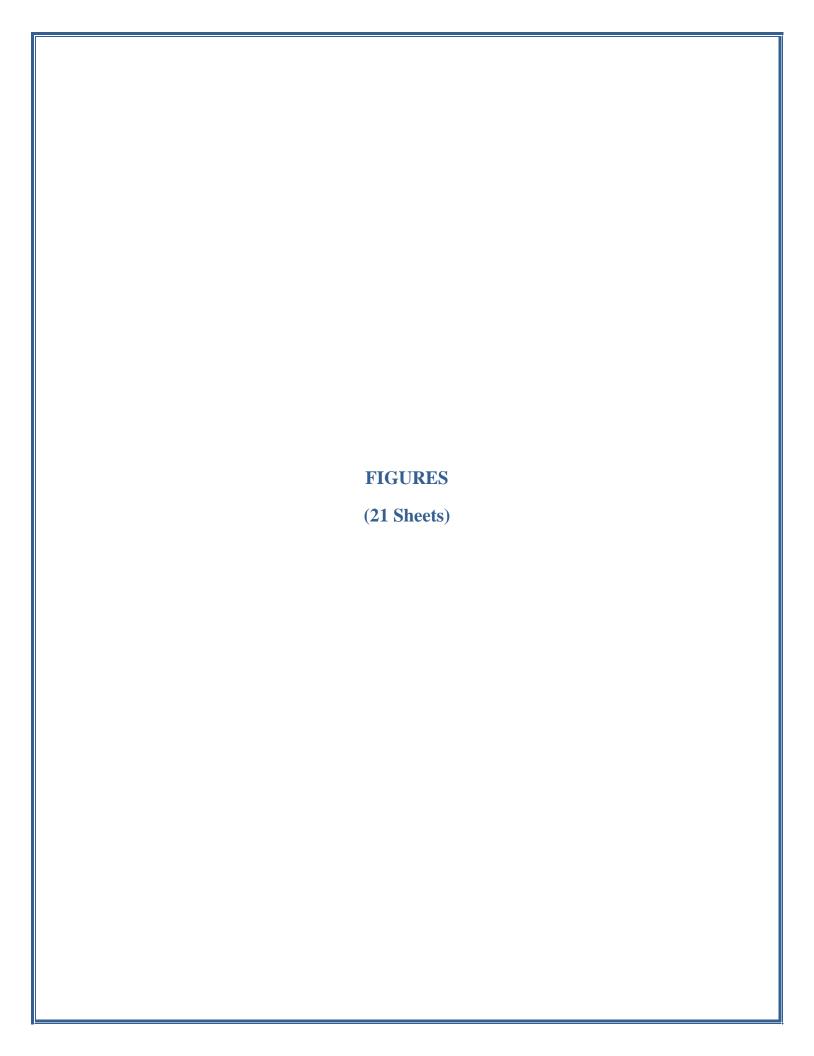
The results indicate that surface soil in this area may require some spot remediation after demolition and prior to redevelopment.

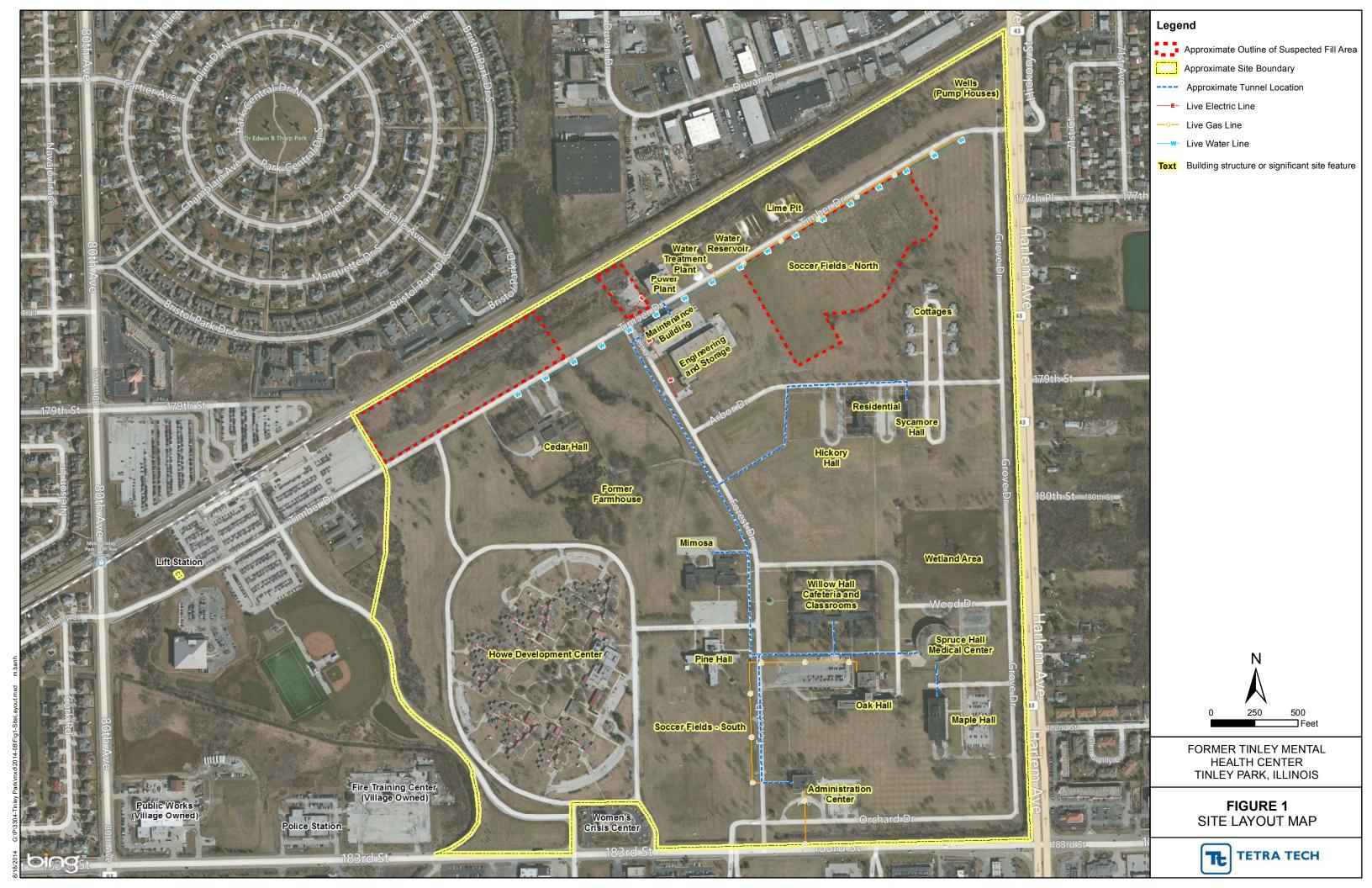
5.0 SUMMARY OF FINDINGS

Results of the investigation indicate that sufficient information is available to estimate environmental liabilities for identified RECs to the subject property.

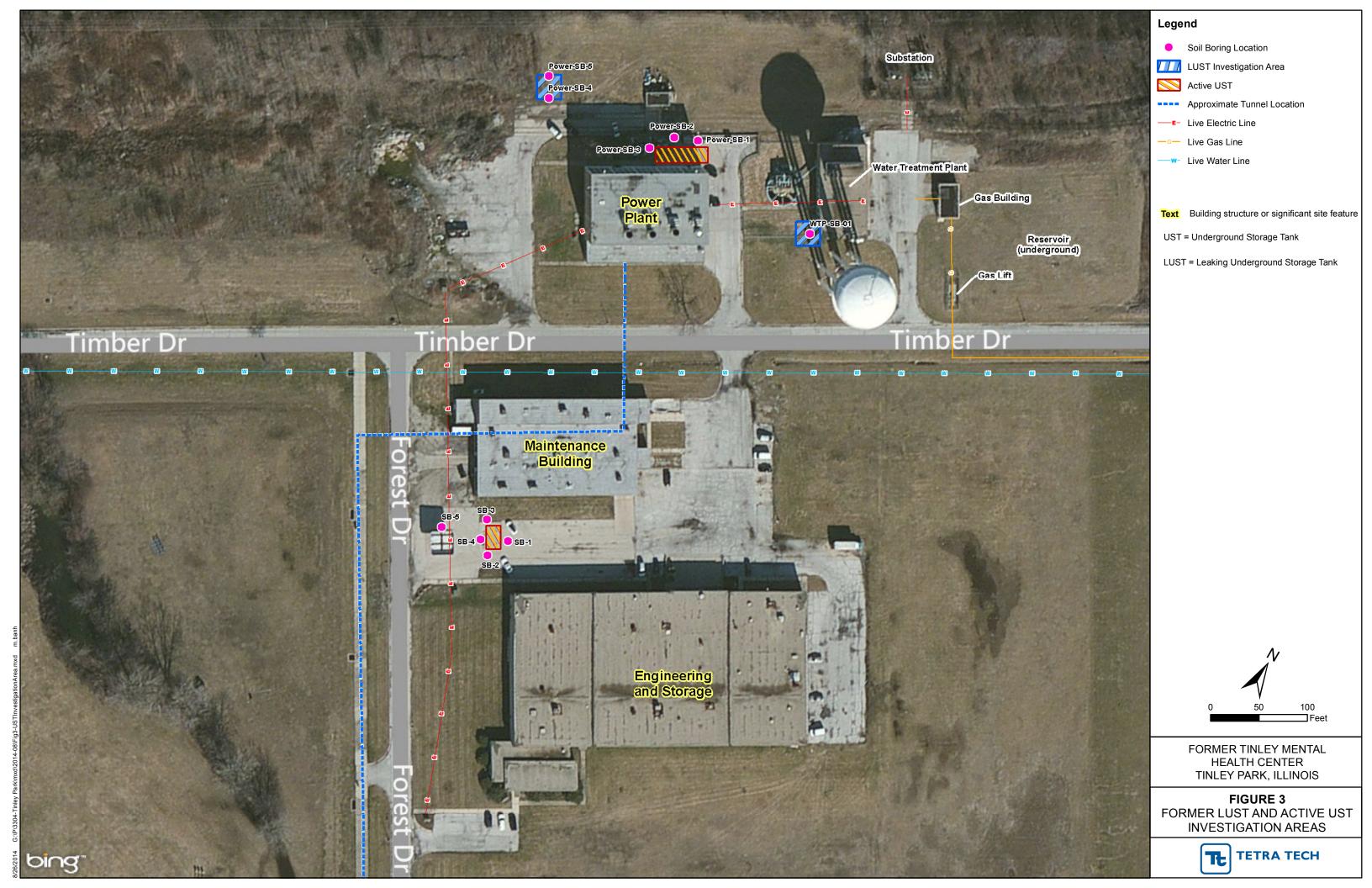
Generally, the results indicate only limited detections of contaminants at the site. Significant contamination was not found at the LUST, UST, and AST areas; however, issues remain that would have to be addressed through site closure under the LUST program or the Site Remediation Program. These issues include closure of the two open LUST incidents and removal of remaining USTs and UST systems within the Power Plant and Maintenance Building areas.

Other issues may require spot remediation of surface soil—including mercury detected in the Fluorescent Bulb Breaking Area in the Cedar Hall Area; lead in surface soil in the Power Plant Area; and the fill material just west of the Power Plant Area.

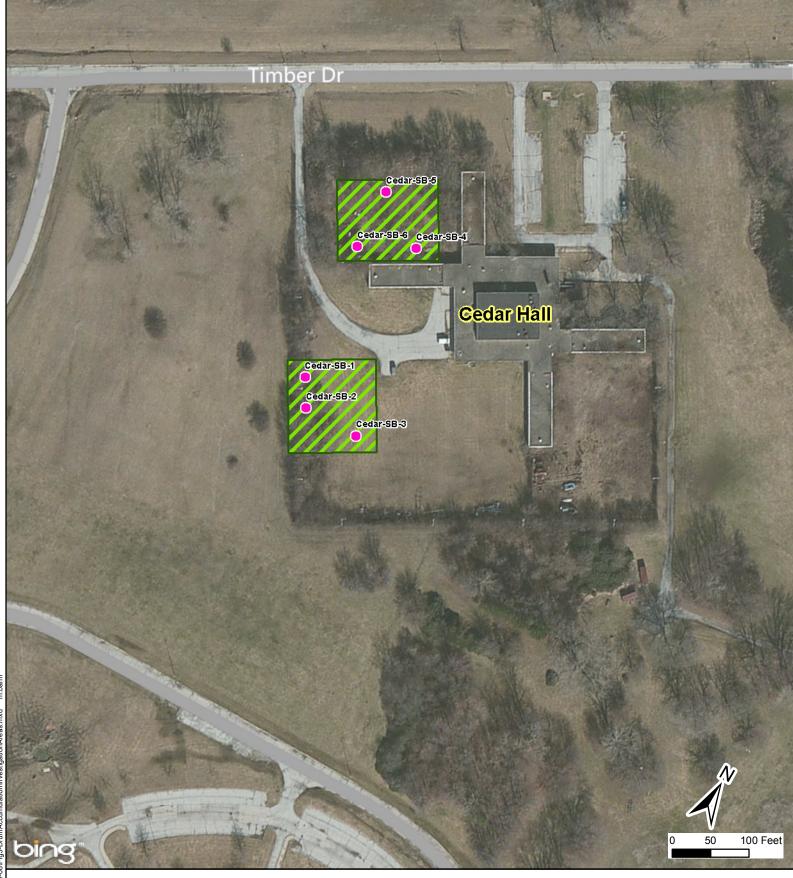

The soil sampling data acquired from the transformer areas suggest that soil contamination is not present within these areas, but that transformers in the Pine Hall and Power Plant Area may contain PCBs or may have contained PCBs in the past. Although PCBs were not detected in soil samples collected near the transformers, the transformers outside of the HDC are owned by the State of Illinois and are generally considered older transformers that would have contained PCB fluids at some earlier time. Even if they have been retrofitted, PCBs may be present in the dielectric fluids, and the transformers when removed will have to be managed as PCB-contaminated unless sampled and found not to contain PCBs. Sampling of dielectric fluid would require taking the transformers off line and sampling them; this was not within the scope of the Phase II site assessment.


The larger fill areas, including the large area west of the Power Plant and the Soccer Field Area, appear to contain mostly fill that can be reused if properly sorted to remove debris and then sampled to confirm that it meets MAC criteria or complies with TACO. Some results from both of these areas exceeded MAC criteria for soil reuse, but the large fill area west of the Power Plant does not appear to have any debris that would be a concern and was not found to contain any contaminants at concentrations above TACO Tier I ROs. The Soccer Field Area appears to contain debris at most locations; this area could either be managed in place, or, if necessary to develop the area, the soil could be screened to remove debris, sorted and sampled, and then managed on site if structurally suitable.

The lime pit sludge may have a beneficial reuse as a crop nutrient. If not suitable for reuse, it would have to be managed as a special or non-special waste, and removed.


6.0 REFERENCES

- ASTM International (ASTM). 2013. Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process. E 1527-13.
- Environmental Consulting Group (ECG). 2013a. Phase I Environmental Site Assessment, Tinley Park Mental Health Center and Howe Development Center, 7400 to 7600 W. 183rd Street. September 12.
- ECG. 2013b. Hazardous Materials Assessment, Tinley Park Mental Health Center and Howe Development Center, 7400 to 7600 W. 183rd Street. September 12.
- ECG. 2013c. Lead-Based Paint Report, Tinley Park Mental Health Center and Howe Development Center, 7400 to 7600 W. 183rd Street. September 23.
- ECG. 2013d. NESHAP Pre-Demolition Asbestos Inspection, Tinley Park Mental Health Center and Howe Development Center, 7400 to 7600 W. 183rd Street. September 25.
- ECG. 2014. Summary of Environmental Conditions, Tinley Park Mental Health Center and Howe Development Center, 7400 to 7600 W. 183rd Street. March 4.
- Gannett Fleming. 1995. Forty-Five Day Report for Illinois Emergency Management Agency Incident Number 951781. October 5.
- Gannett Fleming. 1996. Forty-Five Day Report for Illinois Emergency Management Agency Incident Number 952428. January 12.


400

TETRA TECH

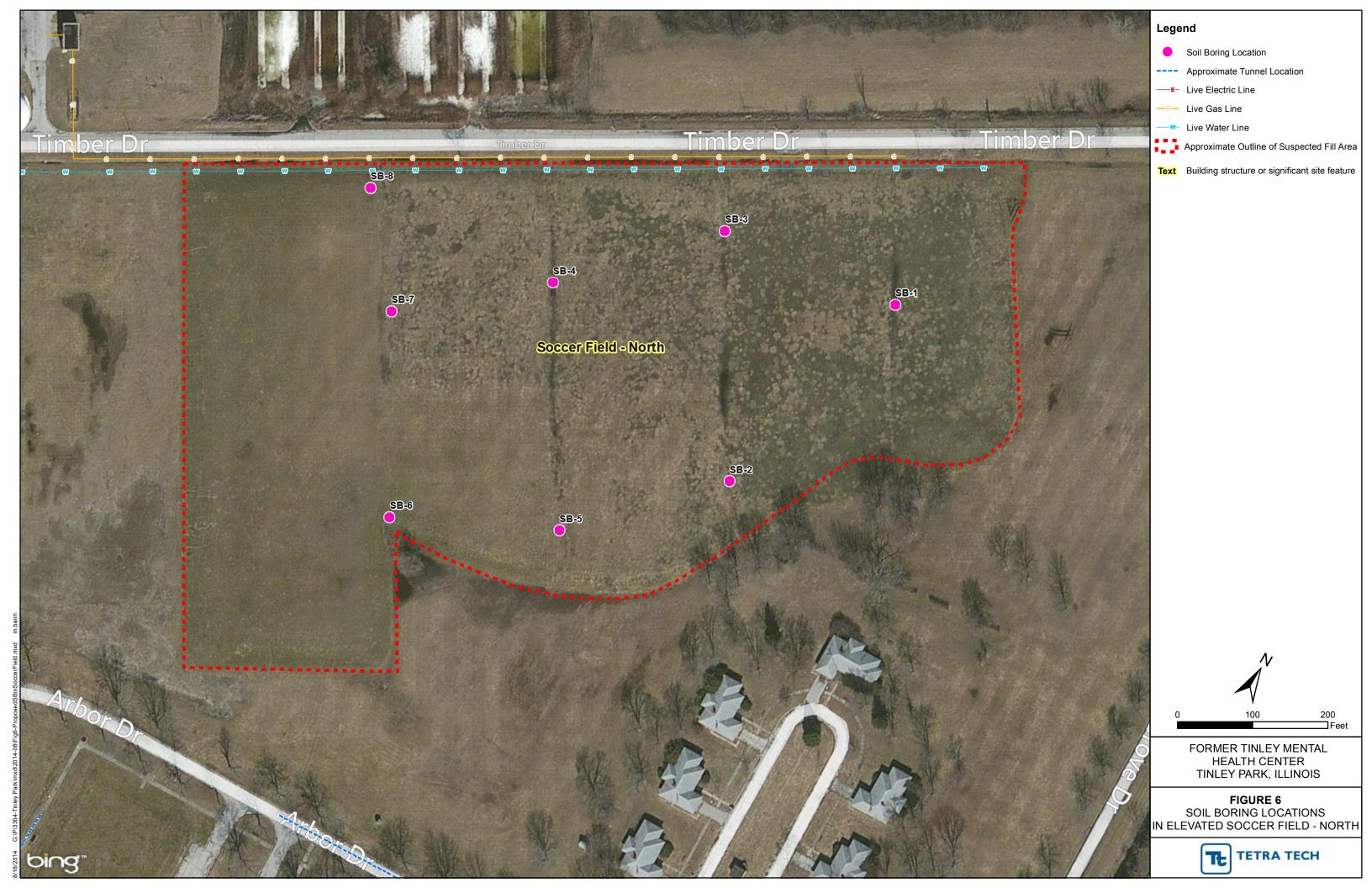
Howe Development Center AST Pad Area

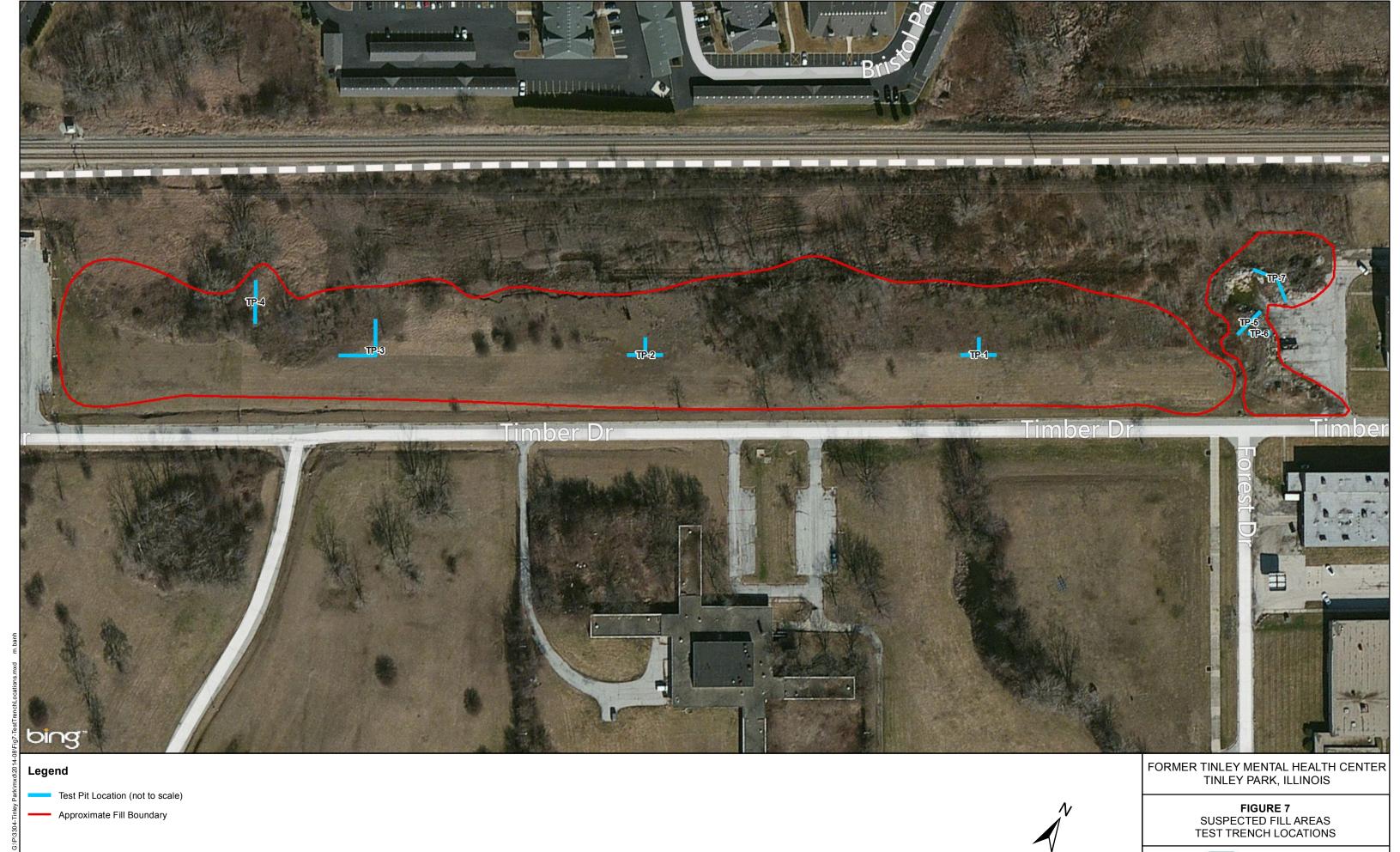
Approximate Site Boundary

(specific locations for five pads not shown)

Legend

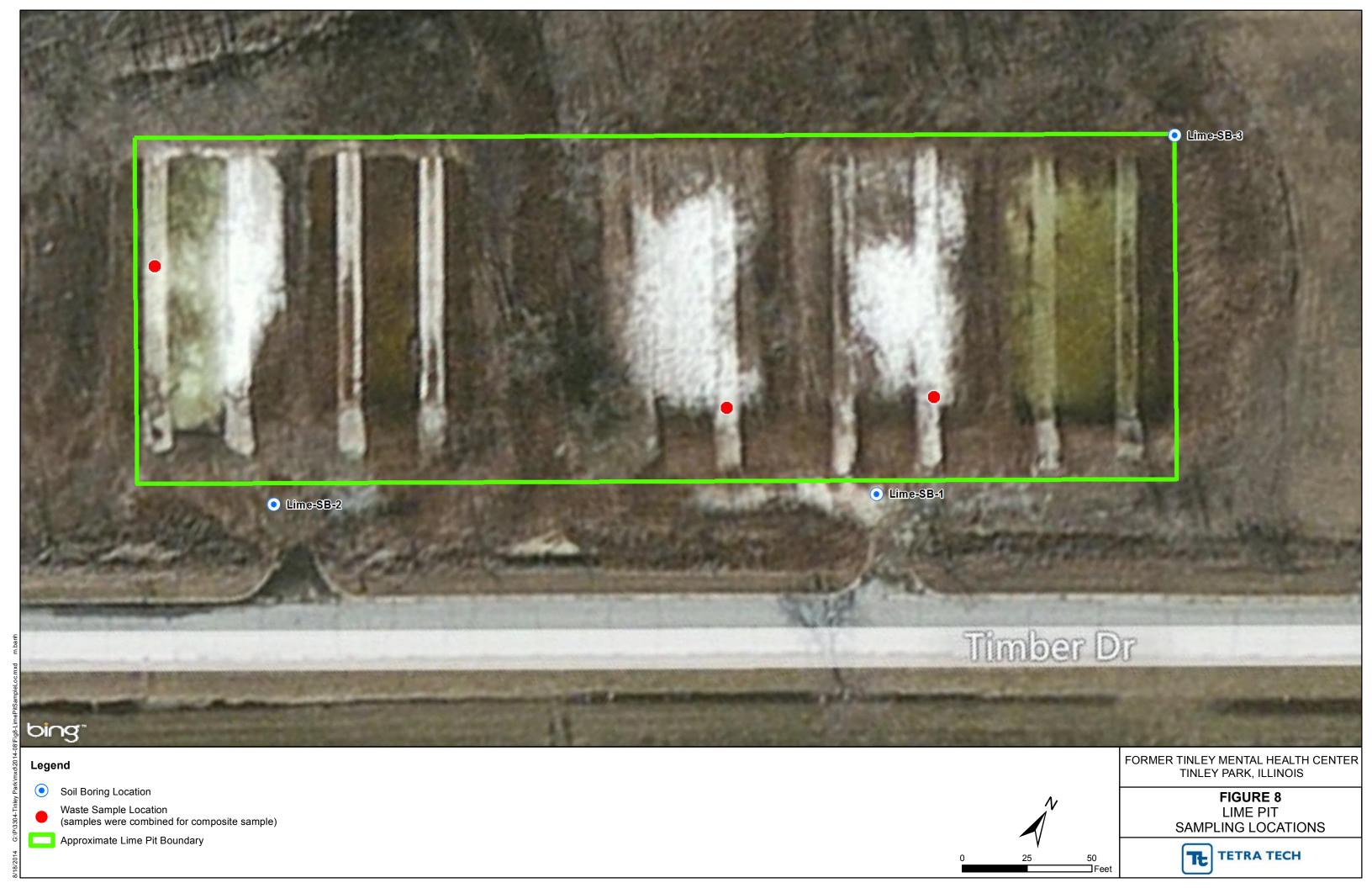
Soil Boring Location


Drum Accumulation Investigation Area

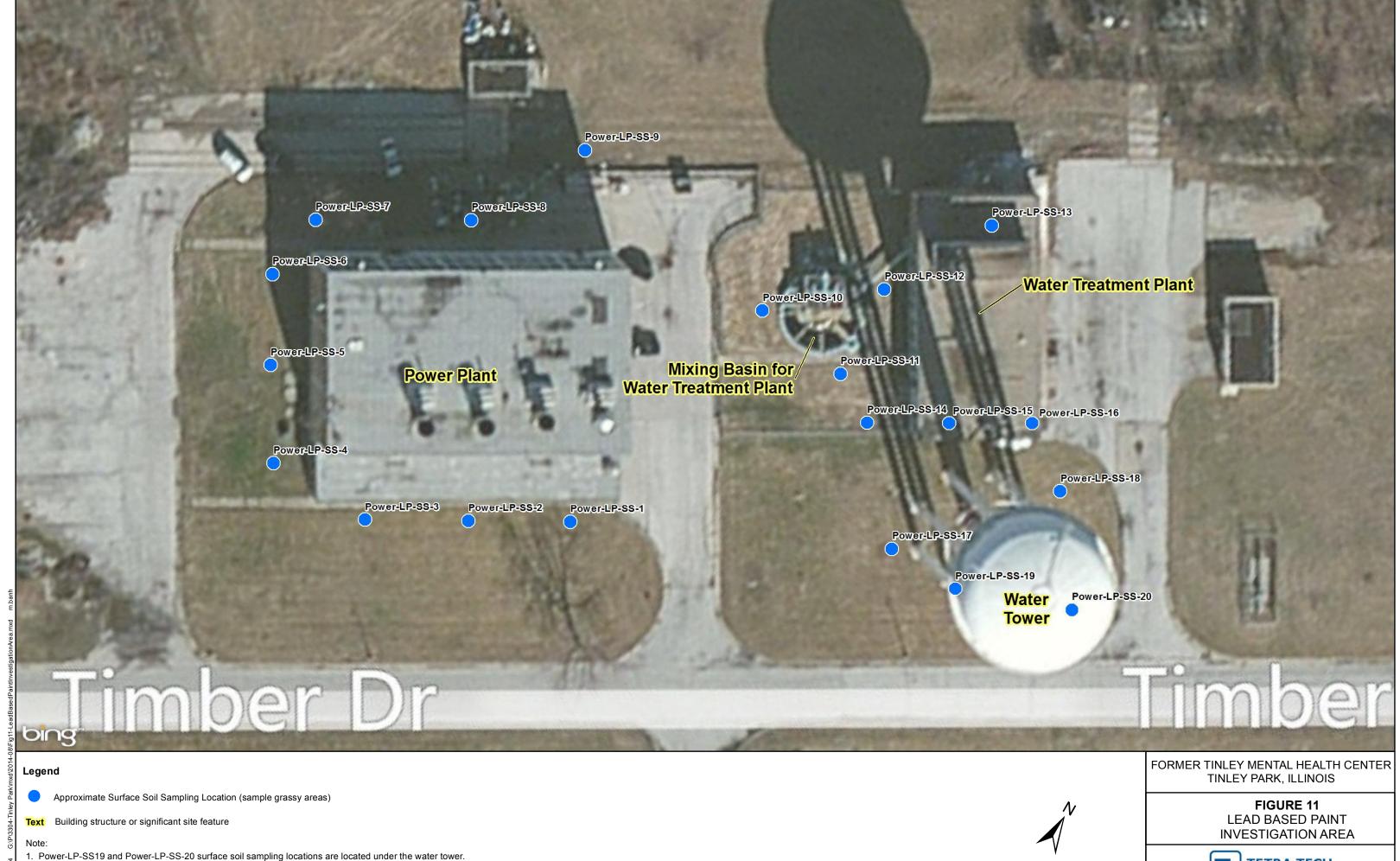

Text Building structure or significant site feature

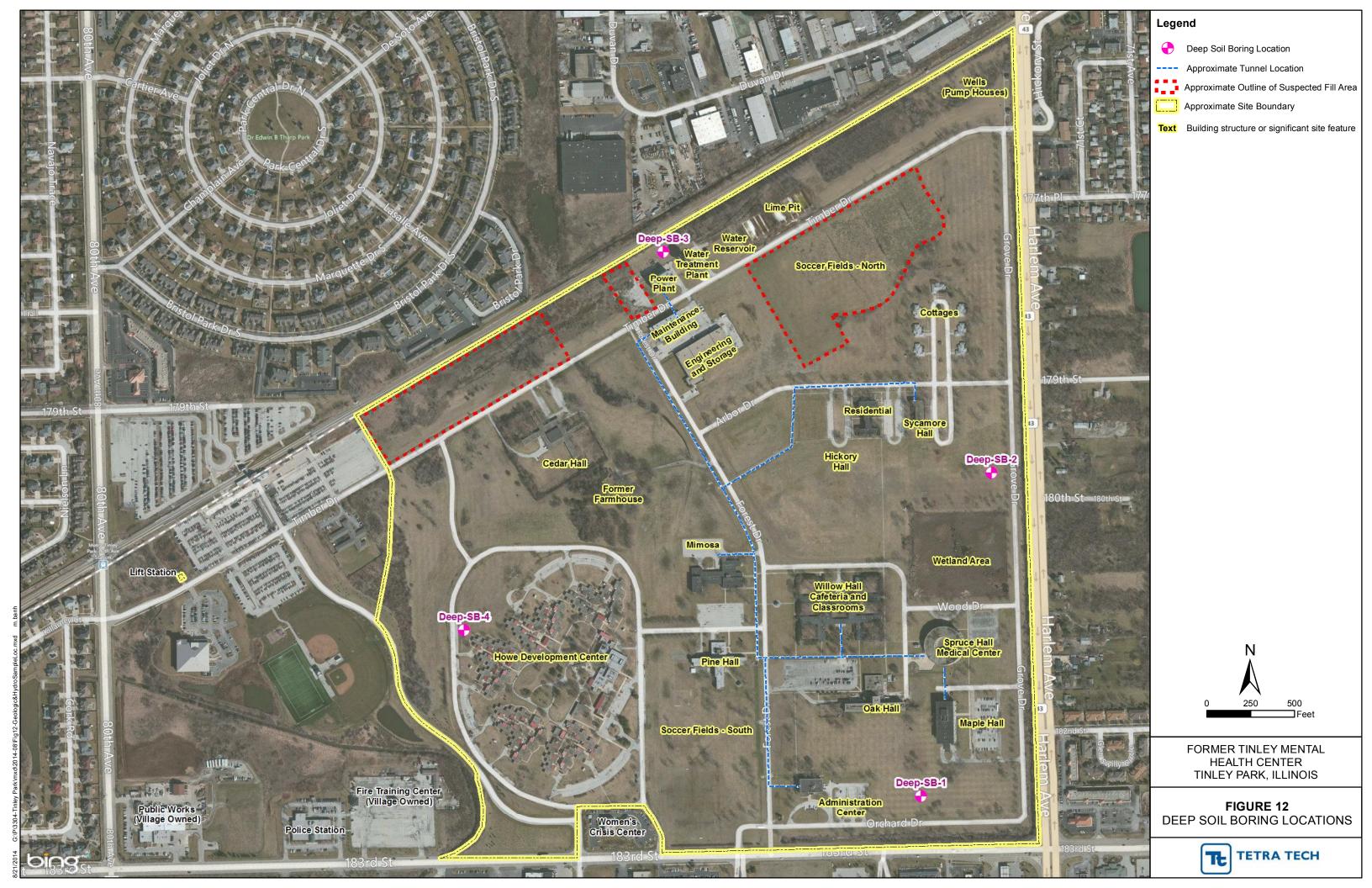
FORMER TINLEY MENTAL HEALTH CENTER TINLEY PARK, ILLINOIS

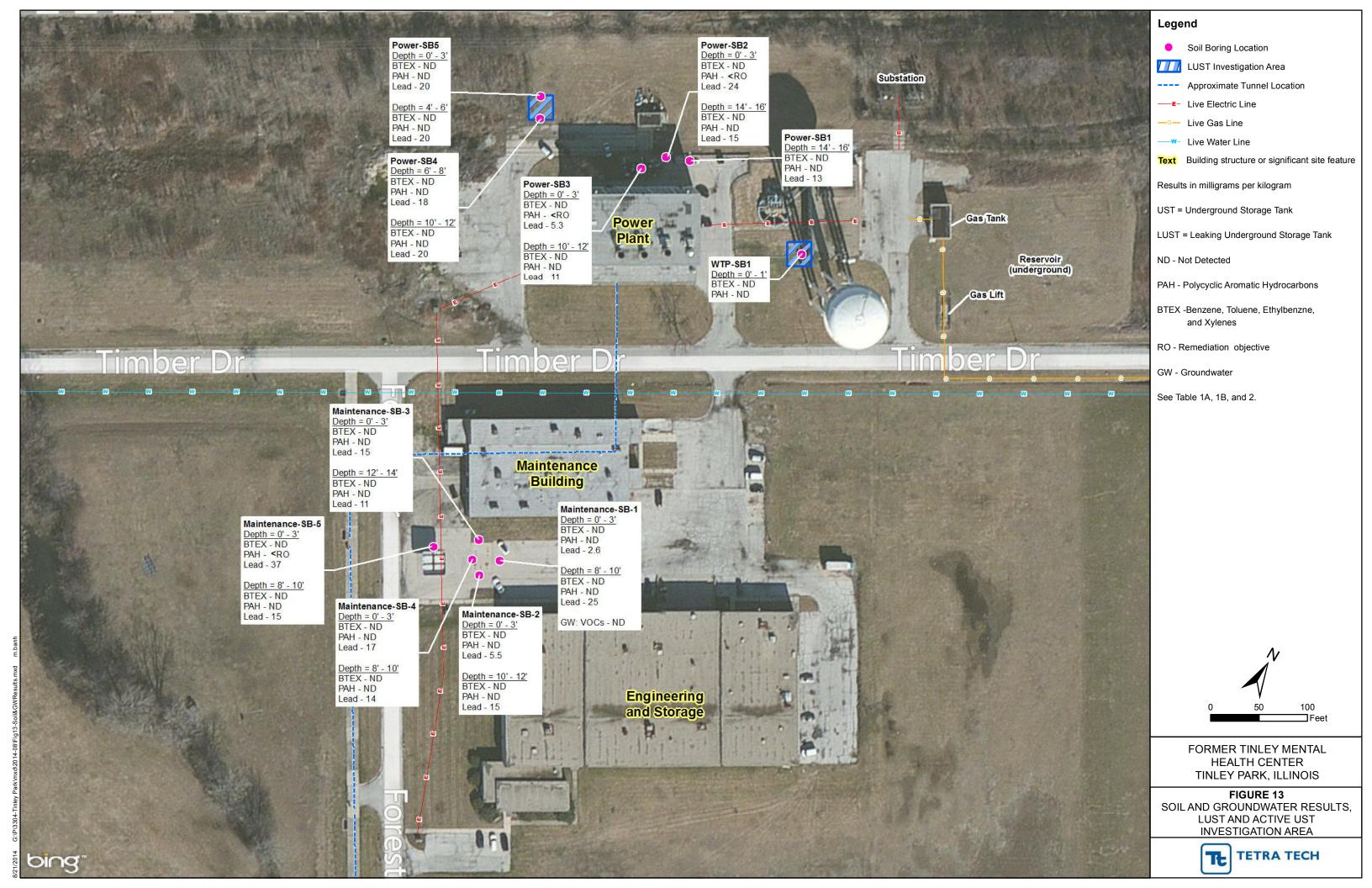
FIGURE 5
OUTSIDE DRUM ACCUMULATION
INVESTIGATION AREAS



TETRA TECH


200 ☐ Feel





TETRA TECH

200

400

TETRA TECH

Text Building structure or significant site feature

Live Water Line

Approximate Site Boundary

ND = Not detected

RO = Remediation objective

Legend

Soil Boring Location

Drum Accumulation Investigation Area

Text Building structure or significant site feature

RO = Remediation objective

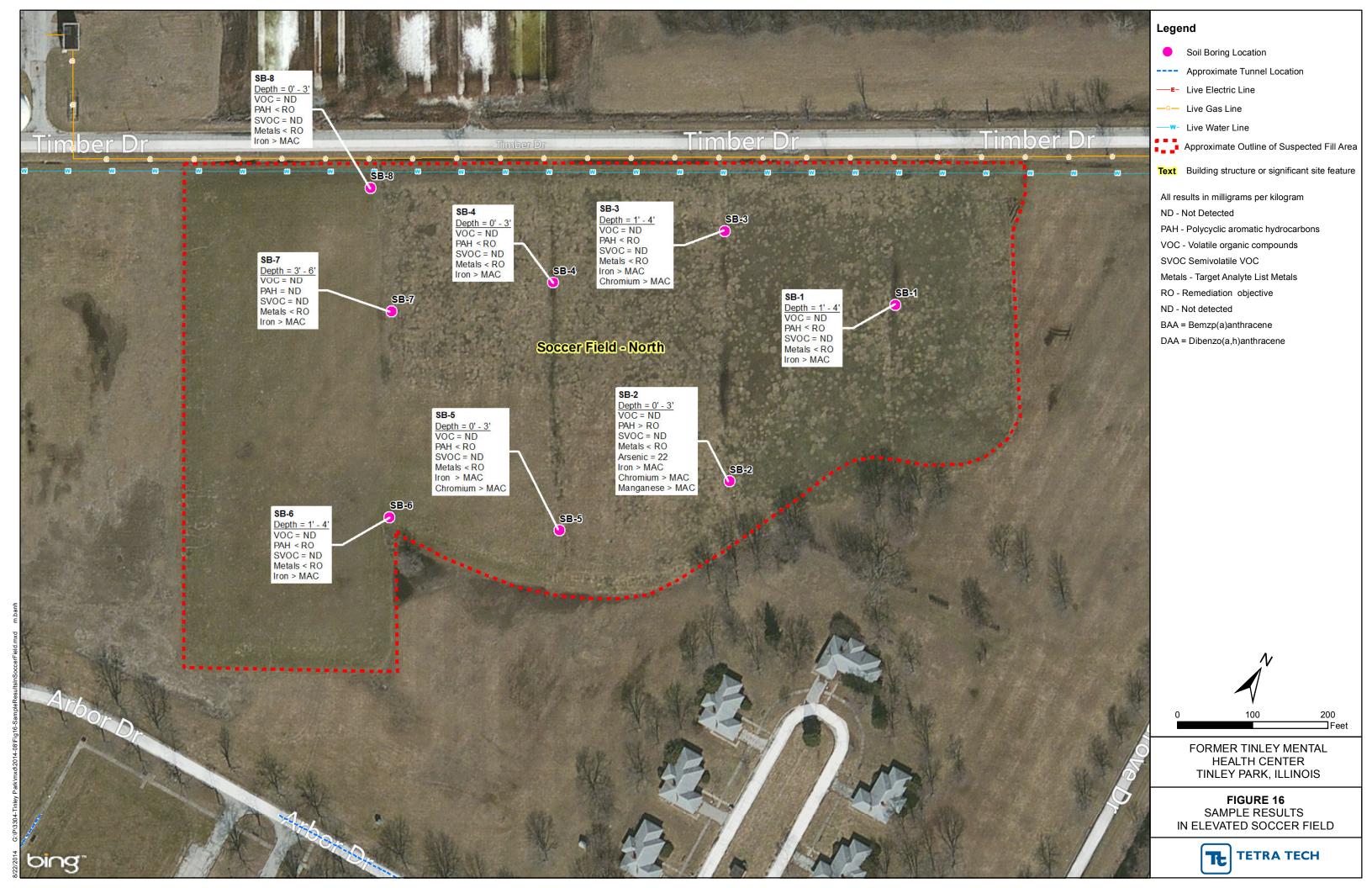
ND = Not detected

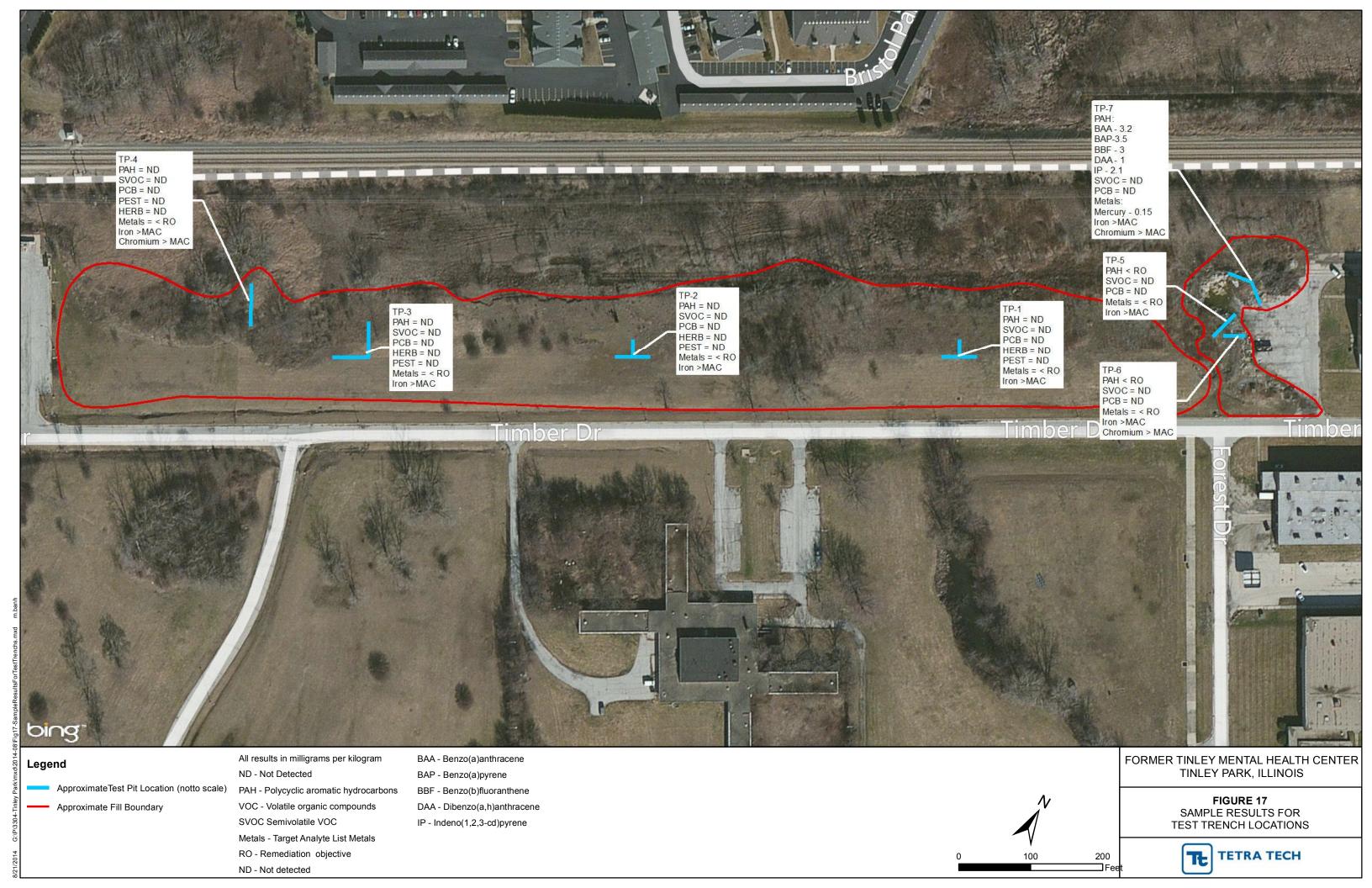
PAH = Polynuclear aromatic aydrocarbons

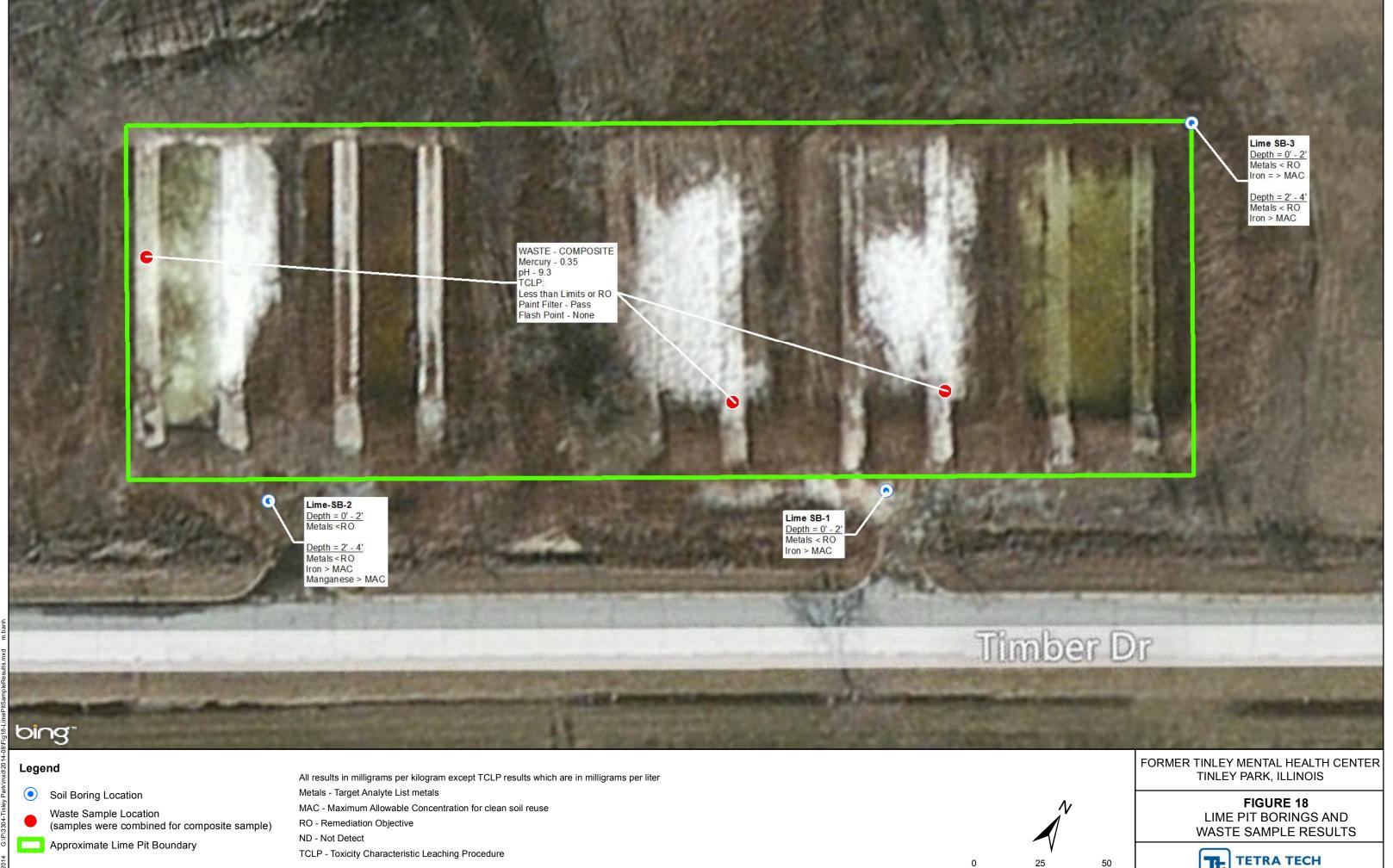
Metals = Target Analyte List metals

SVOC = Semivolatile organic compounds

VOC = Volatile organic compounds


MAC = Maximum allowable concentration for clean soil reuse


FORMER TINLEY MENTAL HEALTH CENTER TINLEY PARK, ILLINOIS


FIGURE 15

SAMPLE RESULTS OUTSIDE DRUM ACCUMULATION INVESTIGATION AREAS

TETRA TECH

50 Feet

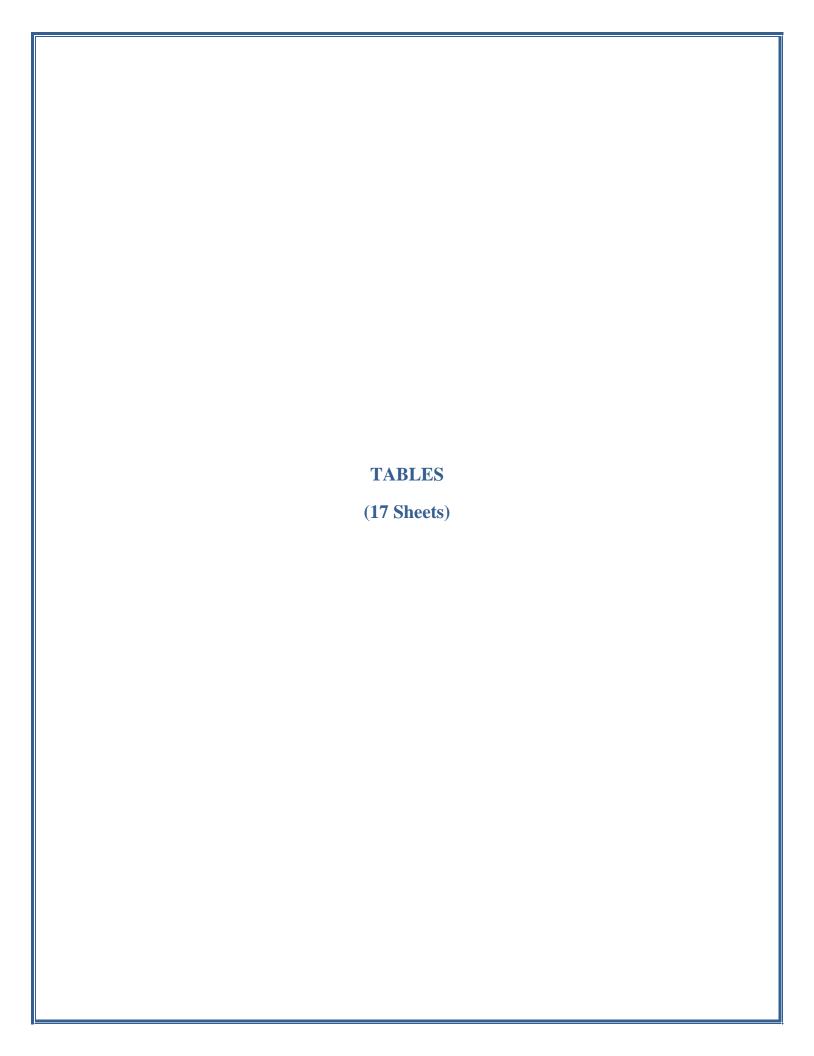


TABLE 1A SOIL RESULTS -- MAINTAINENCE AREA UNDERGROUND STORAGE TANK AREA

	T	_	1		Г							· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	1 1
							tory ID :	14070878-001	14070878-002	14070878-003	14070878-004	14070878-005	14070878-006	14070878-007	14070878-008	14070878-009	14070878-010	14070878-011
						Client Sar	T	Maint-SB-1-0003	Maint-SB-1-0810	Maint-SB-2-0003	Maint-SB-2-1012	Maint-SB-3-0003	Maint-SB-2-1012-D		Maint-SB-4-0003	Maint-SB-4-0810	Maint-SB-5-0003	Maint-SB-5-0810
						Date Co	ollected:	07/21/2014 09:23	07/21/2014 09:34	07/21/2014 10:53	07/21/2014 10:58	07/21/2014 13:50	07/21/2014 10:58	07/21/2014 14:23	07/21/2014 14:44	07/21/2014 15:02	07/21/2014 15:34	07/21/2014 15:45
					Soil Com	ponent of												
					Groundwate	er Ingestion												
			Route Specific	Values for Soil	Exposure R	oute Values												
	CAS No.	Analyte	Ingestion	Inhalation	Class I	Class II	MAC											
BTEX	71-43-2	Benzene	12	0.8	0.03	0.17	0.17	< 0.0048	< 0.0041	< 0.0055	< 0.0046	< 0.0044	< 0.0044	< 0.0046	< 0.0048	< 0.0046	< 0.0047	< 0.0042
	100-41-4	Ethylbenzene	7,800	400 / 58*	13	19	13	< 0.0048	< 0.0041	< 0.0055	< 0.0046	< 0.0044	< 0.0044	< 0.0046	< 0.0048	< 0.0046	< 0.0047	< 0.0042
	108-88-3	Toluene	16,000	650 / 42*	12	29	12	< 0.0048	< 0.0041	< 0.0055	< 0.0046	< 0.0044	< 0.0044	< 0.0046	< 0.0048	< 0.0046	< 0.0047	< 0.0042
	1330-20-7	Xylenes, Total	16,000	320 / 5.6*	150	150	5.6	< 0.014	< 0.012	< 0.017	< 0.014	< 0.013	< 0.013	< 0.014	< 0.014	< 0.014	< 0.014	< 0.012
PNA	83-32-9	Acenaphthene	4,700		570	2,900	570	< 0.034	< 0.037	< 0.034	< 0.038	< 0.034	< 0.038	< 0.039	0.069	< 0.038	< 0.038	< 0.042
	208-96-8	Acenaphthylene					NE	< 0.034	< 0.037	< 0.034	< 0.038	< 0.034	< 0.038	< 0.039	< 0.037	< 0.038	< 0.038	< 0.042
	120-12-7	Anthracene	23,000		12,000	59,000	12,000	< 0.034	< 0.037	< 0.034	< 0.038	< 0.034	< 0.038	< 0.039	0.096	< 0.038	0.040	< 0.042
	56-55-3	Benz(a)anthracene	0.9		2	8	1.8	< 0.034	< 0.037	< 0.034	< 0.038	< 0.034	< 0.038	< 0.039	0.29	< 0.038	0.13	< 0.042
	50-32-8	Benzo(a)pyrene	0.09		8	82	2.1	< 0.034	< 0.037	< 0.034	< 0.038	< 0.034	< 0.038	< 0.039	0.27	< 0.038	0.12	< 0.042
	205-99-2	Benzo(b)fluoranthene	0.9		5	25	2.1	< 0.034	< 0.037	< 0.034	< 0.038	< 0.034	< 0.038	< 0.039	0.29	< 0.038	0.13	< 0.042
	191-24-2	Benzo(g,h,i)perylene					NE	< 0.034	< 0.037	< 0.034	< 0.038	< 0.034	< 0.038	< 0.039	0.13	< 0.038	0.067	< 0.042
	207-08-9	Benzo(k)fluoranthene	9		49	250	2.1	< 0.034	< 0.037	< 0.034	< 0.038	< 0.034	< 0.038	< 0.039	0.23	< 0.038	0.11	< 0.042
	218-01-9	Chrysene	88		160	800	88	< 0.034	< 0.037	< 0.034	< 0.038	< 0.034	< 0.038	< 0.039	0.34	< 0.038	0.16	< 0.042
	53-70-3	Dibenz(a,h)anthracene	0.09		2	7.6	0.42	< 0.034	< 0.037	< 0.034	< 0.038	< 0.034	< 0.038	< 0.039	< 0.037	< 0.038	< 0.038	< 0.042
	206-44-0	Fluoranthene	3,100		4,300	21,000	3,100	< 0.034	< 0.037	< 0.034	< 0.038	< 0.034	< 0.038	< 0.039	0.70	< 0.038	0.31	< 0.042
	86-73-7	Fluorene	3,100		560	2,800	560	< 0.034	< 0.037	< 0.034	< 0.038	< 0.034	< 0.038	< 0.039	0.057	< 0.038	< 0.038	< 0.042
	193-39-5	Indeno(1,2,3-cd)pyrene	0.9		14	69	1.6	< 0.034	< 0.037	< 0.034	< 0.038	< 0.034	< 0.038	< 0.039	0.13	< 0.038	0.060	< 0.042
	91-20-3	Naphthalene	1,600	170 / 1.8*	12	18	1.8	< 0.034	< 0.037	< 0.034	< 0.038	< 0.034	< 0.038	< 0.039	< 0.037	< 0.038	< 0.038	< 0.042
	85-01-8	Phenanthrene					NE	< 0.034	< 0.037	< 0.034	< 0.038	< 0.034	< 0.038	< 0.039	0.54	< 0.038	0.19	< 0.042
	129-00-0	Pyrene	2,300		4,200	21,000	2,300	< 0.034	< 0.037	< 0.034	< 0.038	< 0.034	< 0.038	< 0.039	0.54	< 0.038	0.25	< 0.042
	7439-92-1	Lead	400				107	2.6	25	5.5	15	15	12	11	17	14	37	15
		pН						8.6	7.5	8.3	7.8	8.5	7.9	7.8	8.1	8.0	7.8	7.2

NA Not applicable
All results in milligrams per kilogram (mg/kg).

^{* -} Construction Worker Inhalation Objective from Appendix B, Table B.

24 Indicates that result exceeds either a Tier I Residential Remediation Objective, Construction Worker Inhalation Remediation Objective, or a Maximum Allowable Concentration (MAC) Threshold for Clean Soil Reuse

NE None established

TABLE 1B
GROUNDWATER -- MAINTANENCE BUILDING UNDERGROUND STORAGE TANK AREA

				Lab	oratory ID :	14070878-091
				Client	Sample ID :	Maint-GW-1
				Date	Collected:	07/21/2014 11:40
					dwater n Objective	
	CAS No.	Analyte	Units	Class I	Class II	
VOC	67-64-1	Acetone	mg/L	6.3	6.3	< 0.02
	71-43-2	Benzene	mg/L	0.005	0.025	< 0.005
	75-27-4	Bromodichloromethane	mg/L	0.0002	0.0002	< 0.005
	75-25-2	Bromoform	mg/L	0.001	0.001	< 0.005
	74-83-9	Bromomethane	mg/L	0.0098	0.049	< 0.01
	78-93-3	2-Butanone	mg/L			< 0.02
	75-15-0	Carbon disulfide	mg/L	0.7	3.5	< 0.01
	56-23-5	Carbon tetrachloride	mg/L	0.005	0.025	< 0.005
	108-90-7	Chlorobenzene	mg/L	0.1	0.5	< 0.005
	75-00-3	Chloroethane	mg/L			< 0.01
	67-66-3	Chloroform	mg/L	0.0002	0.001	< 0.005
	74-87-3	Chloromethane	mg/L			< 0.01
	124-48-1	Dibromochloromethane	mg/L	0.14	0.14	< 0.005
	75-34-3	1,1-Dichloroethane	mg/L	0.7	3.5	< 0.005
	107-06-2	1,2-Dichloroethane	mg/L	0.005	0.025	< 0.005
	75-35-4	1,1-Dichloroethene	mg/L	0.007	0.035	< 0.005
	156-59-2	cis-1,2-Dichloroethene	mg/L	0.07	0.2	< 0.005
	156-60-5	trans-1,2-Dichloroethene	mg/L	0.1	0.5	< 0.005
	78-87-5	1,2-Dichloropropane	mg/L	0.005	0.025	< 0.005
	10061-01-5	cis-1,3-Dichloropropene	mg/L	0.001	0.005	< 0.001
	10061-02-6	trans-1,3-Dichloropropene	mg/L	0.001	0.005	< 0.001
	100-41-4	Ethylbenzene	mg/L	0.7	1.0	< 0.005
	591-78-6	2-Hexanone	mg/L			< 0.02
	108-10-1	4-Methyl-2-pentanone	mg/L			< 0.02
	75-09-2	Methylene chloride	mg/L	0.005	0.05	< 0.005
	1634-04-4	Methyl tert-butyl ether	mg/L	0.07	0.07	< 0.005
	100-42-5	Styrene	mg/L	0.1	0.5	< 0.005
	79-34-5	1,1,2,2-Tetrachloroethane	mg/L			< 0.005
	127-18-4	Tetrachloroethene	mg/L	0.005	0.025	< 0.005
	108-88-3	Toluene	mg/L	1.0	2.5	< 0.005
	71-55-6	1,1,1-Trichloroethane	mg/L	0.2	1.0	< 0.005
	79-00-5	1,1,2-Trichloroethane	mg/L	0.005	0.05	< 0.005
	79-01-6	Trichloroethene	mg/L	0.005	0.025	< 0.005
	75-01-4	Vinyl chloride	mg/L	0.002	0.01	< 0.002
	1330-20-7	Xylenes, Total	mg/L	10.0	10.0	< 0.015

mg/L milligrams per liter

TABLE 2 - SOIL RESULTS FROM POWER HOUSE UST/LUST AREA

						Labora	itory ID :	14070878-027	14070878-028	14070878-029	14070878-030	14070878-031	14070878-032	14070878-033	14070878-034	14070878-035
						Client Sar	nple ID :	Power-SB-1-1416	Power-SB-2-0003	Power-SB-2-1416	Power-SB-3-0003	Power-SB-3-1012	Power-SB-4-0608	Power-SB-4-1012	Power-SB-5-0003	Power-SB-5-0406
						Date Co	ollected:	07/22/2014 14:10	07/22/2014 14:38	07/22/2014 14:40	07/23/2014 07:35	07/23/2014 07:40	07/23/2014 08:55	07/23/2014 09:00	07/23/2014 09:22	07/23/2014 09:27
					Soil Com	ponent of										
					Groundwate	er Ingestion										
			Route Specific	Values for Soil	Exposure R	oute Values										
	CAS No.	Analyte	Ingestion	Inhalation	Class I	Class II	MAC									
BTEX	71-43-2	Benzene	12	0.8	0.03	0.17	0.17	< 0.0047	< 0.0043	< 0.0045	< 0.0048	< 0.004	< 0.0058	< 0.0048	< 0.0054	< 0.0046
	100-41-4	Ethylbenzene	7,800	400 / 58*	13	19	13	< 0.0047	< 0.0043	< 0.0045	< 0.0048	< 0.004	< 0.0058	< 0.0048	< 0.0054	< 0.0046
	108-88-3	Toluene	16,000	650 / 42*	12	29	12	< 0.0047	< 0.0043	< 0.0045	< 0.0048	< 0.004	< 0.0058	< 0.0048	< 0.0054	< 0.0046
	1330-20-7	Xylenes, Total	16,000	320 / 5.6*	150	150	5.6	< 0.014	< 0.013	< 0.013	< 0.014	< 0.012	< 0.017	< 0.014	< 0.016	< 0.014
PNA	83-32-9	Acenaphthene	4,700		570	2,900	570	< 0.039	0.15	< 0.04	< 0.034	< 0.034	< 0.043	< 0.038	< 0.04	< 0.039
	208-96-8	Acenaphthylene					NE	< 0.039	< 0.034	< 0.04	< 0.034	< 0.034	< 0.043	< 0.038	< 0.04	< 0.039
	120-12-7	Anthracene	23,000		12,000	59,000	12,000	< 0.039	0.39	< 0.04	< 0.034	< 0.034	< 0.043	< 0.038	< 0.04	< 0.039
	56-55-3	Benz(a)anthracene	0.9		2	8	1.8	< 0.039	0.80	< 0.04	< 0.034	< 0.034	< 0.043	< 0.038	< 0.04	< 0.039
	50-32-8	Benzo(a)pyrene	0.09		8	82	2.1	< 0.039	0.81	< 0.04	< 0.034	< 0.034	< 0.043	< 0.038	< 0.04	< 0.039
	205-99-2	Benzo(b)fluoranthene	0.9		5	25	2.1	< 0.039	0.85	< 0.04	< 0.034	< 0.034	< 0.043	< 0.038	< 0.04	< 0.039
	191-24-2	Benzo(g,h,i)perylene					NE	< 0.039	0.45	< 0.04	< 0.034	< 0.034	< 0.043	< 0.038	< 0.04	< 0.039
	207-08-9	Benzo(k)fluoranthene	9		49	250	2.1	< 0.039	0.60	< 0.04	< 0.034	< 0.034	< 0.043	< 0.038	< 0.04	< 0.039
	218-01-9	Chrysene	88		160	800	88	< 0.039	0.83	< 0.04	< 0.034	< 0.034	< 0.043	< 0.038	< 0.04	< 0.039
	53-70-3	Dibenz(a,h)anthracene	0.09		2	7.6	0.42	< 0.039	0.20	< 0.04	< 0.034	< 0.034	< 0.043	< 0.038	< 0.04	< 0.039
	206-44-0	Fluoranthene	3,100		4,300	21,000	3,100	< 0.039	1.9	< 0.04	0.037	< 0.034	< 0.043	< 0.038	< 0.04	< 0.039
	86-73-7	Fluorene	3,100		560	2,800	560	< 0.039	0.16	< 0.04	< 0.034	< 0.034	< 0.043	< 0.038	< 0.04	< 0.039
	193-39-5	Indeno(1,2,3-cd)pyrene	0.9		14	69	1.6	< 0.039	0.40	< 0.04	< 0.034	< 0.034	< 0.043	< 0.038	< 0.04	< 0.039
	91-20-3	Naphthalene	1,600	170 / 1.8*	12	18	1.8	< 0.039	< 0.034	< 0.04	< 0.034	< 0.034	< 0.043	< 0.038	< 0.04	< 0.039
	85-01-8	Phenanthrene					NE	< 0.039	1.6	< 0.04	< 0.034	< 0.034	< 0.043	< 0.038	< 0.04	< 0.039
	129-00-0	Pyrene	2,300		4,200	21,000	2,300	< 0.039	1.6	< 0.04	0.036	< 0.034	< 0.043	< 0.038	< 0.04	< 0.039
	Inorganics															
	7439-92-1	Lead	400				107	13	24	15	5.3	11	18	20	20	20
		рH					NA	7.8	9.0	8.1	8.9	7.9	8.4	8.3	8.1	7.6

^{* -} Construction Worker Inhalation Objective from Appendix B, Table B.

Indicates that result exceeds either a Tier I Residential Remediation Objective, Construction Worker Inhalation Remediation Objective, or a Maximum Allowable Concentration (MAC) Threshold for Clean Soil Reuse

NE None established

NA Not applicable

All results in milligram per kilogram (mg/kg).

						Labora	tory ID :	14080039-005	14080039-006	14080039-007	14080039-008	14080039-009	14080039-010	14080039-014	14080039-015	14080039-016	14080039-017
						Client Sar		HDC-AST-SB-1	HDC-AST-SB-1-D		HDC-AST-SB-3	HDC-AST-SB-4	HDC-AST-SB-5	Oak -UST-SB- 1		Maple -UST-SB- 1	
					Soil Com		ollected :	07/31/2014 11:25	07/31/2014 11:25	07/31/2014 11:55	07/31/2014 13:20	07/31/2014 13:45	07/31/2014 14:10	08/01/2014 09:45	08/01/2014 10:30	08/01/2014 13:45	08/01/2014 14:00
					Groundwate												
			Route Specific	Values for Soil	Exposure R			_									
	CAS No.	Analyte	Ingestion	Inhalation	Class I	Class II	MAC										
BTEX	71-43-2 100-41-4	Benzene Ethylbenzene	12 7,800	0.8 400 / 58*	0.03 13	0.17	0.17 13	< 0.0048 < 0.0048	< 0.0074 < 0.0074	< 0.0042 < 0.0042	0.039 < 0.0038	< 0.0046 < 0.0046	< 0.0043 < 0.0043		< 0.006 < 0.006	< 0.0058 < 0.0058	< 0.0062 < 0.0062
	100-41-4	Toluene	16,000	650 / 42*	12	19 29	12	< 0.0048	< 0.0074	< 0.0042	0.0038	< 0.0046	< 0.0043		< 0.006	< 0.0058	< 0.0062
	1330-20-7	Xylenes, Total	16,000	320 / 5.6*	150	150	5.6	< 0.014	< 0.022	< 0.013	< 0.011	< 0.014	< 0.013		< 0.018	< 0.017	< 0.019
VOC	67-64-1	Acetone	70,000	100,000	25	25	25							< 0.072			
	71-43-2 75-27-4	Benzene Bromodichloromethane	12 10	0.8 3,000	0.03 0.6	0.17 0.6	0.17 0.6							< 0.0048 < 0.0048			
	75-27-4 75-25-2	Bromoform	81	53	0.8	0.8	0.8							< 0.0048			
	74-83-9	Bromomethane	110	10 / 3.9*	0.2	1.2	0.2							< 0.0096			
	78-93-3	2-Butanone	7.000	720	22	1.00	NE							< 0.072			
	75-15-0 56-23-5	Carbon disulfide Carbon tetrachloride	7,800 5	720 0.3	32 0.07	160 0.33	32 0.07							< 0.048 < 0.0048			
	108-90-7	Chlorobenzene	1,600	130 / 1.3*	1	6.5	1							< 0.0048			
	75-00-3	Chloroethane					NE							< 0.0096			
	67-66-3	Chloroform	100	0.3	0.6	2.9	0.3							< 0.0048			
	74-87-3 124-48-1	Chloromethane Dibromochloromethane	1,600	1,300	0.4	0.4	NE 0.4							< 0.0096 < 0.0048			
	75-34-3	1,1-Dichloroethane	7,800	1,300 / 130*	23	110	23							< 0.0048			
	107-06-2	1,2-Dichloroethane	7	0.4	0.02	0.1	002							< 0.0048			
	75-35-4	1,1-Dichloroethene	3,900	290 / 3.0*	0.06	0.3	0.06							< 0.0048			
	156-59-2 156-60-5	cis-1,2-Dichloroethene trans-1,2-Dichloroethene	780 1,600	1,200 3,100	0.4 0.7	1.1 3.4	0.4 0.7							< 0.0048 < 0.0048			
	78-87-5	1,2-Dichloropropane	9	15 / 0.50*	0.03	0.15	0.03							< 0.0048			
	10061-01-5	cis-1,3-Dichloropropene	6.4	1.1 / 0.39*	0.004	0.02	0.005							< 0.0019			
		trans-1,3-Dichloropropene	6.4	1.1 / 0.39*	0.004	0.02	0.005							< 0.0019			
	100-41-4 591-78-6	Ethylbenzene 2-Hexanone	7,800	400 / 58*	13	19	13 NE							< 0.0048 < 0.019			
	108-10-1	4-Methyl-2-pentanone					NE							< 0.019			
	75-09-2	Methylene chloride	85	13	0.02	0.2	0.02							< 0.0096			
	1634-04-4 100-42-5	Methyl tert-butyl ether Styrene	780 16,000	8,800 / 140* 1,500 / 430*	0.32 4	0.32 18	0.32							< 0.0048 < 0.0048			
	79-34-5	1,1,2,2-Tetrachloroethane	10,000	1,300 / 430**	4	10	NE							< 0.0048			
	127-18-4	Tetrachloroethene	12	11	0.06	0.3	0.06							< 0.0048			
	108-88-3	Toluene	16,000	650 / 42*	12	29	12							< 0.0048			
	71-55-6 79-00-5	1,1,1-Trichloroethane 1,1,2-Trichloroethane	310	1,200 1,800	2 0.02	9.6 0.3	2 0.02							< 0.0048 < 0.0048			
	79-00-3 79-01-6	Trichloroethene	58	5	0.02	0.3	0.02							< 0.0048			
	75-01-4	Vinyl chloride	0.46	0.28	0.01	0.07	0.01							< 0.0048			
D) I I	1330-20-7	Xylenes, Total	16,000	320 / 5.6*	150	150	5.6	0.042	0.044	0.020	0.020	0.044	0.04	< 0.014	0.020	0.020	0.04
PNA	83-32-9 208-96-8	Acenaphthene Acenaphthylene	4,700		570	2,900	570 NE	< 0.042 < 0.042	< 0.041 < 0.041	< 0.039 < 0.039	< 0.038 < 0.038	< 0.041 < 0.041	< 0.04 < 0.04	< 0.039 < 0.039	< 0.039 < 0.039	< 0.038 < 0.038	< 0.04 < 0.04
	120-12-7	Anthracene	23,000		12,000	59,000	12,000	< 0.042	< 0.041	< 0.039	< 0.038	< 0.041	< 0.04	< 0.039	< 0.039	< 0.038	< 0.04
	56-55-3	Benz(a)anthracene	0.9		2	8	1.8	< 0.042	< 0.041	< 0.039	< 0.038	< 0.041	< 0.04	< 0.039	< 0.039	< 0.038	< 0.04
	50-32-8	Benzo(a)pyrene	0.09		8	82	2.1	< 0.042	< 0.041	< 0.039	< 0.038	< 0.041	< 0.04	< 0.039	< 0.039	< 0.038	< 0.04
	205-99-2 191-24-2	Benzo(b)fluoranthene Benzo(g,h,i)perylene	0.9		5	25	2.1 NE	< 0.042 < 0.042	< 0.041 < 0.041	< 0.039 < 0.039	< 0.038 < 0.038	< 0.041 < 0.041	< 0.04 < 0.04	< 0.039 < 0.039	< 0.039 < 0.039	< 0.038 < 0.038	< 0.04 < 0.04
	207-08-9	Benzo(k)fluoranthene	9		49	250	2.1	< 0.042	< 0.041	< 0.039	< 0.038	< 0.041	< 0.04	< 0.039	< 0.039	< 0.038	< 0.04
	218-01-9	Chrysene	88		160	800	88	< 0.042	< 0.041	< 0.039	< 0.038	< 0.041	< 0.04	< 0.039	< 0.039	< 0.038	< 0.04
	53-70-3 206-44-0	Dibenz(a,h)anthracene Fluoranthene	0.09		2 4,300	7.6 21,000	0.42	< 0.042 < 0.042	< 0.041 < 0.041	< 0.039	< 0.038 < 0.038	< 0.041 < 0.041	< 0.04 < 0.04	< 0.039 < 0.039	< 0.039 < 0.039	< 0.038 < 0.038	< 0.04
	206-44-0 86-73-7	Fluorantnene Fluorene	3,100 3,100		4,300 560	21,000	3,100 560	< 0.042 < 0.042	< 0.041 < 0.041	< 0.039 < 0.039	< 0.038 < 0.038	< 0.041 < 0.041	< 0.04 < 0.04	< 0.039 < 0.039	< 0.039 < 0.039	< 0.038 < 0.038	< 0.04 < 0.04
	193-39-5	Indeno(1,2,3-cd)pyrene	0.9		14	69	1.6	< 0.042	< 0.041	< 0.039	< 0.038	< 0.041	< 0.04	< 0.039	< 0.039	< 0.038	< 0.04
	91-20-3	Naphthalene	1,600	170 / 1.8*	12	18	1.8	< 0.042	< 0.041	< 0.039	< 0.038	< 0.041	< 0.04	< 0.039	< 0.039	< 0.038	< 0.04
1	85-01-8 129-00-0	Phenanthrene Pyrene	2,300		4,200	21,000	NE 2,300	< 0.042 < 0.042	< 0.041 < 0.041	< 0.039 < 0.039	< 0.038 < 0.038	< 0.041 < 0.041	< 0.04 < 0.04	< 0.039 < 0.039	< 0.039 < 0.039	< 0.038 < 0.038	< 0.04 < 0.04
	7439-92-1	Lead	400		4,200	41,000	107	< U.U4∠	< U.U41	< 0.033	< 0.030	< U.U41	< U.U4	< 0.039 21	23	< 0.038 19	< 0.04
	, .0, ,4 1		100				101								20		

- * Construction Worker Inhalation Objective from Appendix B, Table B.

 24 Indicates that result exceeds either a Tier I Residential Remediation Objective, Construction Worker Inhalation Remediation Objective, or a Maximum Allowable Concentration (MAC) Threshold for Clean Soil Reuse
- None established NE
- NA Not applicable
 - All results in milligram per kilograms (mg/kg).

					Laborat	ory ID :	14070878-036	14070878-037	14070878-038	14070878-072	14070878-073	14070878-074	14070878-092	14070878-093	14080039-012	14080039-013	14070878-094
										Power-OD-SB-1-0608	Power-OD-SB-2-0507	Power-OD-SB-2-0507-D	Cedar-SB-1-0003	Cedar-SB-2-0003	PP -SB-1A	PP -SB- 2A	Power-OD-SB-3-0507
				Soil Com	ponent of	nectea :	07/23/2014 10:02	07/23/2014 10:18	07/23/2014 10:40	07/23/2014 13:40	07/23/2014 14:25	07/23/2014 14:25	07/23/2014 11:10	07/23/2014 12:20	07/31/2014 10:15	07/31/2014 10:44	07/23/2014 14:50
				Groundwate													
		Route Specific	Values for Soil	Exposure R	oute Values												
CAS No.	Analyte	Ingestion	Inhalation	Class I	Class II												
67-64-1	Acetone	70,000	100,000	25	25	25 0.17	< 0.077	0.10 < 0.0056	< 0.073	0.16	< 0.079	< 0.07	0.14 < 0.0058	0.12	< 0.065	< 0.079 < 0.0053	< 0.072
1-43-2 5-27-4	Benzene Bromodichloromethane	12	0.8 3,000	0.03	0.17 0.6	0.17	< 0.0052 < 0.0052	< 0.0056	< 0.0049 < 0.0049	0.0053 < 0.0045	< 0.0053 < 0.0053	< 0.0047 < 0.0047	< 0.0058	< 0.0052 < 0.0052	< 0.0043 < 0.0043	< 0.0053	< 0.0048 < 0.0048
5-25-2	Bromoform	81	53	0.8	0.8	0.8	< 0.0052	< 0.0056	< 0.0049	< 0.0045	< 0.0053	< 0.0047	< 0.0058	< 0.0052	< 0.0043	< 0.0053	< 0.0048
	Bromomethane	110	10 / 3.9*	0.2	1.2	0.2	< 0.01	< 0.011	< 0.0097	< 0.009	< 0.011	< 0.0094	< 0.012	< 0.01	< 0.0087	< 0.011	< 0.0096
8-93-3	2-Butanone Carbon disulfide	7,800	720	22	160	NE	< 0.077 < 0.052	< 0.084 < 0.056	< 0.073 < 0.049	< 0.067	< 0.079 < 0.053	< 0.07 < 0.047	< 0.087 < 0.058	< 0.077 < 0.052	< 0.065 < 0.043	< 0.079 < 0.053	< 0.072 < 0.048
75-15-0 76-23-5	Carbon disulide Carbon tetrachloride	7,800	720	0.07	160 0.33	32 0.07	< 0.052	< 0.0056	< 0.049	< 0.045 < 0.0045	< 0.053	< 0.047	< 0.058	< 0.052	< 0.043	< 0.0053	< 0.048
	Chlorobenzene	1,600	130 / 1.3*	1	6.5	1	< 0.0052	< 0.0056	< 0.0049	< 0.0045	< 0.0053	< 0.0047	< 0.0058	< 0.0052	< 0.0043	< 0.0053	< 0.0048
	Chloroethane					NE	< 0.01	< 0.011	< 0.0097	< 0.009	< 0.011	< 0.0094	< 0.012	< 0.01	< 0.0087	< 0.011	< 0.0096
	Chloroform Chloromethane	100	0.3	0.6	2.9	0.3	< 0.0052	< 0.0056	< 0.0049 < 0.0097	< 0.0045 < 0.009	< 0.0053	< 0.0047 < 0.0094	< 0.0058	< 0.0052	< 0.0043 < 0.0087	< 0.0053	< 0.0048 < 0.0096
 24-48-1	Dibromochloromethane	1.600	1,300	0.4	0.4	NE 0.4	< 0.01 < 0.0052	< 0.011 < 0.0056	< 0.0097 < 0.0049	< 0.009	< 0.011 < 0.0053	< 0.0094	< 0.012 < 0.0058	< 0.01 < 0.0052	< 0.0087	< 0.011 < 0.0053	< 0.0048
5-34-3	1,1-Dichloroethane	7,800	1,300 / 130*	23	110	23	< 0.0052	< 0.0056	< 0.0049	< 0.0045	< 0.0053	< 0.0047	< 0.0058	< 0.0052	< 0.0043	< 0.0053	< 0.0048
07-06-2	1,2-Dichloroethane	7	0.4	0.02	0.1	002	< 0.0052	< 0.0056	< 0.0049	< 0.0045	< 0.0053	< 0.0047	< 0.0058	< 0.0052	< 0.0043	< 0.0053	< 0.0048
5-35-4	1,1-Dichloroethene	3,900	290 / 3.0*	0.06	0.3	0.06	< 0.0052	< 0.0056	< 0.0049	< 0.0045	< 0.0053	< 0.0047	< 0.0058	< 0.0052	< 0.0043	< 0.0053	< 0.0048
56-59-2 56-60-5	cis-1,2-Dichloroethene trans-1,2-Dichloroethene	780 1,600	1,200 3,100	0.4	1.1 3.4	0.4	< 0.0052 < 0.0052	< 0.0056 < 0.0056	< 0.0049 < 0.0049	< 0.0045 < 0.0045	< 0.0053 < 0.0053	< 0.0047 < 0.0047	< 0.0058 < 0.0058	< 0.0052 < 0.0052	< 0.0043 < 0.0043	< 0.0053 < 0.0053	< 0.0048 < 0.0048
8-87-5	1,2-Dichloropropane	9	15 / 0.50*	0.03	0.15	0.03	< 0.0052	< 0.0056	< 0.0049	< 0.0045	< 0.0053	< 0.0047	< 0.0058	< 0.0052	< 0.0043	< 0.0053	< 0.0048
	cis-1,3-Dichloropropene	6.4	1.1 / 0.39*	0.004	0.02	0.005	< 0.0021	< 0.0022	< 0.0019	< 0.0018	< 0.0021	< 0.0019	< 0.0023	< 0.0021	< 0.0017	< 0.0021	< 0.0019
	trans-1,3-Dichloropropene Ethylbenzene	6.4	1.1 / 0.39*	0.004	0.02	0.005	< 0.0021 < 0.0052	< 0.0022 < 0.0056	< 0.0019	< 0.0018 0.023	< 0.0021 < 0.0053	< 0.0019	< 0.0023 < 0.0058	< 0.0021 < 0.0052	< 0.0017	< 0.0021	< 0.0019 < 0.0048
00-41-4	2-Hexanone	7,800	400 / 58*	13	19	13 NE	< 0.0032	< 0.0036	< 0.0049 < 0.019	< 0.018	< 0.0053	< 0.0047 < 0.019	< 0.0038	< 0.0032	< 0.0043 < 0.017	< 0.0053 < 0.021	< 0.0048
 08-10-1	4-Methyl-2-pentanone					NE	< 0.021	< 0.022	< 0.019	< 0.018	< 0.021	< 0.019	< 0.023	< 0.021	< 0.017	< 0.021	< 0.019
	Methylene chloride	85	13	0.02	0.2	0.02	< 0.01	< 0.011	< 0.0097	< 0.009	< 0.011	< 0.0094	< 0.012	< 0.01	< 0.0087	< 0.011	< 0.0096
634-04-4	Methyl tert-butyl ether	780	8,800 / 140*	0.32	0.32	0.32	< 0.0052 < 0.0052	< 0.0056 < 0.0056	< 0.0049	< 0.0045	< 0.0053 < 0.0053	< 0.0047	< 0.0058	< 0.0052 < 0.0052	< 0.0043	< 0.0053	< 0.0048
 00-42-5	Styrene 1,1,2,2-Tetrachloroethane	16,000	1,500 / 430*	4	18	NE	< 0.0052 < 0.0052	< 0.0056	< 0.0049 < 0.0049	< 0.0045 < 0.0045	< 0.0053	< 0.0047 < 0.0047	< 0.0058 < 0.0058	< 0.0052 < 0.0052	< 0.0043 < 0.0043	< 0.0053 < 0.0053	< 0.0048 < 0.0048
	Tetrachloroethene	12	11	0.06	0.3	0.06	< 0.0052	< 0.0056	< 0.0049	< 0.0045	< 0.0053	< 0.0047	< 0.0058	< 0.0052	< 0.0043	< 0.0053	< 0.0048
08-88-3	Toluene	16,000	650 / 42*	12	29	12	< 0.0052	< 0.0056	< 0.0049	0.019	< 0.0053	< 0.0047	< 0.0058	< 0.0052	< 0.0043	< 0.0053	< 0.0048
1-55-6	1,1,1-Trichloroethane	210	1,200	2	9.6	2	< 0.0052	< 0.0056	< 0.0049	< 0.0045	< 0.0053	< 0.0047	< 0.0058	< 0.0052	< 0.0043	< 0.0053	< 0.0048
9-00-5	1,1,2-Trichloroethane Trichloroethene	310 58	1,800	0.02	0.3	0.02	< 0.0052 < 0.0052	< 0.0056 < 0.0056	< 0.0049 < 0.0049	< 0.0045 < 0.0045	< 0.0053 < 0.0053	< 0.0047 < 0.0047	< 0.0058 < 0.0058	< 0.0052 < 0.0052	< 0.0043 < 0.0043	< 0.0053 < 0.0053	< 0.0048 < 0.0048
	Vinyl chloride	0.46	0.28	0.01	0.07	0.01	< 0.0052	< 0.0056	< 0.0049	< 0.0045	< 0.0053	< 0.0047	< 0.0058	< 0.0052	< 0.0043	< 0.0053	< 0.0048
	Xylenes, Total	16,000	320 / 5.6*	150	150	5.6	< 0.015	< 0.017	< 0.015	0.050	< 0.016	< 0.014	< 0.017	< 0.015	< 0.013	< 0.016	< 0.014
3-32-9	Acenaphthene	4,700		570	2,900	570	< 0.04	< 0.05	< 0.043	< 0.039	< 0.037	< 0.038	< 0.041	< 0.039	< 0.038	< 0.038	< 0.04
20-12-7	Acenaphthylene Anthracene	23,000		12,000	59,000	NE 12,000	< 0.04 < 0.04	< 0.05 < 0.05	< 0.043 < 0.043	< 0.039 0.24	< 0.037 < 0.037	< 0.038 < 0.038	< 0.041 < 0.041	< 0.039 < 0.039	< 0.038 < 0.038	< 0.038 < 0.038	< 0.04 < 0.04
 6-55-3	Benz(a)anthracene	0.9		2	8	1.8	< 0.04	< 0.05	< 0.043	< 0.039	< 0.037	< 0.038	< 0.041	< 0.039	< 0.038	0.090	< 0.04
	Benzo(a)pyrene	0.09		8	82	2.1	< 0.04	< 0.05	< 0.043	< 0.039	< 0.037	< 0.038	< 0.041	< 0.039	< 0.038	0.088	< 0.04
05-99-2	Benzo(b)fluoranthene	0.9		5	25	2.1	< 0.04	< 0.05	< 0.043	< 0.039	< 0.037 < 0.037	< 0.038	< 0.041	< 0.039	< 0.038	0.11	< 0.04
	Benzo(g,h,i)perylene Benzo(k)fluoranthene	9		49	250	NE 2.1	< 0.04 < 0.04	< 0.05 < 0.05	< 0.043 < 0.043	< 0.039 < 0.039	< 0.037 < 0.037	< 0.038 < 0.038	< 0.041 < 0.041	< 0.039 < 0.039	< 0.038 < 0.038	0.12 0.079	< 0.04 < 0.04
	Chrysene	88		160	800	88	< 0.04	< 0.05	< 0.043	< 0.039	0.038	0.049	< 0.041	< 0.039	< 0.038	0.14	< 0.04
3-70-3	Dibenz(a,h)anthracene	0.09		2	7.6	0.42	< 0.04	< 0.05	< 0.043	< 0.039	< 0.037	< 0.038	< 0.041	< 0.039	< 0.038	< 0.038	< 0.04
06-44-0 6-73-7	Fluoranthene	3,100 3,100		4,300 560	21,000 2,800	3,100 560	< 0.04 < 0.04	< 0.05 < 0.05	< 0.043 < 0.043	0.081 < 0.039	< 0.037 < 0.037	< 0.038 < 0.038	< 0.041 < 0.041	< 0.039 < 0.039	< 0.038 < 0.038	0.14 < 0.038	< 0.04 < 0.04
 93-39-5	Fluorene Indeno(1,2,3-cd)pyrene	0.9		14	2,800 69	1.6	< 0.04 < 0.04	< 0.05	< 0.043	< 0.039	< 0.037	< 0.038	< 0.041 < 0.041	< 0.039	< 0.038	< 0.038 0.067	< 0.04
1-20-3	Naphthalene	1,600	170 / 1.8*	12	18	1.8	< 0.04	< 0.05	< 0.043	< 0.039	< 0.037	< 0.038	< 0.041	< 0.039	< 0.038	< 0.038	< 0.04
5-01-8	Phenanthrene	2.600		4.000	21.005	NE	< 0.04	< 0.05	< 0.043	0.71	0.93	1.2	< 0.041	< 0.039	< 0.038	0.038	< 0.04
29-00-0 52-53-3	Pyrene Aniline	2,300		4,200	21,000	2,300	< 0.04	< 0.05 < 0.5	< 0.043 < 0.43	< 0.039 < 0.4	< 0.037 < 0.37	< 0.038 < 0.38	< 0.041 < 0.42	< 0.039 < 0.39	< 0.038 < 0.38	0.13 < 0.38	< 0.04 < 0.4
	Benzidine		 			NE NE	< 0.41 < 0.4	< 0.5	< 0.43	< 0.4	< 0.37	< 0.38	< 0.42 < 0.41	< 0.39	< 0.38	< 0.38	< 0.4
55-85-0	Benzoic acid	310,000		400	400	400	< 1	< 1.2	< 1.1	< 0.99	< 0.93	< 0.95	< 1	< 0.98	< 0.95	< 0.95	< 1
	Benzyl alcohol					NE	< 0.21	< 0.26	< 0.22	< 0.2	< 0.19	< 0.19	< 0.21	< 0.2	< 0.19	< 0.19	< 0.21
	Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether	0.6	0.2	0.0004	0.0004	NE 0.66	< 0.21 < 0.21	< 0.26 < 0.26	< 0.22 < 0.22	< 0.2 < 0.2	< 0.19 < 0.19	< 0.19 < 0.19	< 0.21 < 0.21	< 0.2 < 0.2	< 0.19 < 0.19	< 0.19 < 0.19	< 0.21 < 0.21
	Bis(2-ethylhexyl)phthalate	0.6 46	31,000	3,600	31,000	46	< 0.21	< 0.26	< 0.22 < 1.1	< 0.2	< 0.19	< 0.19	< 0.21	< 0.2	< 0.19	< 0.19	< 0.21
01-55-3	4-Bromophenyl phenyl ether		,	- ,	,	NE	< 0.21	< 0.26	< 0.22	< 0.2	< 0.19	< 0.19	< 0.21	< 0.2	< 0.19	< 0.19	< 0.21
	Butyl benzyl phthalate	16,000	930	930	930	46	< 0.21	< 0.26	< 0.22	< 0.2	< 0.19	< 0.19	< 0.21	< 0.2	< 0.19	< 0.19	< 0.21
66-74-8 06-47-8	Carbazole 4-Chloroaniline	32 310		0.6	2.8 0.7	0.6	< 0.21 < 0.21	< 0.26 < 0.26	< 0.22 < 0.22	< 0.2 < 0.2	< 0.19 < 0.19	< 0.19 < 0.19	< 0.21 < 0.21	< 0.2 < 0.2	< 0.19 < 0.19	< 0.19 < 0.19	< 0.21 < 0.21
	4-Chloro-3-methylphenol	310		U. /	U./	NE	< 0.21	< 0.26 < 0.5	< 0.22 < 0.43	< 0.2	< 0.19	< 0.19	< 0.21 < 0.41	< 0.2	< 0.19	< 0.19	< 0.21
	2-Chloronaphthalene		<u> </u>			NE		< 0.26	< 0.22	< 0.2	< 0.19	< 0.19	< 0.21	< 0.2	< 0.19	< 0.19	< 0.21

95-57-8	2-Chlorophenol	390	53,000	1	1	1.5	< 0.21	< 0.26	< 0.22	< 0.2	< 0.19	< 0.19	< 0.21	< 0.2	< 0.19	< 0.19	< 0.21
	<u> </u>	390	33,000		4												
7005-72-3	4-Chlorophenyl phenyl ether					NE	< 0.21	< 0.26	< 0.22	< 0.2	< 0.19	< 0.19	< 0.21	< 0.2	< 0.19	< 0.19	< 0.21
132-64-9	Dibenzofuran					NE	< 0.21	< 0.26	< 0.22	< 0.2	< 0.19	< 0.19	< 0.21	< 0.2	< 0.19	< 0.19	< 0.21
95-50-1	1,2-Dichlorobenzene	7,000	560 / 310*	17	43	17	< 0.21	< 0.26	< 0.22	< 0.2	< 0.19	< 0.19	< 0.21	< 0.2	< 0.19	< 0.19	< 0.21
541-73-1	1,3-Dichlorobenzene					NE	< 0.21	< 0.26	< 0.22	< 0.2	< 0.19	< 0.19	< 0.21	< 0.2	< 0.19	< 0.19	< 0.21
106-46-7	1,4-Dichlorobenzene		11,000 / 340*	2	11	2	< 0.21	< 0.26	< 0.22	< 0.2	< 0.19	< 0.19	< 0.21	< 0.2	< 0.19	< 0.19	< 0.21
91-94-1	3.3'-Dichlorobenzidine	1		0.007	0.033	1.3	< 0.21	< 0.26	< 0.22	< 0.2	< 0.19	< 0.19	< 0.21	< 0.2	< 0.19	< 0.19	< 0.21
120-83-2	2,4-Dichlorophenol	230		1	1	0.48	< 0.21	< 0.26	< 0.22	< 0.2	< 0.19	< 0.19	< 0.21	< 0.2	< 0.19	< 0.19	< 0.21
	<u> </u>			1 170	1 470												
84-66-2	Diethyl phthalate	63,000	2,000	470	470	470	< 0.21	< 0.26	< 0.22	< 0.2	< 0.19	< 0.19	< 0.21	< 0.2	< 0.19	< 0.19	< 0.21
105-67-9	2,4-Dimethylphenol	1,600		9	9	9	< 0.21	< 0.26	< 0.22	< 0.2	< 0.19	< 0.19	< 0.21	< 0.2	< 0.19	< 0.19	< 0.21
131-11-3	Dimethyl phthalate					NE	< 0.21	< 0.26	< 0.22	< 0.2	< 0.19	< 0.19	< 0.21	< 0.2	< 0.19	< 0.19	< 0.21
534-52-1	4,6-Dinitro-2-methylphenol					NE	< 0.4	< 0.5	< 0.43	< 0.39	< 0.37	< 0.38	< 0.41	< 0.39	< 0.38	< 0.38	< 0.4
51-28-5	2,4-Dinitrophenol	160		0.2	0.2	3.3	< 1	< 1.2	< 1.1	< 0.99	< 0.93	< 0.95	< 1	< 0.98	< 0.95	< 0.95	< 1
121-14-2	2,4-Dinitrotoluene	0.9		0.0008	0.0008	0.25	< 0.04	< 0.05	< 0.043	< 0.039	< 0.037	< 0.038	< 0.041	< 0.039	< 0.038	< 0.038	< 0.04
606-20-2	2,6-Dinitrotoluene	0.9		0.0007	0.0007	0.26	< 0.04	< 0.05	< 0.043	< 0.039	< 0.037	< 0.038	< 0.041	< 0.039	< 0.038	< 0.038	< 0.04
			2,300	0.0007		2,300											
84-74-2	Di-n-butyl phthalate	7,800		2,300	2,300		< 0.21	< 0.26	< 0.22	< 0.2	< 0.19	< 0.19	< 0.21	< 0.2	< 0.19	< 0.19	< 0.21
117-84-0	Di-n-octyl phthalate	1,600	10,000	10,000	10,000	1,600	< 0.21	< 0.26	< 0.22	< 0.2	< 0.19	< 0.19	< 0.21	< 0.2	< 0.19	< 0.19	< 0.21
118-74-1	Hexachlorobenzene	0.4	1	2	11	0.4	< 0.21	< 0.26	< 0.22	< 0.2	< 0.19	< 0.19	< 0.21	< 0.2	< 0.19	< 0.19	< 0.21
87-68-3	Hexachlorobutadiene					NE	< 0.21	< 0.26	< 0.22	< 0.2	< 0.19	< 0.19	< 0.21	< 0.2	< 0.19	< 0.19	< 0.21
77-47-4	Hexachlorocyclopentadiene	550	10 / 1.1*	400	2,200	1.1	< 0.21	< 0.26	< 0.22	< 0.2	< 0.19	< 0.19	< 0.21	< 0.2	< 0.19	< 0.19	< 0.21
67-72-1	Hexachloroethane	78		0.5	2.6	0.5	< 0.21	< 0.26	< 0.22	< 0.2	< 0.19	< 0.19	< 0.21	< 0.2	< 0.19	< 0.19	< 0.21
78-59-1	Isophorone	15,600	4,600	8	2.5	8	< 0.21	< 0.26	< 0.22	< 0.2	< 0.19	< 0.19	< 0.21	< 0.2	< 0.19	< 0.19	< 0.21
	- I	13,000	+,000	O	0												
91-57-6	2-Methylnaphthalene	2.000		4 =	1.7	NE	< 0.21	< 0.26	< 0.22	< 0.2	< 0.19	< 0.19	< 0.21	< 0.2	< 0.19	< 0.19	< 0.21
95-48-7	2-Methylphenol	3,900		15	15	15	< 0.21	< 0.26	< 0.22	< 0.2	< 0.19	< 0.19	< 0.21	< 0.2	< 0.19	< 0.19	< 0.21
106-44-5	4-Methylphenol					NE	< 0.21	< 0.26	< 0.22	< 0.2	< 0.19	< 0.19	< 0.21	< 0.2	< 0.19	< 0.19	< 0.21
88-74-4	2-Nitroaniline					NE	< 0.21	< 0.26	< 0.22	< 0.2	< 0.19	< 0.19	< 0.21	< 0.2	< 0.19	< 0.19	< 0.21
99-09-2	3-Nitroaniline					NE	< 0.21	< 0.26	< 0.22	< 0.2	< 0.19	< 0.19	< 0.21	< 0.2	< 0.19	< 0.19	< 0.21
100-01-6	4-Nitroaniline					NE	< 0.21	< 0.26	< 0.22	< 0.2	< 0.19	< 0.19	< 0.21	< 0.2	< 0.19	< 0.19	< 0.21
88-75-5	2-Nitrophenol					NE	< 0.21	< 0.26	< 0.22	< 0.2	< 0.19	< 0.19	< 0.21	< 0.2	< 0.19	< 0.19	< 0.21
	<u> </u>						< 0.21	< 0.5			< 0.19		<u> </u>	< 0.39		< 0.19	
100-02-7	4-Nitrophenol	20	0.2 (0.4)	0.1	0.1	NE 0.26			< 0.43	< 0.39		< 0.38	< 0.41		< 0.38		< 0.4
98-95-3	Nitrobenzene	39	92/9.4*	0.1	0.1	0.26	< 0.04	< 0.05	< 0.043	< 0.039	< 0.037	< 0.038	< 0.041	< 0.039	< 0.038	< 0.038	< 0.04
621-64-7	N-Nitrosodi-n-propylamine	0.09		0.00005	0.00005	0.0018	< 0.04	< 0.05	< 0.043	< 0.039	< 0.037	< 0.038	< 0.041	< 0.039	< 0.038	< 0.038	< 0.04
62-75-9	N-Nitrosodimethylamine					NE	< 0.21	< 0.26	< 0.22	< 0.2	< 0.19	< 0.19	< 0.21	< 0.2	< 0.19	< 0.19	< 0.21
86-30-6	N-Nitrosodiphenylamine	130		1	5.6	1	< 0.04	< 0.05	< 0.043	< 0.039	< 0.037	< 0.038	< 0.041	< 0.039	< 0.038	< 0.038	< 0.04
108-60-1	2, 2'-oxybis(1-Chloropropane)					NE	< 0.21	< 0.26	< 0.22	< 0.2	< 0.19	< 0.19	< 0.21	< 0.2	< 0.19	< 0.19	< 0.21
87-86-5	Pentachlorophenol	3		0.03	0.14	0.02	< 0.082	< 0.1	< 0.087	< 0.039	< 0.037	< 0.038	< 0.084	< 0.079	< 0.077	< 0.077	< 0.081
	±	22,000															
108-95-2	Phenol	23,000		100	100	100	< 0.21	< 0.26	< 0.22	< 0.2	< 0.19	< 0.19	< 0.21	< 0.2	< 0.19	< 0.19	< 0.21
110-86-1	Pyridine					NE	< 0.82	< 1	< 0.87	< 0.8	< 0.75	< 0.77	< 0.84	< 0.79	< 0.77	< 0.77	< 0.81
120-82-1	1,2,4-Trichlorobenzene	780	3,200 / 920*	5	53	5	< 0.21	< 0.26	< 0.22	< 0.2	< 0.19	< 0.19	< 0.21	< 0.2	< 0.19	< 0.19	< 0.21
95-95-4	2,4,5-Trichlorophenol	7,800		270	1,400	26	< 0.21	< 0.26	< 0.22	< 0.2	< 0.19	< 0.19	< 0.21	< 0.2	< 0.19	< 0.19	< 0.21
88-06-2	2,4,6-Trichlorophenol	58	200	0.2	0.77	0.66	< 0.21	< 0.26	< 0.22	< 0.2	< 0.19	< 0.19	< 0.21	< 0.2	< 0.19	< 0.19	< 0.21
INORG 7429-90-5	Aluminum					NE	14000	19000	16000	13000	1800	5300	15000	15000	8100	11000	7400
7440-36-0	Antimony	31				5	< 2.5	< 2.5	< 2.6	< 2.2	< 2.2	< 2.2	< 2.5	< 2.2	< 2.4	< 2.4	< 2.1
	· · ·		750														
7440-38-2	Arsenic	13.0/11.3	750		ļ	13	6.7	7.5	8.4	7.9	4.3	11	7.1	8.3	11	11	18
7440-39-3	Barium	5,500	690,000			1,500	160	170	160	80	8.4	27	150	73	48	66	41
	Beryllium	160	1,300			22	1.0	1.1	1.1	0.88	< 0.55	< 0.56	1.0	< 0.56	0.89	1.0	0.61
7440-43-9	Cadmium	78	1,800			5.2	< 0.62	< 0.63	< 0.64	< 0.55	< 0.55	< 0.56	< 0.63	< 0.56	< 0.59	< 0.6	< 0.53
7440-70-2	Calcium					NE	5600	7500	7700	29000	28000	39000	5100	1800	41000	32000	76000
7440-47-3	Chromium	230	270			21	18	20	23 ^a	20	3.3	12	19	16	13	20	14
									-								
7440-48-4	Cobalt	4,700			<u> </u>	20	13	10	12	12	3.6	9.9	11	8.0	15	13	14
7440-50-8	Copper	2,900				2,900	22	27	23	24	9.0	19	22	14	32	29	22
57-12-5	Cyanide	1,600				40	< 0.31	< 0.31	< 0.33	< 0.3	< 0.28	< 0.29	< 0.32	< 0.3	< 0.29	< 0.29	< 0.3
7439-89-6	Iron			<u></u>		15,900	21000	29000	24000	24000	6900	19000	22000	22000	23000	26000	17000
7439-92-1	Lead	400				107	25	21	33	32	5.8	15	25	14	21	26	17
7439-95-4	Magnesium	325,000				######	3600	4300	4900	17000	9600	18000	4200	3100	26000	18000	40000
7439-96-5	Manganese	,	69,000 / 8,700*			636	590	310	670	470	150	370	580	350	690	400	440
		·			-												
7439-97-6	Mercury	23	10 / 0.1*			0.1	0.027	0.030	0.038	0.022	< 0.019	< 0.021	0.035	0.034	0.023	0.025	< 0.024
7440-02-0	Nickel	1,600	13,000			100	21	26	25	31	8.9	22	22	16	42	33	27
	Potassium					NE	1500	1300	1700	1500	410	950	1400	990	1400	1600	1500
7782-49-2	Selenium	390		<u></u>		1.3	< 1.2	< 1.3	< 1.3	< 1.1	< 1.1	< 1.1	< 1.3	< 1.1	< 1.2	< 1.2	< 1.1
	Silver	390			1	4.4	< 1.2	< 1.3	< 1.3	< 1.1	< 1.1	< 1.1	< 1.3	< 1.1	< 1.2	< 1.2	< 1.1
	Sodium				1	NE	< 75	< 75	< 77	< 660	< 660	< 670	< 750	< 67	72	73	< 640
7440-28-0	Thallium	6.3				2.6	< 1.2	< 1.3	< 1.3	< 1.1	< 1.1	< 1.1	< 1.3	< 1.1	< 1.2	< 1.2	< 1.1
7440-62-2	Vanadium	550				550	31	29	35	25	5.3	15	30	27	18	23	18
7440-66-6	Zinc	23,000				5,100	69	71	79	120	35	120	71	39	61	100	52
	pН			<u></u>		NA	7.4	7.5	7.4	8.0	8.4	8.4	6.7	6.4	8.3	8.2	8.0
	1-		•					•					•	•			

^{* -} Construction Worker Inhalation Objective from Appendix B, Table B.

24 Indicates that result exceeds either a Tier I Residential Remediation Objective, Construction Worker Inhalation Remediation Objective, or a Maximum Allowable Concentration (MAC) Threshold for Clean Soil Reuse

NE None established NA Not applicable None established

All results in milligrams per kilogram (mg/kg).

24^a The pH-based remediation objective (RO) for the soil component of groundwater ingestion is not exceeded based on the pH level, which is 32 mg/kg.

* - Construction Worker Inhalation Objective from Appendix B, Table B.

							tory ID :	14070878-046	14070878-047	14070878-048	14070878-049	14070878-050	14070878-051	14070878-052	14070878-053	14070878-054
						Client San		SF-SB-8-0003	SF-SB-7-0306	SF-SB-6-0104	SF-SB-6-0104-D	SF-SB-5-0003	SF-SB-2-0003	SF-SB-3-0104	SF-SB-1-0104	SF-SB-4-0003
					Soil Com	Date Conponent of	Directed:	07/22/2014 07:45	07/22/2014 08:15	07/22/2014 08:43	07/22/2014 08:43	07/22/2014 09:14	07/22/2014 09:42	07/22/2014 10:07	07/22/2014 10:28	07/22/2014 11:26
						ter Ingestion										
			Route Specific	Values for Soil	Exposure R											
	CAS No.	Analyte	Ingestion	Inhalation	Class I	Class II	MAC									
VOC	67-64-1	Acetone	70,000	100,000	25	25	25	< 0.073	< 0.073	< 0.07	< 0.073	< 0.075	< 0.085	< 0.071	< 0.062	< 0.07
	71-43-2	Benzene	12	3.000	0.03	0.17	0.17	< 0.0049	< 0.0049	< 0.0047	< 0.0048	< 0.005	< 0.0056	< 0.0047	< 0.0041	< 0.0047
	75-27-4 75-25-2	Bromodichloromethane Bromoform	10 81	53	0.6	0.6	0.6	< 0.0049 < 0.0049	< 0.0049 < 0.0049	< 0.0047 < 0.0047	< 0.0048 < 0.0048	< 0.005 < 0.005	< 0.0056 < 0.0056	< 0.0047 < 0.0047	< 0.0041 < 0.0041	< 0.0047 < 0.0047
	74-83-9	Bromomethane	110	10 / 3.9*	0.3	1.2	0.3	< 0.0049	< 0.0047	< 0.0047	< 0.0097	< 0.003	< 0.0030	< 0.0047	< 0.0083	< 0.0047
	78-93-3	2-Butanone					NE	< 0.073	< 0.073	< 0.07	< 0.073	< 0.075	< 0.085	< 0.071	< 0.062	< 0.07
	75-15-0	Carbon disulfide	7,800	720	32	160	32	< 0.049	< 0.049	< 0.047	< 0.048	< 0.05	< 0.056	< 0.047	< 0.041	< 0.047
	56-23-5	Carbon tetrachloride	5	0.3	0.07	0.33	0.07	< 0.0049	< 0.0049	< 0.0047	< 0.0048	< 0.005	< 0.0056	< 0.0047	< 0.0041	< 0.0047
	108-90-7 75-00-3	Chlorobenzene Chloroethane	1,600	130 / 1.3*	1	6.5	NE	< 0.0049 < 0.0097	< 0.0049 < 0.0097	< 0.0047 < 0.0094	< 0.0048 < 0.0097	< 0.005 < 0.01	< 0.0056 < 0.011	< 0.0047 < 0.0095	< 0.0041 < 0.0083	< 0.0047 < 0.0094
	67-66-3	Chloroform	100	0.3	0.6	2.9	0.3	< 0.0049	< 0.0049	< 0.0047	< 0.0097	< 0.01	< 0.011	< 0.0093	< 0.0083	< 0.0094
	74-87-3	Chloromethane	100	0.5	0.0	2.5	NE	< 0.0097	< 0.0097	< 0.0094	< 0.0097	< 0.01	< 0.011	< 0.0095	< 0.0083	< 0.0094
	124-48-1	Dibromochloromethane	1,600	1,300	0.4	0.4	0.4	< 0.0049	< 0.0049	< 0.0047	< 0.0048	< 0.005	< 0.0056	< 0.0047	< 0.0041	< 0.0047
	75-34-3	1,1-Dichloroethane	7,800	1,300 / 130*	23	110	23	< 0.0049	< 0.0049	< 0.0047	< 0.0048	< 0.005	< 0.0056	< 0.0047	< 0.0041	< 0.0047
	107-06-2	1,2-Dichloroethane	7	0.4	0.02	0.1	002	< 0.0049	< 0.0049	< 0.0047	< 0.0048	< 0.005	< 0.0056	< 0.0047	< 0.0041	< 0.0047
	75-35-4 156-59-2	1,1-Dichloroethene cis-1,2-Dichloroethene	3,900 780	290 / 3.0* 1,200	0.06	0.3	0.06	< 0.0049 < 0.0049	< 0.0049 < 0.0049	< 0.0047 < 0.0047	< 0.0048 < 0.0048	< 0.005 < 0.005	< 0.0056 < 0.0056	< 0.0047 < 0.0047	< 0.0041 < 0.0041	< 0.0047 < 0.0047
	156-60-5	trans-1,2-Dichloroethene	1,600	3,100	0.7	3.4	0.7	< 0.0049	< 0.0049	< 0.0047	< 0.0048	< 0.005	< 0.0056	< 0.0047	< 0.0041	< 0.0047
	78-87-5	1,2-Dichloropropane	9	15 / 0.50*	0.03	0.15	0.03	< 0.0049	< 0.0049	< 0.0047	< 0.0048	< 0.005	< 0.0056	< 0.0047	< 0.0041	< 0.0047
	10061-01-5	cis-1,3-Dichloropropene	6.4	1.1 / 0.39*	0.004	0.02	0.005	< 0.0019	< 0.0019	< 0.0019	< 0.0019	< 0.002	< 0.0023	< 0.0019	< 0.0017	< 0.0019
	+	trans-1,3-Dichloropropene	6.4	1.1 / 0.39*	0.004	0.02	0.005	< 0.0019	< 0.0019	< 0.0019	< 0.0019	< 0.002	< 0.0023	< 0.0019	< 0.0017	< 0.0019
	100-41-4	Ethylbenzene	7,800	400 / 58*	13	19	13	< 0.0049	< 0.0049	< 0.0047	< 0.0048	< 0.005	< 0.0056	< 0.0047	< 0.0041	< 0.0047
	591-78-6 108-10-1	2-Hexanone 4-Methyl-2-pentanone					NE NE	< 0.019 < 0.019	< 0.019 < 0.019	< 0.019 < 0.019	< 0.019 < 0.019	< 0.02 < 0.02	< 0.023 < 0.023	< 0.019 < 0.019	< 0.017 < 0.017	< 0.019 < 0.019
	75-09-2	Methylene chloride	85	13	0.02	0.2	0.02	< 0.0097	< 0.0097	< 0.0094	< 0.019	< 0.02	< 0.023	< 0.0095	< 0.0083	< 0.0094
	1634-04-4	Methyl tert-butyl ether	780	8,800 / 140*	0.32	0.32	0.32	< 0.0049	< 0.0049	< 0.0047	< 0.0048	< 0.005	< 0.0056	< 0.0047	< 0.0041	< 0.0047
	100-42-5	Styrene	16,000	1,500 / 430*	4	18	4	< 0.0049	< 0.0049	< 0.0047	< 0.0048	< 0.005	< 0.0056	< 0.0047	< 0.0041	< 0.0047
	79-34-5	1,1,2,2-Tetrachloroethane					NE	< 0.0049	< 0.0049	< 0.0047	< 0.0048	< 0.005	< 0.0056	< 0.0047	< 0.0041	< 0.0047
	127-18-4 108-88-3	Tetrachloroethene Toluene	12	650 / 42*	0.06	0.3	0.06	< 0.0049 < 0.0049	< 0.0049 < 0.0049	< 0.0047 < 0.0047	< 0.0048 < 0.0048	< 0.005 < 0.005	< 0.0056 < 0.0056	< 0.0047 < 0.0047	< 0.0041 < 0.0041	< 0.0047 < 0.0047
	71-55-6	1,1,1-Trichloroethane	16,000	1,200	2	9.6	12	< 0.0049	< 0.0049	< 0.0047	< 0.0048	< 0.005	< 0.0056	< 0.0047	< 0.0041	< 0.0047
	79-00-5	1,1,2-Trichloroethane	310	1,800	0.02	0.3	0.02	< 0.0049	< 0.0049	< 0.0047	< 0.0048	< 0.005	< 0.0056	< 0.0047	< 0.0041	< 0.0047
	79-01-6	Trichloroethene	58	5	0.06	0.3	0.06	< 0.0049	< 0.0049	< 0.0047	< 0.0048	< 0.005	< 0.0056	< 0.0047	< 0.0041	< 0.0047
	75-01-4	Vinyl chloride	0.46	0.28	0.01	0.07	0.01	< 0.0049	< 0.0049	< 0.0047	< 0.0048	< 0.005	< 0.0056	< 0.0047	< 0.0041	< 0.0047
	1330-20-7	Xylenes, Total	16,000	320 / 5.6*	150	150	5.6	< 0.015	< 0.015	< 0.014	< 0.015	< 0.015	< 0.017	< 0.014	< 0.012	< 0.014
PNA	83-32-9 208-96-8	Acenaphthene Acenaphthylene	4,700		570	2,900	570 NE	< 0.037 < 0.037	< 0.041 < 0.041	< 0.037 < 0.037	< 0.41 < 0.41	< 0.039 < 0.039	< 0.044 0.053	< 0.039 < 0.039	< 0.038 < 0.038	< 0.04 < 0.04
	120-12-7	Anthracene	23,000		12,000	59,000	12,000		< 0.041	< 0.037	< 0.41	0.088	0.033	< 0.039	< 0.038	< 0.04
	56-55-3	Benz(a)anthracene	0.9		2	8	1.8	0.41	< 0.041	0.075	0.42	0.31	2.5	< 0.039	0.12	0.20
	50-32-8	Benzo(a)pyrene	0.09		8	82	2.1	0.38	< 0.041	0.064	0.42	0.14	1.4	< 0.039	0.088	0.24
	205-99-2	Benzo(b)fluoranthene	0.9		5	25	2.1	0.39	< 0.041	0.072	0.47	0.17	1.8	< 0.039	0.096	0.27
	191-24-2	Benzo(g,h,i)perylene			40	250	NE 2.1	0.21	< 0.041	0.043	< 0.41	0.074	0.72	< 0.039	0.060	0.18
	207-08-9 218-01-9	Benzo(k)fluoranthene Chrysene	9 88		49 160	250 800	2.1	0.33	< 0.041 < 0.041	0.059 0.091	< 0.41 0.56	0.15 0.31	1.4	< 0.039 < 0.039	0.082 0.15	0.20 0.25
	53-70-3	Dibenz(a,h)anthracene	0.09		2	7.6	0.42	0.48	< 0.041	< 0.037	< 0.41	0.055	0.44	< 0.039	0.039	0.25
	206-44-0	Fluoranthene	3,100		4,300	21,000	3,100	1.0	< 0.041	0.17	1.0	0.72	4.7	0.057	0.31	0.42
	86-73-7	Fluorene	3,100		560	2,800	560	0.037	< 0.041	< 0.037	< 0.41	< 0.039	0.062	< 0.039	< 0.038	< 0.04
	193-39-5	Indeno(1,2,3-cd)pyrene	0.9		14	69	1.6	0.20	< 0.041	0.040	< 0.41	0.072	0.74	< 0.039	0.058	0.16
	91-20-3	Naphthalene	1,600	170 / 1.8*	12	18	1.8	< 0.037	< 0.041	< 0.037	< 0.41	< 0.039	< 0.044	< 0.039	< 0.038	< 0.04
	85-01-8 129-00-0	Phenanthrene Pyrene	2,300		4,200	21,000	NE 2,300	0.59 0.86	< 0.041 < 0.041	0.071 0.14	0.45 0.86	0.31 0.56	1.6 3.9	< 0.039 0.049	0.18 0.25	0.14 0.36
SVOC	62-53-3	Aniline	2,300		4,200	21,000	2,300 NE	< 0.38	< 0.42	< 0.38	< 4.1	< 0.39	< 0.45	< 0.39	< 0.38	< 0.4
5,00	92-87-5	Benzidine	<u> </u>				NE	< 0.37	< 0.42	< 0.37	< 4.1	< 0.39	< 0.44	< 0.39	< 0.38	< 0.4
	65-85-0	Benzoic acid	310,000		400	400	400	< 0.94	< 1	< 0.94	< 10	< 0.98	< 1.1	< 0.98	< 0.95	< 1
	100-51-6	Benzyl alcohol					NE	< 0.19	< 0.21	< 0.19	< 2.1	< 0.2	< 0.23	< 0.2	< 0.2	< 0.21
	111-91-1	Bis(2-chloroethoxy)methane	0.5	0.5	0.000:	0.000	NE	< 0.19	< 0.21	< 0.19	< 2.1	< 0.2	< 0.23	< 0.2	< 0.2	< 0.21
	111-44-4 117-81-7	Bis(2-chloroethyl)ether Bis(2-ethylhexyl)phthalate	0.6 46	0.2 31,000	0.0004 3,600	0.0004 31,000	0.66	< 0.19 < 0.94	< 0.21	< 0.19 < 0.94	< 2.1 < 10	< 0.2 < 0.98	< 0.23	< 0.2 < 0.98	< 0.2 32	< 0.21
	101-55-3	4-Bromophenyl phenyl ether	40	31,000	3,000	31,000	46 NE	< 0.94	< 1 < 0.21	< 0.19	< 10	< 0.98	< 1.1 < 0.23	< 0.98	< 0.2	< 1 < 0.21
	85-68-7	Butyl benzyl phthalate	16,000	930	930	930	46	< 0.19	< 0.21	< 0.19	< 2.1	< 0.2	< 0.23	< 0.2	41	< 0.21
	86-74-8	Carbazole	32		0.6	2.8	0.6	< 0.19	< 0.21	< 0.19	< 2.1	< 0.2	< 0.23	< 0.2	< 0.2	< 0.21
	106-47-8	4-Chloroaniline	310		0.7	0.7	0.7	< 0.19	< 0.21	< 0.19	< 2.1	< 0.2	< 0.23	< 0.2	< 0.2	< 0.21
							NIE	. 0. 27	. 0. 41	< 0.37	< 4.1	< 0.39	< 0.44	< 0.39	1 40.20	< 0.4
	59-50-7	4-Chloro-3-methylphenol					NE	< 0.37	< 0.41						< 0.38	
	59-50-7 91-58-7	4-Chloro-3-methylphenol 2-Chloronaphthalene 2-Chlorophenol	390	53,000	4	4	NE NE 1.5	< 0.37 < 0.19 < 0.19	< 0.41 < 0.21 < 0.21	< 0.37 < 0.19 < 0.19	< 2.1 < 2.1	< 0.39 < 0.2 < 0.2	< 0.23 < 0.23	< 0.39 < 0.2 < 0.2	< 0.38 < 0.2 < 0.2	< 0.21 < 0.21

	1	T=		· · · · · · · · · · · · · · · · · · ·			T 1		1		T	1	T		T	
	132-64-9	Dibenzofuran					NE	< 0.19	< 0.21	< 0.19	< 2.1	< 0.2	< 0.23	< 0.2	< 0.2	< 0.21
	95-50-1	1,2-Dichlorobenzene	7,000	560 / 310*	17	43	17	< 0.19	< 0.21	< 0.19	< 2.1	< 0.2	< 0.23	< 0.2	< 0.2	< 0.21
	541-73-1	1,3-Dichlorobenzene					NE	< 0.19	< 0.21	< 0.19	< 2.1	< 0.2	< 0.23	< 0.2	< 0.2	< 0.21
	106-46-7	1,4-Dichlorobenzene		11,000 / 340*	2	11	2	< 0.19	< 0.21	< 0.19	< 2.1	< 0.2	< 0.23	< 0.2	< 0.2	< 0.21
	91-94-1	3,3'-Dichlorobenzidine	1		0.007	0.033	1.3	< 0.19	< 0.21	< 0.19	< 2.1	< 0.2	< 0.23	< 0.2	< 0.2	< 0.21
		2,4-Dichlorophenol	230		1	1	0.48	< 0.19	< 0.21	< 0.19	< 2.1	< 0.2	< 0.23	< 0.2	< 0.2	< 0.21
	84-66-2	Diethyl phthalate	63,000	2,000	470	470	470	< 0.19	< 0.21	< 0.19	< 2.1	< 0.2	< 0.23	< 0.2	< 0.2	< 0.21
	105-67-9	2,4-Dimethylphenol	1,600		9	9	9	< 0.19	< 0.21	< 0.19	< 2.1	< 0.2	< 0.23	< 0.2	< 0.2	< 0.21
	131-11-3	Dimethyl phthalate					NE	< 0.19	< 0.21	< 0.19	< 2.1	< 0.2	< 0.23	< 0.2	< 0.2	< 0.21
	534-52-1	4,6-Dinitro-2-methylphenol					NE	< 0.37	< 0.41	< 0.37	< 4.1	< 0.39	< 0.44	< 0.39	< 0.38	< 0.4
	51-28-5	2,4-Dinitrophenol	160		0.2	0.2	3.3	< 0.94	< 1	< 0.94	< 10	< 0.98	< 1.1	< 0.98	< 0.95	< 1
	121-14-2	2,4-Dinitrotoluene	0.9		0.0008	0.0008	0.25	< 0.037	< 0.041	< 0.037	< 0.41	< 0.039	< 0.044	< 0.039	< 0.038	< 0.04
	606-20-2	2,6-Dinitrotoluene	0.9		0.0007	0.0007	0.26	< 0.037	< 0.041	< 0.037	< 0.41	< 0.039	< 0.044	< 0.039	< 0.038	< 0.04
	84-74-2	Di-n-butyl phthalate	7,800	2,300	2,300	2,300	2,300	< 0.19	< 0.21	< 0.19	< 2.1	< 0.2	< 0.23	< 0.2	0.49	< 0.21
	117-84-0	Di-n-octyl phthalate	1,600	10,000	10,000	10,000	1,600	< 0.19	< 0.21	< 0.19	< 2.1	< 0.2	< 0.23	< 0.2	< 0.2	< 0.21
	118-74-1	Hexachlorobenzene	0.4	1	2	11	0.4	< 0.19	< 0.21	< 0.19	< 2.1	< 0.2	< 0.23	< 0.2	< 0.2	< 0.21
	87-68-3	Hexachlorobutadiene			_		NE	< 0.19	< 0.21	< 0.19	< 2.1	< 0.2	< 0.23	< 0.2	< 0.2	< 0.21
	77-47-4	Hexachlorocyclopentadiene	550	10 / 1.1*	400	2,200	1.1	< 0.19	< 0.21	< 0.19	< 2.1	< 0.2	< 0.23	< 0.2	< 0.2	< 0.21
	67-72-1	Hexachloroethane	78		0.5	2.6	0.5	< 0.19	< 0.21	< 0.19	< 2.1	< 0.2	< 0.23	< 0.2	< 0.2	< 0.21
	78-59-1	Isophorone	15,600	4,600	8	8	8	< 0.19	< 0.21	< 0.19	< 2.1	< 0.2	< 0.23	< 0.2	< 0.2	< 0.21
	91-57-6	2-Methylnaphthalene	13,000	1,000	J	J	NE	< 0.19	< 0.21	< 0.19	< 2.1	< 0.2	< 0.23	< 0.2	< 0.2	< 0.21
-	95-48-7	2-Methylphenol	3,900		15	15	15	< 0.19	< 0.21	< 0.19	< 2.1	< 0.2	< 0.23	< 0.2	< 0.2	< 0.21
-	106-44-5	4-Methylphenol	3,500		13	13	NE	< 0.19	< 0.21	< 0.19	< 2.1	< 0.2	< 0.23	< 0.2	< 0.2	< 0.21
	88-74-4	2-Nitroaniline					NE NE	< 0.19	< 0.21	< 0.19	< 2.1	< 0.2	< 0.23	< 0.2	< 0.2	< 0.21
	99-09-2	3-Nitroaniline					NE	< 0.19	< 0.21	< 0.19	< 2.1	< 0.2	< 0.23	< 0.2	< 0.2	< 0.21
	100-01-6	4-Nitroaniline					NE	< 0.19	< 0.21	< 0.19	< 2.1	< 0.2	< 0.23	< 0.2	< 0.2	< 0.21
	88-75-5	2-Nitrophenol					NE	< 0.19	< 0.21	< 0.19	< 2.1	< 0.2	< 0.23	< 0.2	< 0.2	< 0.21
	100-02-7	4-Nitrophenol		0.5 (0.11)			NE	< 0.37	< 0.41	< 0.37	< 4.1	< 0.39	< 0.44	< 0.39	< 0.38	< 0.4
	98-95-3	Nitrobenzene	39	92/9.4*	0.1	0.1	0.26	< 0.037	< 0.041	< 0.037	< 0.41	< 0.039	< 0.044	< 0.039	< 0.038	< 0.04
	621-64-7	N-Nitrosodi-n-propylamine	0.09		0.00005	0.00005	0.0018	< 0.037	< 0.041	< 0.037	< 0.41	< 0.039	< 0.044	< 0.039	< 0.038	< 0.04
	62-75-9	N-Nitrosodimethylamine					NE	< 0.19	< 0.21	< 0.19	< 2.1	< 0.2	< 0.23	< 0.2	< 0.2	< 0.21
	86-30-6	N-Nitrosodiphenylamine	130		1	5.6	1	< 0.037	< 0.041	< 0.037	< 0.41	< 0.039	< 0.044	< 0.039	< 0.038	< 0.04
	108-60-1	2, 2'-oxybis(1-Chloropropane)					NE	< 0.19	< 0.21	< 0.19	< 2.1	< 0.2	< 0.23	< 0.2	< 0.2	< 0.21
	87-86-5	Pentachlorophenol	3		0.03	0.14	0.02	< 0.076	< 0.084	< 0.076	< 0.83	< 0.079	< 0.09	< 0.079	< 0.077	< 0.081
	108-95-2	Phenol	23,000		100	100	100	< 0.19	< 0.21	< 0.19	< 2.1	< 0.2	< 0.23	< 0.2	< 0.2	< 0.21
	110-86-1	Pyridine					NE	< 0.76	< 0.84	< 0.76	< 8.3	< 0.79	< 0.9	< 0.79	< 0.77	< 0.81
	120-82-1	1,2,4-Trichlorobenzene	780	3,200 / 920*	5	53	5	< 0.19	< 0.21	< 0.19	< 2.1	< 0.2	< 0.23	< 0.2	< 0.2	< 0.21
	95-95-4	2,4,5-Trichlorophenol	7,800		270	1,400	26	< 0.19	< 0.21	< 0.19	< 2.1	< 0.2	< 0.23	< 0.2	< 0.2	< 0.21
	88-06-2	2,4,6-Trichlorophenol	58	200	0.2	0.77	0.66	< 0.19	< 0.21	< 0.19	< 2.1	< 0.2	< 0.23	< 0.2	< 0.2	< 0.21
INORG	7429-90-5	Aluminum					NE	7700	11000	8700	10000	11000	21000	15000	12000	7900
	7440-36-0	Antimony	31				5	< 2.3	< 2.6	< 2.3	< 2.6	< 2.5	< 2.8	< 2.4	< 2.4	< 2.3
	7440-38-2	Arsenic	13.0/11.3	750			13	9.7	11	6.2	6.5	8.9	22	6.1	8.2	6.5
	7440-39-3	Barium	5,500	690,000			1,500	60	96	130	110	96	410	68	75	160
		Beryllium	160	1,300			22	< 0.58	< 0.65	0.58	< 0.65	< 0.63	2.0	< 0.6	< 0.6	< 0.59
		Cadmium	78	1,800			5.2	< 0.58	< 0.65	0.69	< 0.65	< 0.63	0.81	< 0.6	< 0.6	< 0.59
		Calcium					NE	75000	45000	83000	87000	52000	39000	31000	45000	94000
			230									23 ^a	25 ^a	22ª		
	7440-47-3	Chromium		270			21	15	17	17	16				19	16
		Cobalt	4,700				20	7.2	11	5.6	6.9	10	9.1	14	9.6	8.3
	7440-50-8	Copper	2,900				2,900	19	24	20	19	27	47	22	21	200
	57-12-5	Cyanide	1,600				40	< 0.28	< 0.31	< 0.29	< 0.31	< 0.3	< 0.34	< 0.3	< 0.29	< 0.3
	7439-89-6	Iron	100				15,900	23000	23000	16000	18000	23000	30000	25000	25000	18000
	7439-92-1	Lead	400				107	30	36	61	39	43	74	28	28	56
		Magnesium	325,000				######	36000	22000	41000	44000	27000	12000	15000	19000	47000
		Manganese	,	69,000 / 8,700*			636	430	480	550	340	400	1200	550	330	380
		Mercury	23	10 / 0.1*			0.1	0.035	0.029	0.033	0.030	0.045	0.052	0.031	0.035	0.024
		Nickel	1,600	13,000			100	19	25	16	20	27	28	34	24	19
		Potassium					NE	1300	1500	1100	1400	1800	2500	2000	1300	1100
		Selenium	390				1.3	< 1.2	< 1.3	< 1.2	< 1.3	< 1.3	< 1.4	< 1.2	< 1.2	< 1.2
	7440-22-4	Silver	390				4.4	< 1.2	< 1.3	< 1.2	< 1.3	< 1.3	< 1.4	< 1.2	< 1.2	< 1.2
	7440-23-5	Sodium					NE	110	250	150	110	80	180	250	340	210
			6.2				2.6	< 1.2	< 1.3	< 1.2	< 1.3	< 1.3	< 1.4	< 1.2	< 1.2	< 1.2
	7440-28-0	Thallium	6.3													
		Thallium Vanadium	550				550	17	23	18	20	24	36	23	22	17
	7440-62-2								23 78	18 85	20 57	24 86	36 130	23 64		17 77
	7440-62-2	Vanadium	550				550	17							22	

^{* -} Construction Worker Inhalation Objective from Appendix B, Table B.

24 Indicates that result exceeds either a Tier I Residential Remediation Objective, Construction Worker Inhalation Remediation Objective, or a Maximum Allowable Concentration (MAC) Threshold for Clean Soil Reuse None established

Not applicable NA

All results in milligrams per kilogram (mg/kg).

The superscript indicates that the result does not exceed the pH-specific remediation objective (RO) for the soil component of the groundwater ingestion pathway; the lowest RO in this pH range is 32 mg/kg.

						Labor	atory ID :	14080033-001	14080033-002	14080033-003	14080033-004	14080033-005	14080033-006	14080033-007	14080033-008
						Client Sa		TP-1	TP-2	TP-3	TP-3-D	TP-4	TP-5	TP-6	TP-7
					Soil Com	Date Conponent of	Collected :	07/31/2014 09:15	07/31/2014 10:05	07/31/2014 11:05	0//31/2014 11:05	07/31/2014 11:40	07/31/2014 12:30	07/31/2014 13:05	07/31/2014 13:4
			D . G . IS		Groundwat	er Ingestion									
	CAS No.	Analyte	Route Specific Ingestion	Values for Soil Inhalation	Exposure R Class I	Class II	MAC							-	
PNA	83-32-9	Acenaphthene	4,700		570	2,900	570	< 0.042	< 0.038	< 0.041		< 0.038	0.071	0.076	0.42
	208-96-8	Acenaphthylene	,			,	NE	< 0.042	< 0.038	< 0.041		< 0.038	< 0.037	< 0.037	0.081
	120-12-7	Anthracene	23,000		12,000	59,000	12,000	< 0.042	< 0.038	< 0.041		< 0.038	0.13	0.20	0.96
	56-55-3	Benz(a)anthracene	0.9		8	8	1.8	< 0.042 < 0.042	< 0.038	< 0.041 < 0.041		< 0.038	0.42 0.51	0.80	3.2
	50-32-8 205-99-2	Benzo(a)pyrene Benzo(b)fluoranthene	0.09		5	82 25	2.1	< 0.042	< 0.038 < 0.038	< 0.041		< 0.038 < 0.038	0.51	0.90	3.0
	191-24-2	Benzo(g,h,i)perylene	0.5			23	NE	< 0.042	< 0.038	< 0.041		< 0.038	0.38	0.59	2.3
	207-08-9	Benzo(k)fluoranthene	9		49	250	2.1	< 0.042	< 0.038	< 0.041		< 0.038	0.43	0.70	3.4
	218-01-9	Chrysene	88		160	800	88	< 0.042	< 0.038	< 0.041		< 0.038	0.52	0.88	3.6
	53-70-3 206-44-0	Dibenz(a,h)anthracene Fluoranthene	0.09 3,100		4,300	7.6 21,000	0.42 3,100	< 0.042 < 0.042	< 0.038 < 0.038	< 0.041 < 0.041		< 0.038 < 0.038	0.18	0.27	1.0 8.0
	86-73-7	Fluorene	3,100		560	2,800	560	< 0.042	< 0.038	< 0.041		< 0.038	0.063	0.071	0.32
	193-39-5	Indeno(1,2,3-cd)pyrene	0.9		14	69	1.6	< 0.042	< 0.038	< 0.041		< 0.038	0.34	0.54	2.1
	91-20-3	Naphthalene	1,600	170 / 1.8*	12	18	1.8	< 0.042	< 0.038	< 0.041		< 0.038	< 0.037	< 0.037	< 0.038
		Phenanthrene	2.200		4.500	• • • • • •	NE	< 0.042	< 0.038	< 0.041		< 0.038	0.69	1.0	5.0
CVOC		Pyrene Aniline	2,300		4,200	21,000	2,300	< 0.042	< 0.038	< 0.041		< 0.038	0.88	1.5	6.5
SVOC	62-53-3 92-87-5	Benzidine Benzidine					NE NE	< 0.42 < 0.42	< 0.38 < 0.38	< 0.42 < 0.41		< 0.39 < 0.38	< 0.38 < 0.37	< 0.38 < 0.37	< 0.38 < 0.38
	65-85-0	Benzoic acid	310,000		400	400	400	< 1.1	< 0.94	< 1		< 0.96	< 0.94	< 0.94	< 0.95
_	100-51-6	Benzyl alcohol					NE	< 0.22	< 0.19	< 0.21		< 0.2	< 0.19	< 0.19	< 0.2
	111-91-1	Bis(2-chloroethoxy)methane					NE	< 0.22	< 0.19	< 0.21		< 0.2	< 0.19	< 0.19	< 0.2
	111-44-4 117-81-7	Bis(2-chloroethyl)ether	0.6	0.2 31,000	0.0004	0.0004 31,000	0.66	< 0.22	< 0.19 < 0.94	< 0.21		< 0.2 < 0.96	< 0.19 < 0.94	< 0.19 < 0.94	< 0.2 < 0.95
	101-55-3	Bis(2-ethylhexyl)phthalate 4-Bromophenyl phenyl ether	46	51,000	3,600	31,000	46 NE	< 1.1 < 0.22	< 0.94 < 0.19	< 1 < 0.21		< 0.96	< 0.94 < 0.19	< 0.94 < 0.19	< 0.95
	85-68-7	Butyl benzyl phthalate	16,000	930	930	930	46	< 0.22	< 0.19	< 0.21		< 0.2	< 0.19	< 0.19	< 0.2
	86-74-8	Carbazole	32		0.6	2.8	0.6	< 0.22	< 0.19	< 0.21		< 0.2	< 0.19	< 0.19	0.47
	106-47-8	4-Chloroaniline	310		0.7	0.7	0.7	< 0.22	< 0.19	< 0.21		< 0.2	< 0.19	< 0.19	< 0.2
	59-50-7 91-58-7	4-Chloro-3-methylphenol 2-Chloronaphthalene					NE NE	< 0.42 < 0.22	< 0.38 < 0.19	< 0.41 < 0.21		< 0.38 < 0.2	< 0.37 < 0.19	< 0.37 < 0.19	< 0.38 < 0.2
	95-57-8	2-Chlorophenol	390	53,000	4	4	1.5	< 0.22	< 0.19	< 0.21		< 0.2	< 0.19	< 0.19	< 0.2
	7005-72-3	4-Chlorophenyl phenyl ether	370	33,000			NE	< 0.22	< 0.19	< 0.21		< 0.2	< 0.19	< 0.19	< 0.2
	132-64-9	Dibenzofuran					NE	< 0.22	< 0.19	< 0.21		< 0.2	< 0.19	< 0.19	0.21
	95-50-1	1,2-Dichlorobenzene	7,000	560 / 310*	17	43	17	< 0.22	< 0.19	< 0.21		< 0.2	< 0.19	< 0.19	< 0.2
	541-73-1 106-46-7	1,3-Dichlorobenzene 1,4-Dichlorobenzene		11,000 / 340*	2	11	NE 2	< 0.22 < 0.22	< 0.19 < 0.19	< 0.21 < 0.21		< 0.2 < 0.2	< 0.19 < 0.19	< 0.19 < 0.19	< 0.2 < 0.2
	91-94-1	3,3´-Dichlorobenzidine	1		0.007	0.033	1.3	< 0.22	< 0.19	< 0.21		< 0.2	< 0.19	< 0.19	< 0.2
		2,4-Dichlorophenol	230		1	1	0.48	< 0.22	< 0.19	< 0.21		< 0.2	< 0.19	< 0.19	< 0.2
	84-66-2	Diethyl phthalate	63,000	2,000	470	470	470	< 0.22	< 0.19	< 0.21		< 0.2	< 0.19	< 0.19	< 0.2
	105-67-9	2,4-Dimethylphenol	1,600		9	9	9	< 0.22	< 0.19	< 0.21		< 0.2	< 0.19	< 0.19	< 0.2
	131-11-3 534-52-1	Dimethyl phthalate 4,6-Dinitro-2-methylphenol					NE NE	< 0.22 < 0.42	< 0.19 < 0.38	< 0.21 < 0.41		< 0.2 < 0.38	< 0.19 < 0.37	< 0.19 < 0.37	< 0.2 < 0.38
	51-28-5	2,4-Dinitrophenol	160		0.2	0.2	3.3	< 1.1	< 0.94	< 1		< 0.96	< 0.94	< 0.94	< 0.95
		2,4-Dinitrotoluene	0.9		0.0008	0.0008	0.25	< 0.042	< 0.038	< 0.041		< 0.038	< 0.037	< 0.037	< 0.038
	606-20-2	2,6-Dinitrotoluene	0.9		0.0007	0.0007	0.26	< 0.042	< 0.038	< 0.041		< 0.038	< 0.037	< 0.037	< 0.038
	84-74-2	Di-n-butyl phthalate	7,800	2,300	2,300	2,300	2,300	< 0.22	< 0.19	< 0.21		< 0.2	< 0.19	< 0.19	< 0.2
	117-84-0 118-74-1	Di-n-octyl phthalate Hexachlorobenzene	1,600 0.4	10,000	10,000	10,000	1,600 0.4	< 0.22 < 0.22	< 0.19 < 0.19	< 0.21 < 0.21		< 0.2 < 0.2	< 0.19 < 0.19	< 0.19 < 0.19	< 0.2 < 0.2
	87-68-3	Hexachlorobutadiene	0.4	1	2	11	NE	< 0.22	< 0.19	< 0.21		< 0.2	< 0.19	< 0.19	< 0.2
	77-47-4	Hexachlorocyclopentadiene	550	10 / 1.1*	400	2,200	1.1	< 0.22	< 0.19	< 0.21		< 0.2	< 0.19	< 0.19	< 0.2
	67-72-1	Hexachloroethane	78		0.5	2.6	0.5	< 0.22	< 0.19	< 0.21		< 0.2	< 0.19	< 0.19	< 0.2
	78-59-1	Isophorone 2 Mathylpophthalana	15,600	4,600	8	8	8 NE	< 0.22	< 0.19	< 0.21		< 0.2	< 0.19	< 0.19	< 0.2
	91-57-6 95-48-7	2-Methylnaphthalene 2-Methylphenol	3,900		15	15	NE 15	< 0.22 < 0.22	< 0.19 < 0.19	< 0.21 < 0.21		< 0.2 < 0.2	< 0.19 < 0.19	< 0.19 < 0.19	< 0.2 < 0.2
	106-44-5	4-Methylphenol	5,500		13	1.0	NE	< 0.22	< 0.19	< 0.21		< 0.2	< 0.19	< 0.19	< 0.2
	88-74-4	2-Nitroaniline					NE	< 0.22	< 0.19	< 0.21		< 0.2	< 0.19	< 0.19	< 0.2
_	99-09-2	3-Nitroaniline					NE	< 0.22	< 0.19	< 0.21		< 0.2	< 0.19	< 0.19	< 0.2
	100-01-6	4-Nitroaniline					NE	< 0.22	< 0.19	< 0.21		< 0.2	< 0.19	< 0.19	< 0.2
	88-75-5 100-02-7	2-Nitrophenol 4-Nitrophenol					NE NE	< 0.22 < 0.42	< 0.19 < 0.38	< 0.21 < 0.41		< 0.2 < 0.38	< 0.19 < 0.37	< 0.19 < 0.37	< 0.2 < 0.38
	98-95-3	Nitrobenzene	39	92/9.4*	0.1	0.1	0.26	< 0.42	< 0.38	< 0.41		< 0.38	< 0.37	< 0.37	< 0.38
	621-64-7	N-Nitrosodi-n-propylamine	0.09		0.00005	0.00005	0.0018	< 0.042	< 0.038	< 0.041		< 0.038	< 0.037	< 0.037	< 0.038
	62-75-9	N-Nitrosodimethylamine					NE	< 0.22	< 0.19	< 0.21		< 0.2	< 0.19	< 0.19	< 0.2
		N-Nitrosodiphenylamine	130		1	5.6	1	< 0.042	< 0.038	< 0.041		< 0.038	< 0.037	< 0.037	< 0.038
		2, 2'-oxybis(1-Chloropropane)	2		0.03	0.14	NE 0.02	< 0.22 < 0.085	< 0.19 < 0.076	< 0.21 < 0.084		< 0.2 < 0.077	< 0.19 < 0.076	< 0.19 < 0.076	< 0.2 < 0.077
		Pentachlorophenol Phenol	3 23,000		100	100	100	< 0.085 < 0.22	< 0.076 < 0.19	< 0.084 < 0.21		< 0.077	< 0.076 < 0.19	< 0.076 < 0.19	< 0.077
		Pyridine	23,000		100	100	NE	< 0.85	< 0.19	< 0.84		< 0.27	< 0.76	< 0.19	< 0.2
		1,2,4-Trichlorobenzene	780	3,200 / 920*	5	53	5	< 0.22	< 0.19	< 0.21		< 0.2	< 0.19	< 0.19	< 0.2
	95-95-4	2,4,5-Trichlorophenol	7,800		270	1,400	26	< 0.22	< 0.19	< 0.21		< 0.2	< 0.19	< 0.19	< 0.2
		2,4,6-Trichlorophenol	58	200	0.2	0.77	0.66	< 0.22	< 0.19	< 0.21		< 0.2	< 0.19	< 0.19	< 0.2
		Aroclor 1016	1 1				1 1	< 0.1	< 0.091	< 0.1		< 0.093	< 0.091	< 0.09	< 0.091
РСВ		Aroclor 1221	1				4	< 0.1	< 0.091	< 0.1		< 0.093	< 0.091	< 0.09	< 0.091

					T			1 0001		1				
	53469-21-9 Aroclor 1242	1				1	< 0.1	< 0.091	< 0.1		< 0.093	< 0.091	< 0.09	< 0.091
	12672-29-6 Aroclor 1248	1				1	< 0.1	< 0.091	< 0.1		< 0.093	< 0.091	< 0.09	< 0.091
	11097-69-1 Aroclor 1254	1				1	< 0.1	< 0.091	< 0.1		< 0.093	< 0.091	< 0.09	< 0.091
PEGE	11096-82-5 Aroclor 1260	1				1	< 0.1	< 0.091	< 0.1	0.0010	< 0.093	< 0.091	< 0.09	< 0.091
PEST	72-54-8 4,4′-DDD	3		16	80	3	< 0.002	< 0.0018	< 0.002	< 0.0019	< 0.0019			
	72-55-9 4,4´-DDE	2	/2.100*	54	270	2	< 0.002	< 0.0018	< 0.002	< 0.0019	< 0.0019			
-	50-29-3 4,4´-DDT		/ 2,100*	32	160	2	< 0.002	< 0.0018	< 0.002	< 0.0019	< 0.0019			
	309-00-2 Aldrin	0.04	3	0.5	2.5	0.94	< 0.002	< 0.0018	< 0.002	< 0.0019	< 0.0019			
	319-84-6 alpha-BHC	0.1	0.8	0.0005	0.003	0.0074	< 0.002	< 0.0018	< 0.002	< 0.0019	< 0.0019			
-	5103-71-9 alpha-Chlordane					NE NE	< 0.002	< 0.0018	< 0.002	< 0.0019	< 0.0019			
-	319-85-7 beta-BHC 57-74-9 Chlordane	1.0	72 / 22*	10	40	1.8	< 0.002 < 0.02	< 0.0018	< 0.002 < 0.02	< 0.0019	< 0.0019 < 0.019			
-	319-86-8 delta-BHC	1.8	12/22"	10	48	NE	< 0.02	< 0.018 < 0.0018	< 0.02	< 0.019 < 0.0019	< 0.019			
-	60-57-1 Dieldrin	0.04	1	0.004	0.02	0.603	< 0.002	< 0.0018	< 0.002	< 0.0019	< 0.0019			
	959-98-8 Endosulfan I	470		18	90	18	< 0.002	< 0.0018	< 0.002	< 0.0019	< 0.0019			
-	33213-65-9 Endosulfan II	470		18	90	18	< 0.002	< 0.0018	< 0.002	< 0.0019	< 0.0019			
-	1031-07-8 Endosulfan sulfate	470		10	70	NE NE	< 0.002	< 0.0018	< 0.002	< 0.0019	< 0.0019			
	72-20-8 Endrin	23		1	5	1	< 0.002	< 0.0018	< 0.002	< 0.0019	< 0.0019			
	7421-93-4 Endrin aldehyde	23		1	3	NE	< 0.002	< 0.0018	< 0.002	< 0.0019	< 0.0019			
	53494-70-5 Endrin ketone		1			NE	< 0.002	< 0.0018	< 0.002	< 0.0019	< 0.0019			
	58-89-9 gamma-BHC	0.5		0.009	0.047	0.0074	< 0.002	< 0.0018	< 0.002	< 0.0019	< 0.0019			
	5566-34-7 gamma-Chlordane	0.0		3.007	3.017	NE	< 0.002	< 0.0018	< 0.002	< 0.0019	< 0.0019			
	76-44-8 Heptachlor	0.1	0.1	23	110	0.871	< 0.002	< 0.0018	< 0.002	< 0.0019	< 0.0019			
	1024-57-3 Heptachlor epoxide	0.07	5	0.7	3.3	1.005	< 0.002	< 0.0018	< 0.002	< 0.0019	< 0.0019			
	72-43-5 Methoxychlor	390		160	780	160	< 0.002	< 0.0018	< 0.002	< 0.0019	< 0.0019			
	8001-35-2 Toxaphene	0.6	89	31	150	0.6	< 0.042	< 0.038	< 0.042	< 0.039	< 0.038			
HERB	93-76-5 2,4,5-T					NE	< 0.0042	< 0.0038	< 0.0042	< 0.0039	< 0.0038			
112112	93-72-1 2,4,5-TP (Silvex)	630		11	55	11	< 0.0042	< 0.0038	< 0.0042	< 0.0039	< 0.0038			
	94-75-7 2,4-D	780		1.5	7.7	1.5	< 0.0042	< 0.0038	< 0.0042	< 0.0039	< 0.0038			
	94-82-6 2,4-DB					NE	< 0.0085	< 0.0077	< 0.0084	< 0.0079	< 0.0077			
	75-99-0 Dalapon	2,300		0.85	8.5	0.85	< 0.042	< 0.038	< 0.042	< 0.039	< 0.038			
	1918-00-9 Dicamba	ĺ				NE	< 0.0085	< 0.0077	< 0.0084	< 0.0079	< 0.0077			
	120-36-5 Dichlorprop					NE	< 0.0085	< 0.0077	< 0.0084	< 0.0079	< 0.0077			
	88-85-7 Dinoseb	78		0.34	3.4	0.25	< 0.0085	< 0.0077	< 0.0084	< 0.0079	< 0.0077			
	94-74-6 MCPA					NE	< 0.0085	< 0.0077	< 0.0084	< 0.0079	< 0.0077			
	7085-19-0 MCPP					NE	< 0.0042	< 0.0038	< 0.0042	< 0.0039	< 0.0038			
	1918-02-1 Picloram	5,500		2	20	2	< 0.0085	< 0.0077	< 0.0084	< 0.0079	< 0.0077			
INORG	7429-90-5 Aluminum					NE	17000	16000	16000		15000	16000	13000	8400
	7440-36-0 Antimony	31				5	< 2.2	< 2.1	< 2.5		< 2.4	< 2.1	< 2.4	< 2.1
	7440-38-2 Arsenic	13.0/11.3	750			13	8.4	13	6.0		8.4	8.6	8.3	4.9
	7440-39-3 Barium	5,500	690,000			1,500	120	73	110		95	130	100	60
	7440-41-7 Beryllium	160	1,300			22	1.2	1.1	1.1		1.1	1.1	1.0	0.73
	7440-43-9 Cadmium	78	1,800			5.2	< 0.55	< 0.52	< 0.62		< 0.6	< 0.53	< 0.59	< 0.52
	7440-70-2 Calcium					NE	18000	39000	16000		32000	56000	56000	180000
	7440-47-3 Chromium	230	270			21	22 ^a	21	21		23 ^a	21	24 ^a	25 ^a
	7440-48-4 Cobalt	4,700				20	11	13	8.1		13	12	11	5.8
	7440-50-8 Copper	2,900				2,900	22	31	23		25	24	26	17
	57-12-5 Cyanide	1,600				40	< 0.32	< 0.29	< 0.32		< 0.29	< 0.29	< 0.28	< 0.29
	7439-89-6 Iron					15,900	27000	33000	24000		27000	25000	23000	18000
	7439-92-1 Lead	400				107	21	19	17		28	38	67	60
	7439-95-4 Magnesium	325,000				325,000	9800	16000	8400		15000	25000	28000	67000
	7439-96-5 Manganese	1,600	69,000 / 8,700*			636	530	370	400		430	620	540	330
	7439-97-6 Mercury	23	10 / 0.1*			0.1	0.031	0.033	0.028		0.030	0.035	0.058	0.15
	7440-02-0 Nickel	1,600	13,000			100	27	36	27		32	24	24	18
	7440-09-7 Potassium					NE	1700	1900	1400		2300	1700	1800	1200
	7782-49-2 Selenium	390				1.3	< 1.1	< 1	< 1.2		< 1.2	< 1.1	< 1.2	< 1
	7440-22-4 Silver	390				4.4	< 1.1	< 1	< 1.2		< 1.2	< 1.1	< 1.2	< 1
<u></u>	7440-23-5 Sodium					NE	110	70	< 74		< 72	370	460	240
	7440-28-0 Thallium	6.3				2.6	< 1.1	< 1	< 1.2		< 1.2	< 1.1	< 1.2	< 1
	7440-62-2 Vanadium	550				550	31	25	27		28	30	27	16
	7440-66-6 Zinc	23,000				5,100	62	72	58		72	82	89	61
TCLP	7440-38-2 Arsenic		ļ	0.05	0.2	NA	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01
	7440-39-3 Barium		ļ	2.0	2.0	NA	0.62	0.58	0.50		0.51	0.63	0.60	0.40
	7440-43-9 Cadmium			0.005	0.05	NA	< 0.005	< 0.005	< 0.005		< 0.005	< 0.005	< 0.005	< 0.005
	7440-47-3 Chromium		ļ	0.1	1.0	NA	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01
	7439-92-1 Lead			0.0075	0.1	NA	< 0.005	< 0.005	< 0.005		< 0.005	< 0.005	< 0.005	0.0068
					0.01	NA	< 0.0002	< 0.0002	< 0.0002	Ī	< 0.0002	< 0.0002	< 0.0002	< 0.0002
	7439-97-6 Mercury			0.002										
	7439-97-6 Mercury 7782-49-2 Selenium			0.05	0.05	NA	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01
рН	7439-97-6 Mercury													< 0.01 < 0.01 8.2

^{* -} Construction Worker Inhalation Objective from Appendix B, Table B.

Indicates that result exceeds either a Tier I Residential Remediation Objective, Construction Worker Inhalation Remediation Objective, or a Maximum Allowable Concentration (MAC) Threshold for Clean Soil Reuse

NE None established NA Not applicable

All results in milligrams per kilogram (mg/kg) except for TCLP results which are in milligrams per liter (mg/L)

TCLP

Toxicity characteristic leaching procedure

^{24&}lt;sup>a</sup> The superscript indicates that the remediation objective (RO) for the pH-based soil component of groundwater ingestion was not exceeded at this location; the lowest RO is 32 mg/kg.

TABLE 7A -- LIME PIT SOIL SAMPLE RESULTS

						Lab	oratory ID :	14070878-020	14070878-021	14070878-022	14070878-023	14070878-024	14070878-025
						Client	Sample ID:	Lime-SB-1-0204	Lime-SB-2-0002	Lime-SB-2-0204	Lime-SB-3-0002	Lime-SB-3-0002-D	Lime-SB-3-0204
						Date	Collected:	07/22/2014 12:35	07/22/2014 12:45	07/22/2014 12:47	07/22/2014 13:10	07/22/2014 13:10	07/22/2014 13:15
					Soil Com	ponent of							
					Groundwate	er Ingestion							
			Route Specific	Values for Soil	Exposure R	oute Values							
	CAS No.	Analyte	Ingestion	Inhalation	Class I	Class II	MAC						
INORG	7429-90-5	Aluminum					NE	25000	610	8600	26000	20000	15000
	7440-36-0	Antimony	31				5	< 2.4	< 2.3	< 2.6	< 2.5	< 2.4	< 2.2
	7440-38-2	Arsenic	13	750			13	5.6	< 1.2	13	12	8.8	5.7
	7440-39-3	Barium	5,500	690,000			1,500	220	4.2	83	140	110	73
	7440-41-7	Beryllium	160	1,300			22	1.4	< 0.59	0.74	1.3	1.0	0.96
	7440-43-9	Cadmium	78	1,800			5.2	< 0.59	< 0.59	< 0.66	< 0.62	< 0.61	< 0.56
	7440-70-2	Calcium					NE	5400	220000	6200	13000	90000	81000
	7440-47-3	Chromium	230	270			21	27	7.0	13	30	26	28
	7440-48-4	Cobalt	4,700				20	10	< 1.2	13	16	12	13
	7440-50-8	Copper	2,900				2,900	27	< 2.9	33	27	20	19
	57-12-5	Cyanide	1,600				40	< 0.32	< 0.3	< 0.35	< 0.33	< 0.34	< 0.31
	7439-89-6	Iron					15,900	29000	3000	26000	42000	28000	25000
	7439-92-1	Lead	400				107	23	4.1	24	22	29	12
	7439-95-4	Magnesium	325,000				325,000	5700	130000	5400	9400	16000	25000
	7439-96-5	Manganese	1,600	69,000 / 8,700*			636	140	210	920	600	380	500
	7439-97-6	Mercury	23	10 / 0.1*			0.1	0.039	< 0.019	0.035	< 0.025	< 0.027	< 0.025
	7440-02-0	Nickel	1,600	13,000			100	24	2.5	38	45	31	34
	7440-09-7	Potassium					NE	1300	290	900	2200	2300	2400
	7782-49-2	Selenium	390				1.3	< 1.2	< 1.2	< 1.3	< 1.2	< 1.2	< 1.1
	7440-22-4	Silver	390				4.4	< 1.2	< 1.2	< 1.3	< 1.2	< 1.2	< 1.1
	7440-23-5	Sodium					NE	310	200	83	98	140	160
	7440-28-0	Thallium	6.3				2.6	< 1.2	< 1.2	< 1.3	< 1.2	< 1.2	< 1.1
	7440-62-2	Vanadium	550				550	41	1.8	20	34	32	27
	7440-66-6	Zinc	23,000				5,100	60	23	63	66	60	53
	рН						NA	7.8	9.4	7.5	8.0	7.7	8.1

^{* -} Construction Worker Inhalation Objective from Appendix B, Table B.

960 Indicates that result exceeds either a Tier I Residential Remediation Objective, Construction Worker Inhalation Remediation Objective, or a Maximum Allowable Concentration (MAC) Threshold for Clean Soil Reuse

NE None established NA Not applicable

All results are in milligrams per kilogram (mg/kg).

^{* -} Construction Worker Inhalation Objective from Appendix B, Table B.

TABLE 7B -- LIME SLUDGE SAMPLE RESULTS

					I	Laboratory ID:	14080039-004
						ent Sample ID :	
					D	ate Collected:	07/31/2014 09:30
					Soil Con	nponent of	
						ter Ingestion	
			Route Specific	c Values for Soil		Route Values	
	CAS No.	Analyte	Ingestion	Inhalation	Class I	Class II	1
INORG	7429-90-5	Aluminum					5200
	7440-36-0	Antimony	31				< 3.1
	7440-38-2	Arsenic	13.0/11.3	750			1.9
	7440-39-3	Barium	5,500	690,000			54
	7440-41-7	Beryllium	160	1,300			< 0.76
	7440-43-9	Cadmium	78	1,800			< 0.76
	7440-70-2	Calcium					430000
	7440-47-3	Chromium	230	270			3.6
	7440-48-4	Cobalt	4,700				< 1.5
	7440-50-8	Copper	2,900				< 3.8
	57-12-5	Cyanide	1,600				< 0.45
	7439-89-6	Iron					6000
	7439-92-1	Lead	400				14
	7439-95-4	Magnesium	325,000				37000
	7439-96-5	Manganese	1,600	69,000 / 8,700*			62
	7439-97-6	Mercury	23	10 / 0.1*			0.35
	7440-02-0	Nickel	1,600	13,000			8.0
	7440-09-7	Potassium					90
	7782-49-2	Selenium	390				< 1.5
	7440-22-4	Silver	390				< 1.5
	7440-23-5	Sodium					560
	7440-28-0	Thallium	6.3				< 1.5
	7440-62-2	Vanadium	550				4.2
	7440-66-6	Zinc	23,000				18
TCLP	7440-38-2	Arsenic			0.05	0.2	< 0.01
	7440-39-3	Barium			2.0	2.0	0.48
	7440-43-9	Cadmium			0.005	0.05	< 0.005
	7440-47-3	Chromium			0.1	1.0	< 0.01
	7439-92-1	Lead			0.0075	0.1	< 0.005
	7439-97-6	Mercury			0.002	0.01	< 0.0002
	7782-49-2	Selenium			0.05	0.05	< 0.01
	7440-22-4	Silver			0.05		< 0.01
WASTE	<u> </u>	рН					9.3
		Percent moisture					44.7 percent
		Reactive Cyanide					<1
		Reactive Sulfide					<10
		Flash Point					No Flash up to 212°
		Paint Test				<u> </u>	Pass

All results in milligrams per kilogram (mg/kg) unless otherwise specified

0.35 Result exceeding Tier I Remediation Objective

14070878-077 T-SS-8-T1 07/21/2014 10:50

> < 0.093 < 0.093 < 0.093

< 0.093 < 0.093 < 0.093 < 0.093

				14070878-012	14070878-013	14070878-014	14070878-015	14070878-016	14070878-017	14070878-018	14070878-019	14070878-043	14070878-044	14070878-045	14070878-075	14070878-076
				T-SS-11-S1	T-SS-9-S2	T-SS-12-S3	T-SS-10-S4	T-SS-13-S5	T-SS-4-S6	T-SS-6-S7	T-SS-7-S8	Power-T-SS-1	Cottage-T-SS-1	Cottage-T-SS-D	T-SS-7-S8-D	T-SS-5-S9
				07/21/2014 11:05	07/21/2014 11:10	07/21/2014 11:15	07/21/2014 11:20	07/21/2014 11:55	07/21/2014 10:05	07/21/2014 10:25	07/21/2014 10:37	07/22/2014 15:17	07/22/2014 15:30	07/22/2014 15:30	07/21/2014 10:37	07/21/2014 10:17
		Route Specific														
		Values for Soil														
	Analyte	Ingestion	MAC													
PCB	Aroclor 1016	1	1	< 0.095	< 0.096	< 0.094	< 0.095	< 0.097	< 0.096	< 0.095	< 0.092	< 0.09	< 0.094	< 0.095	< 0.093	< 0.094
	Aroclor 1221	1	1	< 0.095	< 0.096	< 0.094	< 0.095	< 0.097	< 0.096	< 0.095	< 0.092	< 0.09	< 0.094	< 0.095	< 0.093	< 0.094
	Aroclor 1232	1	1	< 0.095	< 0.096	< 0.094	< 0.095	< 0.097	< 0.096	< 0.095	< 0.092	< 0.09	< 0.094	< 0.095	< 0.093	< 0.094
	Aroclor 1242	1	1	< 0.095	< 0.096	< 0.094	< 0.095	< 0.097	< 0.096	< 0.095	< 0.092	< 0.09	< 0.094	< 0.095	< 0.093	< 0.094
	Aroclor 1248	1	1	< 0.095	< 0.096	< 0.094	< 0.095	< 0.097	< 0.096	< 0.095	< 0.092	< 0.09	< 0.094	< 0.095	< 0.093	< 0.094
	Aroclor 1254	1	1	< 0.095	< 0.096	< 0.094	< 0.095	< 0.097	< 0.096	< 0.095	< 0.092	0.46	< 0.094	< 0.095	< 0.093	< 0.094
	Aroclor 1260	1	1	< 0.095	< 0.096	< 0.094	< 0.095	< 0.097	< 0.096	< 0.095	< 0.092	0.43	< 0.094	< 0.095	< 0.093	< 0.094
															1	
					•		•						•	•	•	•
				14070878-078	14070878-079	14070878-080	14070878-081	14070878-082	14070878-083	14070878-084	14070878-085	14080039-001	14080039-002	14080039-003	14080039-011	14070878-086
				T-SS-14-U5	T-SS-16-U6	T-SS-20-U7	T-SS-17-U8	T-SS-1-U9	T-SS-2-V1	T-SS-3-V2	Spruce-T-SS-18	Cottage -T-SS- 1	Cottage -T-SS- 1 -D	Pine -T-SS- 1	PP -T-SS- 1	Admin-T-SS-19
						T-SS-20-U7	T-SS-17-U8									
		Route Specific		T-SS-14-U5	T-SS-16-U6	T-SS-20-U7	T-SS-17-U8	T-SS-1-U9	T-SS-2-V1	T-SS-3-V2	Spruce-T-SS-18	Cottage -T-SS- 1	Cottage -T-SS- 1 -D	Pine -T-SS- 1	PP -T-SS- 1	Admin-T-SS-19
		Values for Soil	MAG	T-SS-14-U5	T-SS-16-U6	T-SS-20-U7	T-SS-17-U8	T-SS-1-U9	T-SS-2-V1	T-SS-3-V2	Spruce-T-SS-18	Cottage -T-SS- 1	Cottage -T-SS- 1 -D	Pine -T-SS- 1	PP -T-SS- 1	Admin-T-SS-19
DCD	Analyte	-	MAC	T-SS-14-U5 07/21/2014 12:06	T-SS-16-U6 07/21/2014 13:30	T-SS-20-U7 07/21/2014 13:15	T-SS-17-U8 07/21/2014 13:36	T-SS-1-U9 07/21/2014 09:20	T-SS-2-V1 07/21/2014 09:29	T-SS-3-V2 07/21/2014 09:41	Spruce-T-SS-18 07/21/2014 13:55	Cottage -T-SS- 1 07/31/2014 08:13	Cottage -T-SS- 1 -D 07/31/2014 08:13	Pine -T-SS- 1 07/31/2014 14:47	PP -T-SS- 1 07/31/2014 09:20	Admin-T-SS-19 07/21/2014 14:10
РСВ	Aroclor 1016	Values for Soil	MAC 1	T-SS-14-U5 07/21/2014 12:06 < 0.095	T-SS-16-U6 07/21/2014 13:30 < 0.092	T-SS-20-U7 07/21/2014 13:15 < 0.093	T-SS-17-U8 07/21/2014 13:36 < 0.092	T-SS-1-U9 07/21/2014 09:20 < 0.097	T-SS-2-V1 07/21/2014 09:29 < 0.094	T-SS-3-V2 07/21/2014 09:41 < 0.097	Spruce-T-SS-18 07/21/2014 13:55	Cottage -T-SS- 1 07/31/2014 08:13	Cottage -T-SS- 1 -D 07/31/2014 08:13 < 0.12	Pine -T-SS- 1 07/31/2014 14:47 < 0.088	PP -T-SS- 1 07/31/2014 09:20 < 0.097	Admin-T-SS-19 07/21/2014 14:10 < 0.095
РСВ	Aroclor 1016 Aroclor 1221	Values for Soil	MAC 1 1 1	T-SS-14-U5 07/21/2014 12:06 <0.095 <0.095	T-SS-16-U6 07/21/2014 13:30 <0.092 <0.092	T-SS-20-U7 07/21/2014 13:15 < 0.093 < 0.093	T-SS-17-U8 07/21/2014 13:36 <0.092 <0.092	T-SS-1-U9 07/21/2014 09:20 <0.097 <0.097	T-SS-2-V1 07/21/2014 09:29 < 0.094 < 0.094	T-SS-3-V2 07/21/2014 09:41 < 0.097 < 0.097	Spruce-T-SS-18 07/21/2014 13:55 < 0.1 < 0.1	Cottage -T-SS- 1 07/31/2014 08:13 < 0.1 < 0.1	Cottage -T-SS- 1 -D 07/31/2014 08:13 <0.12 <0.12	Pine -T-SS- 1 07/31/2014 14:47 < 0.088 < 0.088	PP -T-SS- 1 07/31/2014 09:20 < 0.097 < 0.097	Admin-T-SS-19 07/21/2014 14:10 < 0.095 < 0.095
РСВ	Aroclor 1016 Aroclor 1221 Aroclor 1232	Values for Soil	MAC 1 1 1 1	T-SS-14-U5 07/21/2014 12:06 < 0.095 < 0.095 < 0.095	T-SS-16-U6 07/21/2014 13:30 <0.092 <0.092 <0.092	T-SS-20-U7 07/21/2014 13:15 < 0.093 < 0.093 < 0.093	T-SS-17-U8 07/21/2014 13:36 < 0.092 < 0.092 < 0.092	T-SS-1-U9 07/21/2014 09:20 <0.097 <0.097 <0.097	T-SS-2-V1 07/21/2014 09:29 < 0.094 < 0.094 < 0.094	T-SS-3-V2 07/21/2014 09:41 < 0.097 < 0.097 < 0.097	Spruce-T-SS-18 07/21/2014 13:55 < 0.1 < 0.1 < 0.1	Cottage -T-SS- 1 07/31/2014 08:13 < 0.1 < 0.1 < 0.1	Cottage -T-SS- 1 -D 07/31/2014 08:13 <0.12 <0.12 <0.12 <0.12	Pine -T-SS- 1 07/31/2014 14:47 < 0.088 < 0.088 < 0.088	PP -T-SS- 1 07/31/2014 09:20 < 0.097 < 0.097 < 0.097	Admin-T-SS-19 07/21/2014 14:10 < 0.095 < 0.095 < 0.095
РСВ	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242	Values for Soil	MAC 1 1 1 1	T-SS-14-U5 07/21/2014 12:06 < 0.095 < 0.095 < 0.095 < 0.095	T-SS-16-U6 07/21/2014 13:30 < 0.092 < 0.092 < 0.092 < 0.092 < 0.092	T-SS-20-U7 07/21/2014 13:15 < 0.093 < 0.093 < 0.093 < 0.093	T-SS-17-U8 07/21/2014 13:36 < 0.092 < 0.092 < 0.092 < 0.092 < 0.092	T-SS-1-U9 07/21/2014 09:20 < 0.097 < 0.097 < 0.097 < 0.097	T-SS-2-V1 07/21/2014 09:29 < 0.094 < 0.094 < 0.094 < 0.094	T-SS-3-V2 07/21/2014 09:41 < 0.097 < 0.097 < 0.097 < 0.097	Spruce-T-SS-18 07/21/2014 13:55 < 0.1 < 0.1 < 0.1 < 0.1	Cottage -T-SS- 1 07/31/2014 08:13 < 0.1 < 0.1 < 0.1 < 0.1	Cottage -T-SS- 1 -D 07/31/2014 08:13 <0.12 <0.12 <0.12 <0.12 <0.12	Pine -T-SS- 1 07/31/2014 14:47 < 0.088 < 0.088 < 0.088 < 0.088 < 0.088	PP -T-SS- 1 07/31/2014 09:20 < 0.097 < 0.097 < 0.097 < 0.097	Admin-T-SS-19 07/21/2014 14:10 < 0.095 < 0.095 < 0.095 < 0.095
РСВ	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248	Values for Soil	MAC 1 1 1 1 1	T-SS-14-U5 07/21/2014 12:06 < 0.095 < 0.095 < 0.095 < 0.095 < 0.095	T-SS-16-U6 07/21/2014 13:30 < 0.092 < 0.092 < 0.092 < 0.092 < 0.092 < 0.092	T-SS-20-U7 07/21/2014 13:15 < 0.093 < 0.093 < 0.093 < 0.093 < 0.093 < 0.093	T-SS-17-U8 07/21/2014 13:36 < 0.092 < 0.092 < 0.092 < 0.092 < 0.092 < 0.092	T-SS-1-U9 07/21/2014 09:20 < 0.097 < 0.097 < 0.097 < 0.097 < 0.097	T-SS-2-V1 07/21/2014 09:29 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094	T-SS-3-V2 07/21/2014 09:41 < 0.097 < 0.097 < 0.097 < 0.097 < 0.097	Spruce-T-SS-18 07/21/2014 13:55 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	Cottage -T-SS- 1 07/31/2014 08:13 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	Cottage -T-SS- 1 -D 07/31/2014 08:13 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12	Pine -T-SS- 1 07/31/2014 14:47 < 0.088 < 0.088 < 0.088 < 0.088 < 0.088 < 0.088	PP -T-SS- 1 07/31/2014 09:20 < 0.097 < 0.097 < 0.097 < 0.097 < 0.097	Admin-T-SS-19 07/21/2014 14:10 < 0.095 < 0.095 < 0.095 < 0.095 < 0.095
РСВ	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254	Values for Soil	MAC 1 1 1 1 1 1 1	T-SS-14-U5 07/21/2014 12:06 < 0.095 < 0.095 < 0.095 < 0.095 < 0.095 < 0.095	T-SS-16-U6 07/21/2014 13:30 < 0.092 < 0.092 < 0.092 < 0.092 < 0.092 < 0.092 < 0.092	T-SS-20-U7 07/21/2014 13:15 < 0.093 < 0.093 < 0.093 < 0.093 < 0.093 < 0.093	T-SS-17-U8 07/21/2014 13:36 < 0.092 < 0.092 < 0.092 < 0.092 < 0.092 < 0.092 < 0.092	T-SS-1-U9 07/21/2014 09:20 < 0.097 < 0.097 < 0.097 < 0.097 < 0.097 < 0.097	T-SS-2-V1 07/21/2014 09:29 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094	T-SS-3-V2 07/21/2014 09:41 < 0.097 < 0.097 < 0.097 < 0.097 < 0.097 < 0.097	Spruce-T-SS-18 07/21/2014 13:55 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	Cottage -T-SS- 1 07/31/2014 08:13 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	Cottage -T-SS- 1 -D 07/31/2014 08:13 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12	Pine -T-SS- 1 07/31/2014 14:47 < 0.088 < 0.088 < 0.088 < 0.088 < 0.088 < 0.17	PP -T-SS- 1 07/31/2014 09:20 < 0.097 < 0.097 < 0.097 < 0.097 < 0.097 < 0.097	Admin-T-SS-19 07/21/2014 14:10 < 0.095 < 0.095 < 0.095 < 0.095 < 0.095 < 0.095
РСВ	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248	Values for Soil	MAC 1 1 1 1 1 1 1	T-SS-14-U5 07/21/2014 12:06 < 0.095 < 0.095 < 0.095 < 0.095 < 0.095	T-SS-16-U6 07/21/2014 13:30 < 0.092 < 0.092 < 0.092 < 0.092 < 0.092 < 0.092	T-SS-20-U7 07/21/2014 13:15 < 0.093 < 0.093 < 0.093 < 0.093 < 0.093 < 0.093	T-SS-17-U8 07/21/2014 13:36 < 0.092 < 0.092 < 0.092 < 0.092 < 0.092 < 0.092	T-SS-1-U9 07/21/2014 09:20 < 0.097 < 0.097 < 0.097 < 0.097 < 0.097	T-SS-2-V1 07/21/2014 09:29 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094	T-SS-3-V2 07/21/2014 09:41 < 0.097 < 0.097 < 0.097 < 0.097 < 0.097	Spruce-T-SS-18 07/21/2014 13:55 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	Cottage -T-SS- 1 07/31/2014 08:13 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	Cottage -T-SS- 1 -D 07/31/2014 08:13 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12 < 0.12	Pine -T-SS- 1 07/31/2014 14:47 < 0.088 < 0.088 < 0.088 < 0.088 < 0.088 < 0.088	PP -T-SS- 1 07/31/2014 09:20 < 0.097 < 0.097 < 0.097 < 0.097 < 0.097	Admin-T-SS-19 07/21/2014 14:10 < 0.095 < 0.095 < 0.095 < 0.095 < 0.095

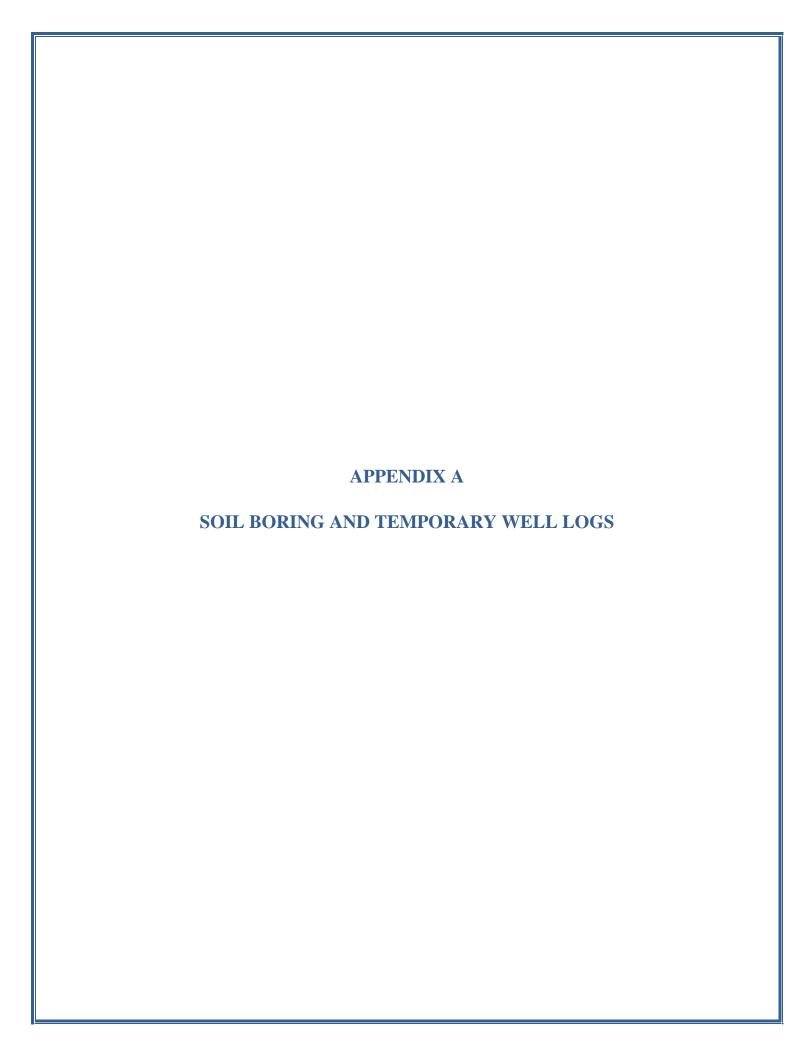
All results in micrograms per kilogram

						Labora	tory ID :	14070878-095	14070878-096	14070878-097	14070878-098	14070878-099
						Client San	ple ID:	Cedar-FB-SS-1	Cedar-FB-SS-2	Cedar-FB-SS-2-D	Cedar-FB-SS-3	Cedar-FB-SS-4
						Date Co	llected:	07/23/2014 12:30	07/23/2014 12:36	07/23/2014 12:36	07/23/2014 12:47	07/23/2014 12:44
					Soil Com	ponent of						
					Groundwat	er Ingestion						
			Route Specific	Values for Soil	Exposure R	oute Values						
CAS No		Analyte	Ingestion	Inhalation	Class I	Class II	MAC					
7439-97-6	Mercury		23	10 / 0.1*			0.1*	2.8	44	9.1	6.2	8.0
	pН						NA	8.0	7.8	7.6	7.3	7.7

^{* -} Construction Worker Inhalation Objective from Appendix B, Table B of Illinois Administrative Code (IAC) Section 742.

All results in milligrams per kilogram (mg/kg)

^{2.8} Indicates that result exceeds either a Tier I Residential Remediation Objective, Construction Worker Inhalation Remediation Objective, or a Maximum Allowable Concentration (MAC) Threshold for Clean Soil I Not applicable


						T 1		1.1050050.000	1.1050050.010	1.1050050.011	1.1050050.013	1.1050050.056	1.1050050.055	1.1050050.050	1.1050050.050
							tory ID :	14070878-039	14070878-040	14070878-041	14070878-042	14070878-056	14070878-057	14070878-058	14070878-059
						Client Sar	nple ID:	Power-LP-SS-10	Power-LP-SS-11		Power-LP-SS-12-D	Power-LP-SS-5	Power-LP-SS-6	Power-LP-SS-6-D	Power-LP-SS-7
						Date Co	ollected:	07/22/2014 15:01	07/22/2014 14:55	07/22/2014 14:58	07/22/2014 14:58	07/21/2014 14:40	07/21/2014 14:45	07/21/2014 14:45	07/21/2014 14:51
					Soil Com	ponent of									
					Groundwat	er Ingestion									
			Route Specific	Values for Soil		oute Values									
CAS No.		Analyte	Ingestion	Inhalation	Class I	Class II	MAC								
	Lead	Amaryte	400		107	Class II	107	85	74	120	130	22	72	75	87
	рH		400		107		NA	7.8	7.4	7.9	7.9	7.8	7.4	7.4	7.2
	рп					T 1									1.2
							tory ID:	14070878-060	14070878-061	14070878-062	14070878-063	14070878-064	14070878-065	14070878-066	
						Client Sar	-	Power-LP-SS-8	Power-LP-SS-9	Power-LP-SS-13	Power-LP-SS-14	Power-LP-SS-15	Power-LP-SS-16		
						Date Co	ollected:	07/21/2014 14:56	07/21/2014 15:02	07/21/2014 15:55	07/21/2014 15:49	07/21/2014 15:44	07/21/2014 15:40	07/21/2014 15:12	
			Route Specific	Values for Soil	Soil Com	ponent of									
CAS No.		Analyte	Ingestion	Inhalation	Class I	Class II	MAC								
7439-92-1	Lead	•	400		107		107	36	62	190	190	220	270	230	
	pН						NA	7.8	7.4	8.2	7.8	7.8	7.6	7.2	
	Г					Lahora	atory ID :	14070878-067	14070878-068	14070878-069	14070878-087	14070878-088	14070878-089	14070878-090	
						Client Sar	•	Power-LP-SS-18		Power-LP-SS-20	Power-LP-SS-1	Power-LP-SS-2	Power-LP-SS-3	Power-LP-SS-4	
							ollected:	07/21/2014 15:35	07/21/2014 15:20		07/21/2014 13:30	07/21/2014 13:34	07/21/2014 14:30	07/21/2014 14:34	
			D (- C : C - :)	V-1 C C-1	0.10		onected:	07/21/2014 13:33	07/21/2014 13:20	07/21/2014 13:24	07/21/2014 15:30	07/21/2014 15:54	07/21/2014 14:30	07/21/2014 14:34	
G L G M			Route Specific			ponent of	2440								
CAS No.		Analyte	Ingestion	Inhalation	Class I	Class II	MAC								
	Lead		400		107		107	510	120	180	330	150	170	73	
	pН						NA	7.3	7.3	7.2	7.5	7.6	7.2	7.7	

Indicates that result exceeds either a Tier I Residential Remediation Objective, Construction Worker Inhalation Remediation Objective, or a Maximum Allowable Concentration (MAC) Threshold for Clean Soil Reuse Not applicable

All results in milligrams per kilogram (mg/kg)

120

NA

DATE: 7/21/14 LOGGED BY: AP

BORING ID: Maint-SB-1 MW ID: N/A _____1

_			-		_	_			•	1	
Sampler Type	Sample Interval	Time	Recovered/Driven (in./in.	Blow Counts/6 in.	Physical Analysis	Chemical Analysis	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description
GР	0	816							0-8"		Upper 6 inches asphalt aggregate, then gravel fill
	4		32"				148.0		8" to 4		Gravel fill consistent w/ pea gravel
GР	4						40.7		4-8 ft		Pea gravel (note PID reading suspect, moisture)
	8		2"								Same as above to 8 feet.
GР	8		20"				23.5		8 to 12		Poorly sorted fill, medium-wet, loose gravel and
	12						40.7				75 percent coarse sand (suspect PID).
GР	12		48"				92.1		12-16'	CL	10 YR 6/6 brownish yellow, silty clay (suspect PID)
	16										
									16" bottom		

DATE: 7/21/14 LOGGED BY: AP

_1

BORING ID: Maint-SB-2 MW ID: N/A

	T		<u>.</u>				_		
Sampler Type	Sample Interval	Time	Recovered/Driven (in./in.)	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
GP	0	942				0-6"		Upper 6 inches asphalt aggregate, then gravel fill	
	4		29"	39.2		8" to 4		Gravel fill consistent w/ pea gravel to 7 feet (suspect PID).	
0.1									
GP	4			NA		4-8 ft		Same as above to 7 feet. 10YR 6/2 - light brownish gray poorly sorted,	
	8		6"					loose, medium grained sandy gravel (fill)	
GP	8		40"			8 to 12	SW	Same as above to 12 feet.	
	12								
GP	12		48"			12-16'	CL	10YR 5/2, grayish brown silty clay, stiff, moist	
	40								
	16								
GP	16		24"			16-20'	CL	Same as above.	
	20								
GP	16		20"			20-24'	CL	Same as above to 24 feet.	
	20								
									Ħ
									H
									$oxed{-}$
						1			

DATE: 7-21-14 LOGGED BY: AP

Sampler Type	Sample Interval	Time	Recovered/Driven (in./in.)	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
GP	0	1341	32"			0-1'		Asphalt aggregate to 1 foot, then gravel fill (pea	
	4						GW	gravel to 11 feet)	
GP	4		20"					Gravel, same as above; wet 7-9 feet	
	8								
GР	8		16"				GW	Gravel, same as above to 11 feet	
	12						CL	10 YR 5/2, grayish brown clay, stiff, dense, moist	
GР	12		14"				CL	Same as above to 16 feet	
	16								

DATE: 7-21-14 LOGGED BY: AP

BORING ID: Maint-SB-4 MW ID: N/A ______1

Sampler Type	Sample Interval	Time	Recovered/Driven (in./in.)	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
GP	0	1430				0-1'		10 YR2/2 very dark brown clay loam	
	4		32"			1-4'	GW	Gravel fill consistent with pea gravel	
GP	4					4-8'		Same as above	
	8		20"				GW		
GР	8					8-12'		Same as above	
	12		24"				GW		
GP	12					12-16'		10 YR 4/1 dark grey, dense, silty clay with trace gravel	
	16		24"				CL		
						I	1		

DATE: 7-21-14 LOGGED BY: AP

Sampler Type	Sample Interval	Time	Recovered/Driven (in./in.)	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
GP	0	15:15				0-1'		Asphalt Aggregate 10YR 3/1, very dark gray clay,d ense to 3 feet,	
	4		48"			1-4'	CL	then 10 YR 5/3, brown clay dense to 5 feet.	
GP	4					4-8'		Same as above to 5 feet; then 10YR 4/1/dark gray clay to 10 feet	
	8		48"				CL		
GP	8					8-12'		Same as above to 11 feet; then gray dry clay to 16 feet (10 YR 5/1)	
	12		40"				GW		
GP	12					12-16'		10 YR 4/1 dark grey, dense, silty clay with trace gravel	
	16		48"				CL		

DATE: 7-22-14 LOGGED BY: LS

			n./in.)					Q Q		ation		
Sampler Type	Sample Interval	Time	Recovered/Driven (in./in.)	Blow Counts/6 in.	Physical Analysis	Chemical Analysis	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
GP	0	1020							0'-1'		Top Soil	
0.	4		30"						1-5'	CI	10YR 5/3, brown, stiff, silty clay with intermixed trace concrete and gravel	
CD			00						F 7'	02		
GP	4		401						5-7' 7-8ft	01	Same as above to 7 feet.	
	8		46"							CL	10YR 7/1, light gray, stiff grey clay (dry)	
GP	8								8-12 ft.		Same as above.	
	12		48"							CL		
GP	12		48"						12-16 ft.		Same as above.	
GР	16											
GP	16 18								16-18 ft	CL	Same as above (driven to 18 feet)	
	10											

DATE: 7-22-14 LOGGED BY: LS

Sampler Type	Sample Interval	Time	Recovered/Driven (in./in.)	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
GР	0	9:30				0'-1'		Top Soil	
	4		14"			1-5'	CL	10YR 3/3, dark brown, stiff, silty clay with intermixed trace aggregate	
GР	4					5-6 ft		Same as above to 5 feet; then broken concrete, aggregate, gravel layer to 6 feet.	
	8		24"			6-8ft	CL	10YR 3/3, dark brown, stiff, silty clay	
GР	8					8-12 ft.		10 YR 7/1/, light gray, stiff clay with intermixed yellowish and brown mottling.	
	12		46"				CL		
						1			
						<u> </u> 			
						<u> </u> 			

Installation: DATE: 7-22-14 LOGGED BY: LS

			<u>(</u> -				_		
Sampler Type	Sample Interval	Time	Recovered/Driven (in./in.)	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
GΡ	0	1000				0'-1'		Top Soil	
	4		44"			1-5"		10YR 5/3, brown, stiff clay	
						=		w/ intermixed trace concrete material	
0.5									
GΡ	4		40"			EL 01		40 VD 7/4 light grove stiff play	
$\ -\ $	8		46"			5'-8'		10 YR 7/1 light grey, stiff clay w/ intermixed yellowish brown mottling	$-\parallel$
$\ - \ $						1		w/ intermixed yellowish brown mottling	$-\parallel$
$\ - \ $									\dashv
						1			
						1			
						+			
						=			
						1			
						1			
]			
]			
$\Vdash \vdash$									
						-			
$\ - \ $						-			
						-			
$\ - \ $						1			$-\parallel$
						1			
╟┤						1			$-\parallel$
						1			
lacksquare						1			

			``		I	1	_		
Sampler Type	Sample Interval	Time	Recovered/Driven (in./in.	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
GP	0	1120				0'-1'		Top Soil	
	4		40"			1'-4'		10YR 5/3, brown, stiff clay with trace intermixed concrete and brick material	
GP	0	1120				4-6 feet		10YR 5/4, yellowish brown, moderately stiff clay with aggregate material.	
	4		24"			6 to 8 feet		10YR 7/1, light gray stiff clay.	
-									
					_				
									-

Installation:

DATE: 7-22-14

LOGGED BY: LS

BORING ID: SF-SB-5 MW ID: N/A ______1

Sample Interval	Time	Recovered/Driven (in./in.)	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	% Silt/Clay
0 4	900	38"			0'-1' 1'-4'		10YR 3/3, dark brown, moderately stiff silty clay w/	
4		42"			4'-6'	SM	10 YR 2/1 black sandy loam, moist dense, with large gravel (stone)	
8					6-8'	CL	10 YR 7/1, light gray, stiff clay, w/ intermixed yellowish brown (10 YR 5/4) mottling.	
8		48"			6-8'	CL	Same as above	
12					8-12'	CL	Same as above	
#								
	0 4 8 8	0 900 4 4 8 8	0 900 38" 4 42" 8 48"	0 900 38" 4 42" 8 48"	0 900 38" 4 42" 8 48"	0 900 38" 0'-1' 4 42" 4'-6' 8 48" 6-8' 8 8-12'	0 900 38" 0'-1' CL 1'-4' 4 42" 4'-6' SM 6-8' CL 8 48" CL	0 900 38" 0'-1' CL top soil 1'-4' 10YR 3/3, dark brown, moderately stiff silty clay w/ intermixed concrete material 4'-6' 10 YR 2/1 black sandy loam, moist dense, with large SM gravel (stone) 6-8' 10 YR 7/1, light gray, stiff clay, w/ intermixed yellowish brown (10 YR 5/4) mottling. 6-8' CL Same as above

BORING ID: SF-SB-6 MW ID: N/A

Recovered/Driven (in./in USCS Type/Designation Well Construction Info PID Reading (ppm) Depth (feet bgs) Sample Interval Sampler Type Soil Description GΡ 825 33" 0'-1' CL top soil 0 Silty clay with trace gravel and asphalt 1'-3' aggregate; layer of aggregate to 3.5 CL feet. 4 3.5-7' 10 YR 6/3 pale brownstiff clay, w/ trace 20" CL aggregate material.. GΡ 4 7-8' 10 YR black sandy loam (orginal ground CL surface), moist loose, well sorted.. 8 8-9' GΡ 8 30" CL Same as above 10YR 7/1, light gray, stiff clay with 9-12' intermixed yellowish brown (10 YR 5/4) 12 CL mottling

__1_

_1

BORING ID: SF-SB-7 MY

MW ID: N/A

								•	
Sampler Type	Sample Interval	Time	Recovered/Driven (in./in.	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
GP	0	800	47"			0'-2'	CL	top soil - plastic covering garbage bag material at 2 feet.	
	4					2'-3'	CL	10 YR 3/3 dark brown stiff silty clay with trace gravel.	
GP	4		24"			3-6'		10 YR 4/4 dark yellowish brown stiff silty clay, w/ trace aggregate material	
	8					6-8'		10 YR 7/1, light graysilty claywith intermixed 10 YR 5/4 yellowish brown mottling	
GP			48"			8-9'	SC-	Moderately stiff sandy clay lens, moist 10 YR 6/3	
	12					9-12'		gray silty clay	
						<u> </u>			

Sampler Type	Sample Interval	Time	Recovered/Driven (in./in.	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
GP	0	728	40"		0'-6"	CL	sandy loam, 10 YR 6/3 Pale Brown	
	4				0.5"-3'		10 YR 6/3 pale brown, clay loam with intermixed aggregate, large gravel,	
GP			34"		3-8'		10 YR 5/3, brwon clay loam, stiff	
	8					CL	Same as above	
GP	8		48"		8-12'	SC- CL	10 YR 6/1, gray, stiff, silty clay, moist	
	12					CL	Same as above	
					<u> </u> 			
					 			
					<u> </u>			
								H
								H
					1			

Installation: DATE: 7-22-14 LOGGED BY: LS

_1

BORING ID: Lime SB-0 MW ID: N/A

Sampler Type	Sample Interval	Time	Recovered/Driven (in./in.)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
GP	0	1220			0-2'		light gray lime material, moist w/ intermixed silty clay	
	4		35"		2-4'		10YR 6/4 light yellowish brown stiff silty clay w. trace gravel	
	4				4-8'	CL	10YR 6/4 light yellowish brown stiff silty clay w. trace gravel	
GР	8		40"				Same as above	

DATE: 7-22-14 LOGGED BY: LS

Sampler Type	Sample Interval	Time	Recovered/Driven (in./in.)	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
GP	0	1240				0-1'		light gray lime material, moist w/ intermixed silty clay	
	4		35"			1-4'	CL	10YR 6/4 light yellowish brown stiff silty clay w. trace gravel	
	4					4-8'	CL	Same as above	
GP	8		42"				CL	Same as above	
						-			

BORING ID: Lime SB-03 MW ID: N/A ______1

П	T		ċ						
Sampler Type	Sample Interval	Time	Recovered/Driven (in./in.	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
GP	0	1305				0-2'		10 YR 6/3 pale brown, moist, silty clay with trace gravel	
	4		38"			2-4'	CL	10YR 6/4 light yellowish brown stiff silty clay w. trace gravel	
	4					4-8'	CL	Same as above	
GР	8		40"				CL	Same as above	
									Ц
									H

BORING ID: Power SB-01 MW ID: N/A

Sampler Type	Sample Interval	Тіте	Recovered/Driven (in./in.)	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
s GP		13:50	R	А	>	0'-1')	Asphalt aggregate material	
	4		28"			1-3'		10YR 5/3, brown, stiff, silty clay with intermixed trace aggregate material	
GP	4					3-8'	GР	Pea gravel material (tank pit backfill)	
	8		9"				GP	Same as above	
GP	8					8-12 ft.		Same as above	
	12		9"				GΡ	Same as above	
GP	12		14"			12-15 ft.		Same as above.	
GP	16					15-16'		10 YR 5/3 brown stiff clay with trace gravel.	
									_
									_

DATE: 7-22-14 LOGGED BY: LS

BORING ID: Power SB-02 MW ID: N/A

__1

Sampler Type	Sample Interval	Time	Recovered/Driven (in /in.)	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
GP	0	14:20				0'-1'		Asphalt aggregate material	
	4		38"			1-3'		10YR 5/3, brown, stiff, silty clay with intermixed trace aggregate material	
GP	4					3-8'	GP	Pea gravel material (tank pit backfill)	
	8		24"				GP	Same as above	
GP	8					8-12 ft.		Same as above	
	12		10"				GP	Same as above	
GP	12		22"			12-14 ft.		Same as above.	
GР	16					14-16'		10 YR 5/3 brown stiff clay with trace gravel.	

Installation:

DATE: 7-23-14

LOGGED BY: LS

BORING ID: Power SB-03 MW ID: N/A

									_
Sampler Type	Sample Interval	Time	Recovered/Driven (in./in.)	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
GP	0	7:20				0'-1'		Asphalt aggregate	
	4		24"			1-2'	CL	10YR 5/3, brown, stiff, silty clay with intermixed trace aggregate material; poorly sorted	
GP	4					2-8 ft.'	GP	Pea gravel material (tank pit backfill)	
	8		10"				GP	Same as above	
GP	8					8-10 ft.	GP	Same as above	
	12		24"			10-11 ft	SP	Sandy clay layer, fine grained, poorly sorted.	
GP	12		12"			12-14 ft.	GP	Pea gravel material (tank pit backfill)	
GP	16					14-16'		Fuel odor at 16 ft; not sufficient soil to sample; temporary well set; no water to sample.	
									_
						-			
						-			4

DATE: 7-23-14 LOGGED BY: LS

BORING ID: Power SB-04 MW ID: N/A

Page 1 of 1

Sampler Type	Sample Interval	Time	Recovered/Driven (in./in.)	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	% Gravel	% Coarse Sand	% Medium Sand	% Fine Sand	% Silt/Clay
GP	0	8:40				0'-3'	CL	10YR 5/3, brown, stiff, silty clay with intermixed trace aggregate material.					
	4		42"			3-4'	CL	10 YR 5/4, yellowish brown, silty clay.					
GP	4					4-8'	CL	Same as above, with moist interval at 7-8 feet					
	8		42"				CL						
GP	8					8-10'		Same as above					
	12		48"			10-11 ft	SC/ CL	10 YR 5/3, brown, silty sandy clay wet, well sorted, fine grained dense to 11 feet.					
						11-12 ft		10 YR 6/1, gray, moderately stiff, clay with trace gravel.					
						-							
						-							
						-							\parallel
						-							

DATE: 7-23-14 LOGGED BY: LS

BORING ID: Power SB-05 MW ID: N/A

			-21			ı	-		1
Sampler Type	Sample Interval	Time	Recovered/Driven (in./in.	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
GP	0	9:05				0'-5'	CL	10YR 5/3, brown, stiff, silty clay with intermixed trace aggregate material.	
	4		43"				CL		
GP	4						CL		
	8		46"			5-8'		10 YR 6/4 light yellowish brown, stiff, moderately stiff silty clay	
GP	8					8-12'		10 YR 6/1, gray, moderately stiff, clay, dense with trace gravel.	
	12		44"						

DATE: 7-23-14 LOGGED BY: LS

_1

BORING ID: Cedar SB-01 MW ID: N/A

Sampler Type	Sample Interval	Time	Recovered/Driven (in./in.)	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
GP	0	11:00				0'-5'	CL	10YR 3/3, dark brown, moderately stiff, silty clay.	
	4		32"				CL	Same as above	
GР	4						CL	Same as above to 5 feet.	
	8		48"			5-8'	CL	10 YR 6/4 light yellowish brown, stiff clay, soft, most interval at 7 feet.	
GР	8					8-12'	CL	Same as above	
	12		48"						

DATE: 7-23-14 LOGGED BY: LS

BORING ID: Cedar SB-02 MW ID: N/A

Sampler Type	Sample Interval	Time	Recovered/Driven (in./in.)	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
GP	0	11:00				0'-5'	CL	10YR 3/3, dark brown, moderately stiff, silty clay.	
	4		32"				CL	Same as above	
GP	4						CL	Same as above to 5 feet.	
	8		48"			5-8'	CL	10 YR 6/4 light yellowish brown, stiff clay, soff, most interval at 7 feet.	
GP	8					8-12'	CL	Same as above	
	12		48"						

DATE: 7-23-14 LOGGED BY: LS

_1

BORING ID: Cedar SB-03 MW ID: N/A

Sampler Type	Sample Interval	Time	Recovered/Driven (in./in.)	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
GP	0	12:30				0'-2'	CL	10YR 3/3, dark brown, moderately stiff, silty clay.	
	4		24"			2-4'	CL	10 YR 6/4 light yellowish brown, stiff clay, with trace gravel.	
GР	4					4-8'	CL	Same as above	
	8		48"				CL	Same as above	
GР	8					8-12'	CL	Same as above	
	12		48"				CL	Same as above	

BORING ID: Cedar SB-04 MW ID: N/A

			Ŀ.				۾		
Sampler Type	Sample Interval	Time	Recovered/Driven (in./in.	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
GP	0	10:10				0'-1'		Top soil	
	4		38"			1-4'	CL	10YR 3/3, dark brown, stiff, silty clay.	
GP	4					4-8'	CL	10 YR 5/4, yellowish brown, stiff to moderately stiff silty clay with trace gravel.	
	8		46"				CL	Same as above	
GP	8					8-11'	SM/	10 YR 6/4, light yellowish brown, silty sandy clay wet, fine grained well sorted.	
	12		48"			11-12'		10 YR 5/3, brown, stiffy, clay with trace gravel.	
						1			
						1			
						1			
						1			_
						1			
						1			
						1			

DATE: 7-23-14 LOGGED BY: LS

BORING ID: Cedar SB-05 MW ID: N/A

Sampler Type	Sample Interval	Time	Recovered/Driven (in./in.)	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description			
GP	0	10:35				0'-4'		10YR 3/3, dark brown, stiff, silty clay, with trace gravel.			
	4		42"				CL				
GP	4					4-8'	CL	10 YR 6/4, light yellowish brown, stiff, clay w trace gravel.			
	8		43"				CL	Same as above			
GP	8					8-10'	CL	Same as above			
	12		48"			11-12'	CL	10 YR 7/1, light gray, moderately stiff clay with trace gravel.			

BORING ID: Cedar SB-06 MW ID: N/A

Sampler Type	Sample Interval	Time	Recovered/Driven (in./in.)	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
GP	0	9:50				0'-4'		10YR 3/3, dark brown, stiff, silty clay.	
	4		42"				CL		
GP	4					4-5'	CL	Same as above	
	8		43"			5-8'	CL	10 YR 5/4, yellowish brown, stiff silty clay	
GP	8					8-9'		Same as above	
	12		48"			9-10'	SM	10 yR 5/3, brown silty sand seam, fine grained well sorted, dense, wet.	
						10-12'		10 YR 5/3, brown stiff clay with trace gravel.	

DATE: 7-23-14 LOGGED BY: AP

BORING ID: Power-OD-SB-01 MW ID: N/A

Sampler Type	Sample Interval	Time	Recovered/Driven (in./in.	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
GP	0	1320	42"			0-2'	CL	10 YR 3/3, dark brown, moderately stiff, silty clay with aggregate material.	
	4					2-4'	CL	10 YR 5/3, brown, moderately stiff clay with trace gravel.	
GР	4		24"			4-6'	CL	Same as above.	
	8					6-7'	SP	10 YR 5/3, brown, fine grained sand lens, poorly sorted, product odor.	
GP	8		48"			7-10'	CL	10 YR 5/4, yellowish brown, soft clay, product odor.	
	12					10-12'	CL	10 YR 6/1, gray, stiff clay, dense.	
GP	12		48"				CL	Same as above to 16 feet	
	16								
GP	16		48"				CL	Same as above to 20 feet	
	20							20 feet bottom of boring.	
						-			
						-			
									\parallel
						1			

DATE: 7-23-14 LOGGED BY: AP

BORING ID: Power-OD-SB-02 MW ID: N/A

Recovered/Driven (in./in.) **USCS Type/Designation** Well Construction Info PID Reading (ppm) Sample Interval Depth (feet bgs) Soil Description 10 YR 4/4, dark yellowish brown, stiff, 1415 12" 0-4 CL silty clay with trace gravel. GΡ 0 CL Same as above. GΡ 4-5' CL Same as above. 35" 10 YR 5/4, yellowish brown, fine grained SW sand, well sorted, moist, product odor. 8 5-6' 10 YR 6/4, light yellowish brown, stiff clay, with trace gravel. 6-9' CL GΡ 48" 12 9-12' CL Same as above.

DATE: 7-23-14 LOGGED BY: AP

_1

BORING ID: Power-OD-SB-03 MW ID: N/A

н т		-	$\widehat{}$	1					
Sampler Type	Sample Interval	Time	Recovered/Driven (in./in.)	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
GΡ	0	1435	30"			0-1		Top soil	
	4					1-4'	CL	10 YR 6/4, light yellowish brown, stiff clay, with trace gravel	
GP	4		46"			4-6'	CL	Same as above.	
	8					6-7'	sc	10 YR 5/4, yellowish brown, sandy clay lens, fine grained well sorted, moist.	
GP	8		48"			7-11'	CL	10 YR 6/4, light yellowish brown,moderately stiff clay, with trace gravel.	
	12					11-12'	CL	10 YR 7/1, light gray stiff clay.	
						-			
						-			

BOREHOLE LOG

Installation: DATE: 8-2-2014 CTO: DATE: 8-2-2014 LOGGED BY: S.Durley

BORING ID: HDC-AST-SB-01 MW ID:

							IVIVV ID.			
Sampler Type	Sample Interval	Time	Physical Analysis	Chemical Analysis	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
GΡ	0				ND		0'-2'		Black Soil	
	4				ND		2'-4'		silty brownish gray clay	
							4		Sity brownish gray clay	\vdash
GΡ	4			Χ			46'		SAA, sampled @ 6'	
	8				ND		6'-8'		dense gray clay	
										\Box
										Н
-										
							1			
							,			
$\ - \ $	-									\vdash
$\ \cdot\ $				Н						\vdash
\parallel			H	Н						\vdash
	_			Щ						\blacksquare
				Ш						
				Ш						Щ
				H						H
ILL										

BOREHOLE LOG

Installation: DATE: 8-2-2014 CTO: DATE: 8-2-2014

BORING ID: HDC-AST-SB-0 MW ID:

_									Ξ.
Sampler Type	Sample Interval	Time	Chemical Analysis	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
GР	0			ND		0'-2'		black soil w/ gravel	П
	4			ND		2'-4'		silty brownish clay	
GP	4		-	ND		4'-6'		SAA, sampled @ 6'	Н
GF	8		^	ND		6'-8'			
	0			טאו		0-0		silty gray clay slighty moist	Н
									H
									H
\parallel						ł			Н
									Н
						ļ			Н
-									
						1			
						1			П
						1			П
	_					1			H
$\ - \ $	\dashv					1			H
									\vdash
$\ \cdot \ $	-		H			1			\vdash
$\ $						}			\vdash
II I									

BOREHOLE LOG

Installation: DATE: 08-2-2014 CTO: DATE: 08-2-2014 LOGGED BY: S.Durley

BORING ID: HDC-AST-SB-03 MW ID:

						INIAA ID.			
Sampler Type	Sample Interval	Time	Chemical Analysis	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
GР	0			ND		0'-2'		Black soil	
0	4		Х	12		2'-4'		brown silt, @ 4' hit debris and ended SB sampled @ 3'-4'	
	4		^	12		Z -4			
 								(visual contamination)	
			H						
 			H						
 	\vdash		Н						
 									
<u> </u>			Н						
<u> </u>									
			Щ						
			Н						
 	$\vdash\vdash$		Н						
<u> </u>									
<u> </u>			Щ						
	<u> </u>								

Installation: DATE:8-2-2014 CTO: DATE:8-2-2014 LOGGED BY: S.Durley

BORING ID: HDC-AST-SB-04 MW ID:

							ואואא וט.			
Sampler Type	Sample Interval	Time	Recovered/Driven (in./in.)	Chemical Analysis	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
GΡ	0						0'-2'		silty sandy soil	
<u> </u>	4						2'-4'		brownish gray silty clay	
				Х					days a gray slay Carrylad @ Cl	
GΡ	4			_			4'-6'		dense gray clay, Sampled @ 6'	
	8			Ш			6'-8'		SAA	
				Н						
\parallel				\vdash						
$\vdash\vdash$				Н						
<u> </u>				Ц						
				Ц						
				П			1			
				Н						
\Vdash				Н						Щ

Installation: DATE:8-2-2014 CTO: DATE:8-2-2014 LOGGED BY: S.Durley

BORING ID: HDC-AST-SB-05 MW ID:

							IVIVV ID.		-	
Sampler Type	Sample Interval	Time	Recovered/Driven (in./in.)	Chemical Analysis	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
GΡ	0						0'-2'		black soil w/ gravel	
<u> </u>	4						2'-4'		brownish gray silty clay	
GP	4			Х			4'-6'		dence gray day Compled @ 6'	
GF				^			1		dense gray clay, Sampled @ 6'	
	8			H			6'-8'		SAA	
							ļ			
				Н						
				Ш						
				H						
\vdash				Н						
				Н						
				H						
				Ш						
				Ц						
				П						
				\vdash						
				H			ł			
				Н						
\vdash				Н						
				Ы						

Installation: Tinley Park Mental Health Center DATE: 8-1-2014

LOGGED BY: C.Renner

BORING ID: Deep Boring-1 MW ID: N/A

LD D1: Girtorinoi

БОІ	KIINC	י וט: נ	Jeek) DO	ring- i	MW ID:	IN/A		<u> 1</u>
Sampler Type	Sample Interval	Time	Recovered/Driven (in./in.)	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
GΡ	0	830	40"	1.2		0'-4'		0"-6"- Top Soil, Sility Clay, dense, moist,	
	4							dark brown-light gray brown	
GΡ	4	830	47"	3.1		4'-8'		clay, dense, moist, brown to grey	
	8					1		Sand gravel layer- 2" @ 7.5'	
GΡ	8	830	47"	2.0		8'-12'		clay, dense, moist, brown -dark grey:top-bottom	
	12								
GΡ	12	830	47"	2.4		12'-16'		clay, medium dense, moist, dark grey	
	16							•	
GΡ	16	830	47"	2.4		16'-20'		SAA	
	20								
GΡ	20	830	47"	2.1		20'-24'		SAA	
	24								
						1			
						1			
						1			
						1			
						1			H
\vdash	\dashv								\vdash
									\vdash
									1

Installation: DATE: 8-1-2014 CTO: DATE: 8-1-2014 LOGGED BY: S.Durley

BORING ID: Deep Boring-02 MW ID:

BO	KING	ا :Uا و	Seek	BO	ring-02	MW ID:		-	
Sampler Type	Sample Interval	Time	Recovered/Driven (in./in.)	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
GΡ	0	1050	42"			0'-4'		0"-8"-Top Soil, 8"-36" silty clay, brown,	
	4							36"-42" brownish medium dense clay w/ some gravel	
GΡ	4	1050	48"			4'-8'		medium dense, tight, brownish gray clay	
	8					1		, , , , ,	
GP		1050	48"			8'-12'		8'-10' dense brownish gray clay, 3" sand seam w/	
	12							gravel, slighty moist, 10.7'-12' medium dense gray cla	av
GР		1050	48"			12'-16'		12'-14' brownish gray clay, 1" silty sand w/ gravel	/
	16					1		seam, slighty moist, 14.1-16' dense gray dark clay	
GP		1050	48"			16'-20'		16'-18' dense, dark gray, clay w/ less than 5% sand	
	20							18'-20'- gray dense clay slightly moist	
GР	20	1050	48"			20'-24'		dense, dark gray, tight, clay, slightly moist	
	24							actives, asim groy, agin, asy, anginy more	
						1			
						1			
						1			
						-			
						1			
						-			
						1			
						-			
						†			
						1			
						1			
						-			
						+			
						-			
						1	\vdash		\dashv
						1			
						1			
						1			\dashv
\vdash						1	\vdash		\dashv
						1	\vdash		\dashv
\vdash						1	\vdash		\dashv
						1	\vdash		\dashv
						1			\dashv
						-			\dashv
\parallel						-	 		
						-	-		\dashv
						}	\vdash		\dashv
						-	-		\dashv

Installation:

DATE: 8-1-2014 LOGGED BY: S.Durley

CTO:
BORING ID: Deep Boring-03 MW ID:

во	RIN	3 ID: I	Deep	Во	oring-03	MW ID:			
Sampler Type	Sample Interval	Time	Recovered/Driven (in./in.)	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
GΡ	0	1147	36"			0'-4'		0'-1'- black topsoil, 1'-2' black/brown silt,	
	4]		2'-4' mottled, brown/gray, silty, clay, slightly moist	
GΡ	4	1147	36"			4'-8'	L	4'-5' mottled, brown/gray, silty, clay 5'-6' grayish/brown	Ш
	8							fine grained silty sand w/ gravel,6'-8' gray sandy silt. Last 3" brown coarse sand moist	
GΡ	8	1147	38"			8'-12'		gray dense clay w/ trace pieces of gravel	
	12								
GΡ	12 16	1147	36"			12'-16'	_	gray dense clay	H
GP		1147	36"			16'-20'		granite gravel seam @ 16'-16.2', 16.2-20' dense gray clay w/ some	П
	20							gravel seams	
GΡ	20	1147	48"			20'-24'		dense gray clay w/ <2% gravel	
	24								
						<u> </u>	$ldsymbol{ld}}}}}}$		Ш
						_	<u> </u>		1
						<u> </u>	_		╄
						-	<u> </u>		\vdash
						1	<u> </u>		\vdash
						<u> </u> 			\vdash
					 	1	⊢		╁
									\vdash
						1			\forall
						_			
						1			T
						1			Т
]			
]			
									Ш
						4	<u> </u>		┸
					_	_			\vdash
					<u> </u>	<u> </u>	<u> </u>		\vdash
					 	-			\vdash
				\vdash	 	-	\vdash		╀
						1			

Tinley Park Water Treatment Plant DATE: 8-2-2014

Installation: CTO: LOGGED BY: S.Durley

во		G ID: \	NT-	SB-(01				MW ID:	N/A	LOGGLD D1. G.Dancy	_1
Sampler Type	Sample Interval	Time	Recovered/Driven (in./in.)	Blow Counts/6 in.	Physical Analysis	Chemical Analysis	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
GP	0	1400							0'-4'		0'-1' brownish gray topsoil, 1'-4' motttled brown gray silty clay	
	4								1			
GΡ		1400					0.0		4'-8'		dense brown clay, sampled 6'-8'	
	8						2.8		1			
									-			
									1			
]			
]			
									-			\blacksquare
									-			
									-			$\vdash \parallel$
									-			
									1			
									1			
									1			
]			
-									-			
\vdash					\vdash	\vdash			{			-
									\mathbf{I}			$\ \cdot\ $
					\vdash				1			-
\vdash					\vdash				1			-
					T				1			
									1			
									1			
								_]			
]			
<u> </u>												Щ
												$\parallel \parallel$
						lacksquare						\square
									-			$\parallel \parallel$
II .	1	1	I			ı			I	ı		1 II

Installation: DATE: 8-2-2014 CTO: DATE: 8-2-2014 LOGGED BY: S.Durley

BORING ID: PP-SB-01 MW ID:

	ORING ID: PP-SB-01						MW ID:			
Sampler Type	Sample Interval	Time	Recovered/Driven (in./in.)	Chemical Analysis	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
GΡ	0						0'-2'		Silty sand/soil black	
	4						2'-4'		silty sand w/ rocks	
GΡ	4						4'-6'		silty clay gray	
	8				9.0		6'-7'		sand lens. Visual contamination	
GΡ	8						7'-12'		dense gray clay	
	12									
										Щ
										Щ
										Щ
										Щ
 										
 										

Installation: DATE: 8-2-2014 CTO: DATE: 8-2-2014 LOGGED BY: S.Durley

BORING ID: PP-SB-01A MW ID:

							,			=
Sampler Type	Sample Interval	Time	Recovered/Driven (in./in.)	Chemical Analysis	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
GP	0	•		Ē		-	0'-2'		Black Soil	
GP										
	4			H			2'-4'		silty clay	
GΡ	4			Н	2.1		4'-6'		silty clay, sample collected @5'-6'	
\square	8			Н			6'-8'		silty gray clay	
							1			
							*			
				Ш			•			
				Щ						Щ
				Щ						
							*			
				П						
				П						
H				H						H
H				H						\vdash
$\ \cdot\ $				Н						
\vdash				H						
$\ \cdot\ $				\vdash						
$\vdash \vdash$				Н						\vdash
				\vdash						
\vdash				Н						\vdash
	_			\vdash						
$\mid \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$				Н						Щ
				Ц						

Installation: DATE: 8-2-2014 CTO: DATE: 8-2-2014 LOGGED BY: S.Durley

BORING ID: PP-SB-02A MW ID:

	*****	iD: F	1 - 0	-	UZA		MW ID:			
Sampler Type	Sample Interval	Time	Recovered/Driven (in./in.)	Chemical Analysis	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
GΡ	0						0'-2'		black soil	
	4						2'-4'		brownish gray silty clay	
GΡ	4			Χ			4'-6'		sandy clay, sampled @ 5'-6'	
	8						6'-8'		silty gray clay	
				Н						
				Н						Н
				Н						
				Н						Н
				\vdash						
				Н						H
				\vdash						
				Н						H
				\vdash						
				Н						Н
				Н						
				Н						H
				Н						Н
				\square						Н

Installation: DATE: 8-1-2014 CTO: LOGGED BY:C.Renner

BORING ID: Pine-UST-SB-01 MW ID:

<u> </u>	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		1110		<u> </u>	<u> </u>	MW ID:		•	_
Sampler Type	Sample Interval	Time	Recovered/Driven (in./in.)	Chemical Analysis	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
GΡ	0 4	1019	20"		ND		0'-4'		0"-6"-Top Soil, Aggregate/Gravel, grey	
GP	4 8	1019	31"		ND		4'-8'		4'-5'- aggregate, 5'-8'- clay, dark grey, dense, moist	
GP	8	1019	40"		3		8'-12'		clay, dark grey, trace sand, dense	
	12			Х					sampled 10'-12'	
				Н						
				Ц						
				H						
				Н						
				Н						
				H						
\Box										, ,

Installation: DATE: 8-1-2014

CTO: LOGGED BY: C.Renner

BORING ID: Oak-UST-SB-01 MW ID:

Soil Description Soil Descri	<u> </u>	· · · · · ·	<i>-</i>	Ou.	` `		00-01	טו אוא:		
4 930 31" 4'-8' clay, dense, grey brown 8 Silty sand layer- 2" @ 7.5' GP 8 930 24" 5 8'-12' SAA	Sampler Type	Sample Interval	Time	Recovered/Driven (in./in.)	Chemical Analysis	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description
GP 4 930 31" 4'-8' clay, dense, grey brown 8 Silty sand layer- 2" @ 7.5' GP 8 930 24" 5 8'-12' SAA				20"				0'-4'		0"-6"- Top Soil, clay, dense, brown
8 Silty sand layer- 2" @ 7.5' GP 8 930 24" 5 8'-12' SAA	GP	-	930	31"				4'-8'		clay, dense, grey brown
GP 8 930 24" 5 8'-12' SAA		8								Silty sand layer- 2" @ 7.5'
	GP		930	24"		5		8'-12'		
										·
					H					
					Н					
					П					
					П					
					H					+
					\vdash					
	\vdash				H					
	 				H					
					Н					
					Щ					
					Ц					

Installation: DATE:8-1-2014 CTO: DATE:8-1-2014 LOGGED BY: S.Durley

BORING ID: Maple-UST-SB MW ID:

						INIVATIO.			
Sampler Type	Sample Interval	Time	Recovered/Driven (in./in.)	PID Reading (ppm)	Well Construction Info	Depth (feet bgs)	USCS Type/Designation	Soil Description	
GP	0	1343		ND		0'-4'		topsoil, silty soil, mottled brownish gray silty clay	
GP	4	1343		ND		4'-8'		silty mottled brownish gray clay , moist @ 7-8'	
	8	1010						only monitor browning gray only , molect © 1	
GΡ	8	1343		3		8'-12'		silty clay w/ fine grained sand trace amounts of gravel	
	12								
				H					

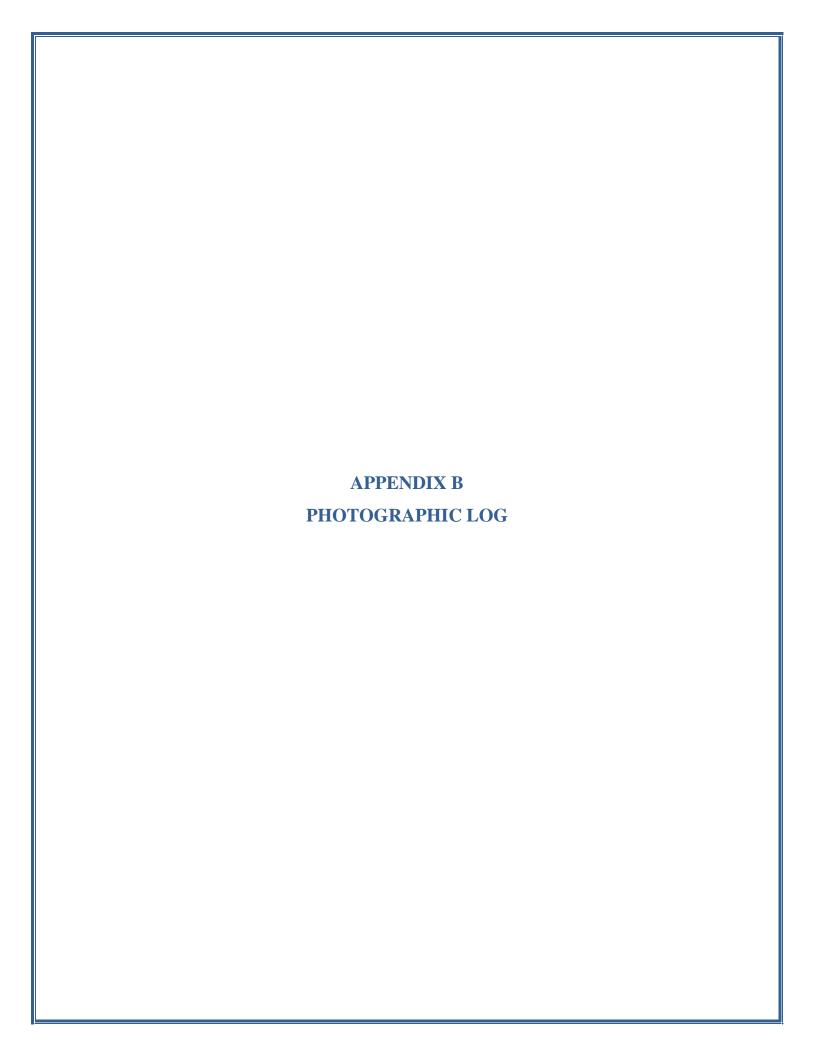


Photo: 1

Description:

Fill area west of Power

House

Orientation:

Facing West-southwest

Date: July 31, 2014 Photographer: TWH

Photo: 2

Description:

Continuing to the west

from prior photo

Orientation:

Facing Southwest

Photo: 3

Description:

Fill area, continuing to northwest from prior photo

Orientation:

Facing northwest

Date: July 31, 2014 Photographer: TWH

Photo: 4

Description:

Fill area, continuing to north from prior photo

Orientation:

Facing north Date: July 31, 2014 Photographer: TWH

Photo: 5

Description:

Test Pit 1 – part of buried culvert including concrete.

Orientation:

Facing northwest

Date: July 31, 2014 Photographer: TWH

Photo: 6

Description:

Western extension of Test Pit 1 – clay fill with clay at depth of about 3 feet.

Orientation:

Facing West

Photo: 7

Description:

Test Pit 2; not clean fill with native clay at base

Orientation:

Facing north

Date: July 31, 2014 Photographer: TWH

Photo: 8

Description:

Closeup of Test Pit 2; looking at intersection of north and western extension; clean native clay at base

Orientation:

Facing northwest

Photo: 9

Description:

Western extension of TP-2; note all clean fill with clay underneath

Orientation:

Facing west

Date: July 31, 2014 Photographer: TWH

Photo: 10

Description:

North extension of Test Pit 3; minor fill; mostly clean with clay underlying

Orientation:

Facing north.

Photo: 11

Description:

Test Pit 3; looking at intersection of north-south and west extension; note clean fill overlying native clay.

Orientation:

Facing northwest

Date: July 31, 2014 Photographer: TWH

Photo: 12

Description:

Test Pit 3; looking west at west extension

Orientation:

Facing west

Photo: 13

Description:

Test Pit 4; note clean fill and topsoil; native clay underlying fill

Orientation:

Facing north.

Date: July 31, 2014 Photographer: TWH

Photo: 14

Description:

Test Pit 5; note predominantly soil with a lot of debris (brick; battery; some rubber)

Orientation:

Facing Southwest

Photo: 15

Description:

Test Pit 5; residual part of car or equipment battery.

Orientation:

Facing down

Date: July 31, 2014 Photographer: TWH

Photo: 16

Description:

Test Pit 5 close of up fill material including rubber some metal; gravel, and asphalt

Orientation:

Facing north

Photo: 17

Description:

Test Pit 6; note concrete sewer pipe, brick, concrete, other debris.

Orientation:

Facing southwest

Date: July 31, 2014 Photographer: TWH

Photo: 18

Description:

Looking at Test Pit 6; note the abundance of debris including concrete, brick, rock, asphalt, and other miscellaneous debris.

Orientation:

Facing Southwest

Photo: 19

Description:

Test Pit 7; note ash and cinder; also lime solids.

Orientation:

Facing north

Date: July 31, 2014 Photographer: TWH

Photo: 20

Description:

Test Pit 7; large chunk of

lime solids.

Orientation:

Northeast

Photo: 21

Description:

Test Pit 7; closeup of lime solids intermixed with ash and cinder.

Orientation:

Facing north

Date: July 31, 2014 Photographer: TWH

Photo: 22

Description:

Visual contamination at 6-7 feet bgs in soil boring in drum accumulation area to north of Power Plant.

Orientation:

Facing West

Photo: 23

Description:

Drilling soil boring in drum accumulation area to north of Power Plant.

Orientation:

Facing West

Date: July 31, 2014 Photographer: SLD

Photo: 24

Description:

Soil sampling location at former UST area near Oak Hall.

Orientation:

Facing West

Photo: 25

Description:

Deep Boring – 4 location near Howe Development Center.

Orientation:

Facing East

Date: July 31, 2014 Photographer: SLD

Photo: 26

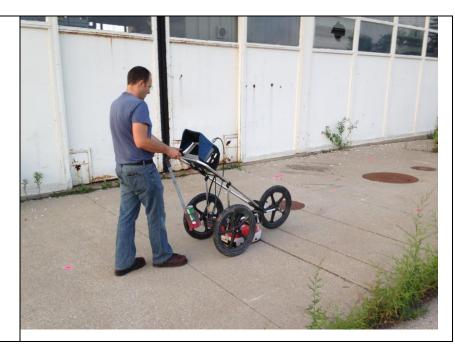
Description:

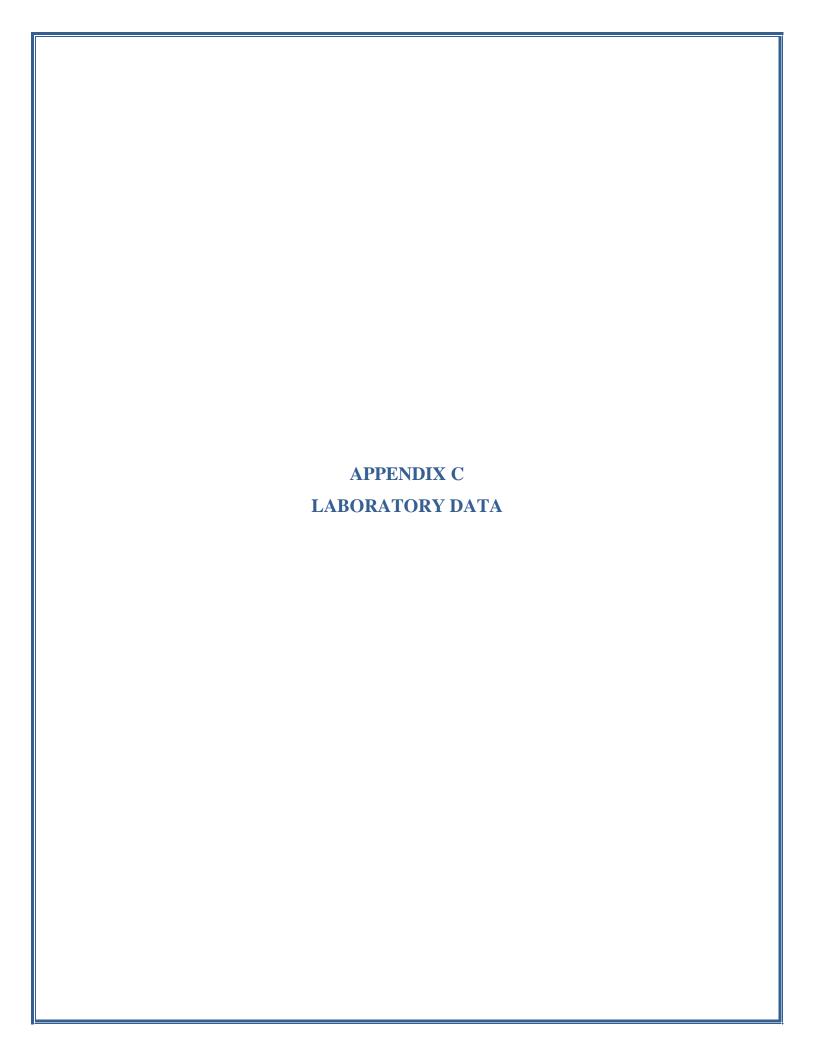
Using GPR to locate edge of UST and associated piping north of Power Plant

Orientation:

Facing West

Photo: 27


Description:


Closeup of GPR; north of

Power Plant

Orientation:

Facing Southwest

STAT Analysis Corporation

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

August 05, 2014

Tetra Tech EM Inc. 1 South Wacker Drive Chicago, IL 60606

Telephone: (312) 946-6474 Fax: (312) 938-0118

Analytical Report for STAT Work Order: 14070878 Revision 0

RE: TPMHC, Tinley Park

Dear Tom Hahne:

STAT Analysis received 99 samples for the referenced project on 7/23/2014 7:49:00 PM. The analytical results are presented in the following report.

All analyses were performed in accordance with the requirements of 35 IAC Part 186 / NELAC standards. Analyses were performed in accordance with methods as referenced on the analytical report. Those analytical results expressed on a dry weight basis are also noted on the analytical report.

All analyses were performed within established holding time criteria, and all Quality Control criteria met EPA or laboratory specifications except when noted in the Case Narrative or Analytical Report. If required, an estimate of uncertainty for the analyses can be provided. A listing of accredited methods/parameters can also be provided.

Thank you for the opportunity to serve you and I look forward to working with you in the future. If you have any questions regarding the enclosed materials, please contact me at (312) 733-0551.

Sincerely,

Frank Capoccia

Project Manager

The information contained in this report and any attachments is confidential information intended only for the use of the individual or entities named above. The results of this report relate only to the samples tested. If you have received this report in error, please notify us immediately by phone. This report shall not be reproduced, except in its entirety, unless written approval has been obtained from the laboratory. This analytical report shall become property of the Customer upon payment in full. Otherwise, STAT will be under no obligation to support, defend or discuss the analytical report.

STAT Analysis Corporation

Client: Tetra Tech EM Inc.

Project: TPMHC, Tinley Park

Work Order: 14070878 Revision 0

Work Order Sample Summary

Lab Sample ID	Client Sample ID	Tag Number	Collection Date	Date Received
14070878-001A	Maint-SB-1-0003		7/21/2014 9:23:00 AM	7/23/2014
14070878-001B	Maint-SB-1-0003		7/21/2014 9:23:00 AM	7/23/2014
14070878-002A	Maint-SB-1-0810		7/21/2014 9:34:00 AM	7/23/2014
14070878-002B	Maint-SB-1-0810		7/21/2014 9:34:00 AM	7/23/2014
14070878-003A	Maint-SB-2-0003		7/21/2014 10:53:00 AM	7/23/2014
14070878-003B	Maint-SB-2-0003		7/21/2014 10:53:00 AM	7/23/2014
14070878-004A	Maint-SB-2-1012		7/21/2014 10:58:00 AM	7/23/2014
14070878-004B	Maint-SB-2-1012		7/21/2014 10:58:00 AM	7/23/2014
14070878-005A	Maint-SB-3-0003		7/21/2014 1:50:00 PM	7/23/2014
14070878-005B	Maint-SB-3-0003		7/21/2014 1:50:00 PM	7/23/2014
14070878-006A	Maint-SB-2-1012-D		7/21/2014 10:58:00 AM	7/23/2014
14070878-006B	Maint-SB-2-1012-D		7/21/2014 10:58:00 AM	7/23/2014
14070878-007A	Maint-SB-3-1214		7/21/2014 2:23:00 PM	7/23/2014
14070878-007B	Maint-SB-3-1214		7/21/2014 2:23:00 PM	7/23/2014
14070878-008A	Maint-SB-4-0003		7/21/2014 2:44:00 PM	7/23/2014
14070878-008B	Maint-SB-4-0003		7/21/2014 2:44:00 PM	7/23/2014
14070878-009A	Maint-SB-4-0810		7/21/2014 3:02:00 PM	7/23/2014
14070878-009B	Maint-SB-4-0810		7/21/2014 3:02:00 PM	7/23/2014
14070878-010A	Maint-SB-5-0003		7/21/2014 3:34:00 PM	7/23/2014
14070878-010B	Maint-SB-5-0003		7/21/2014 3:34:00 PM	7/23/2014
14070878-011A	Maint-SB-5-0810		7/21/2014 3:45:00 PM	7/23/2014
14070878-011B	Maint-SB-5-0810		7/21/2014 3:45:00 PM	7/23/2014
14070878-012A	T-SS-11-S1		7/21/2014 11:05:00 AM	7/23/2014
14070878-013A	T-SS-9-S2		7/21/2014 11:10:00 AM	7/23/2014
14070878-014A	T-SS-12-S3		7/21/2014 11:15:00 AM	7/23/2014
14070878-015A	T-SS-10-S4		7/21/2014 11:20:00 AM	7/23/2014
14070878-016A	T-SS-13-S5		7/21/2014 11:55:00 AM	7/23/2014
14070878-017A	T-SS-4-S6		7/21/2014 10:05:00 AM	7/23/2014
14070878-018A	T-SS-6-S7		7/21/2014 10:25:00 AM	7/23/2014
14070878-019A	T-SS-7-S8		7/21/2014 10:37:00 AM	7/23/2014
14070878-020A	Lime-SB-1-0204		7/22/2014 12:35:00 PM	7/23/2014
14070878-021A	Lime-SB-2-0002		7/22/2014 12:45:00 PM	7/23/2014
14070878-022A	Lime-SB-2-0204		7/22/2014 12:47:00 PM	7/23/2014
14070878-023A	Lime-SB-3-0002		7/22/2014 1:10:00 PM	7/23/2014
14070878-024A	Lime-SB-3-0002-D		7/22/2014 1:10:00 PM	7/23/2014
14070878-025A	Lime-SB-3-0204		7/22/2014 1:15:00 PM	7/23/2014
14070878-026A	Power-SB-1-0003		7/22/2014 2:06:00 PM	7/23/2014
14070878-026B	Power-SB-1-0003		7/22/2014 2:06:00 PM	7/23/2014

Tetra Tech EM Inc.
TPMHC, Tinley Park

Work Order Sample Summary

Project: TPMHC, Tinley Park **Work Order:** 14070878 Revision 0

Client:

Lab Sample ID	Client Sample ID	Tag Number	Collection Date	Date Received
14070878-027A	Power-SB-1-1416		7/22/2014 2:10:00 PM	7/23/2014
14070878-027B	Power-SB-1-1416		7/22/2014 2:10:00 PM	7/23/2014
14070878-028A	Power-SB-2-0003		7/22/2014 2:38:00 PM	7/23/2014
14070878-028B	Power-SB-2-0003		7/22/2014 2:38:00 PM	7/23/2014
14070878-029A	Power-SB-2-1416		7/22/2014 2:40:00 PM	7/23/2014
14070878-029B	Power-SB-2-1416		7/22/2014 2:40:00 PM	7/23/2014
14070878-030A	Power-SB-3-0003		7/23/2014 7:35:00 AM	7/23/2014
14070878-030B	Power-SB-3-0003		7/23/2014 7:35:00 AM	7/23/2014
14070878-031A	Power-SB-3-1012		7/23/2014 7:40:00 AM	7/23/2014
14070878-031B	Power-SB-3-1012		7/23/2014 7:40:00 AM	7/23/2014
14070878-032A	Power-SB-4-0608		7/23/2014 8:55:00 AM	7/23/2014
14070878-032B	Power-SB-4-0608		7/23/2014 8:55:00 AM	7/23/2014
14070878-033A	Power-SB-4-1012		7/23/2014 9:00:00 AM	7/23/2014
14070878-033B	Power-SB-4-1012		7/23/2014 9:00:00 AM	7/23/2014
14070878-034A	Power-SB-5-0003		7/23/2014 9:22:00 AM	7/23/2014
14070878-034B	Power-SB-5-0003		7/23/2014 9:22:00 AM	7/23/2014
14070878-035A	Power-SB-5-0406		7/23/2014 9:27:00 AM	7/23/2014
14070878-035B	Power-SB-5-0406		7/23/2014 9:27:00 AM	7/23/2014
14070878-036A	Cedar-SB-6-0003		7/23/2014 10:02:00 AM	7/23/2014
14070878-036B	Cedar-SB-6-0003		7/23/2014 10:02:00 AM	7/23/2014
14070878-037A	Cedar-SB-4-0104		7/23/2014 10:18:00 AM	7/23/2014
14070878-037B	Cedar-SB-4-0104		7/23/2014 10:18:00 AM	7/23/2014
14070878-038A	Cedar-SB-5-0003		7/23/2014 10:40:00 AM	7/23/2014
14070878-038B	Cedar-SB-5-0003		7/23/2014 10:40:00 AM	7/23/2014
14070878-039A	Power-LP-SS-10		7/22/2014 3:01:00 PM	7/23/2014
14070878-040A	Power-LP-SS-11		7/22/2014 2:55:00 PM	7/23/2014
14070878-041A	Power-LP-SS-12		7/22/2014 2:58:00 PM	7/23/2014
14070878-042A	Power-LP-SS-12-D		7/22/2014 2:58:00 PM	7/23/2014
14070878-043A	Power-T-SS-1		7/22/2014 3:17:00 PM	7/23/2014
14070878-044A	Cattage-T-SS-1		7/22/2014 3:30:00 PM	7/23/2014
14070878-045A	Cattage-T-SS-D		7/22/2014 3:30:00 PM	7/23/2014
14070878-046A	SF-SB-8-0003		7/22/2014 7:45:00 AM	7/23/2014
14070878-046B	SF-SB-8-0003		7/22/2014 7:45:00 AM	7/23/2014
14070878-047A	SF-SB-7-0306		7/22/2014 8:15:00 AM	7/23/2014
14070878-047B	SF-SB-7-0306		7/22/2014 8:15:00 AM	7/23/2014
14070878-048A	SF-SB-6-0104		7/22/2014 8:43:00 AM	7/23/2014
14070878-048B	SF-SB-6-0104		7/22/2014 8:43:00 AM	7/23/2014
14070878-049A	SF-SB-6-0104-D		7/22/2014 8:43:00 AM	7/23/2014
	SF-SB-6-0104-D		7/22/2014 8:43:00 AM	7/23/2014
14070878-050A	SF-SB-5-0003		7/22/2014 9:14:00 AM	7/23/2014

Work Order Sample Summary

Client: Tetra Tech EM Inc.
Project: TPMHC, Tinley Park
Work Order: 14070878 Revision 0

Lab Sample ID Clie	ent Sample ID	Tag Number	Collection Date	Date Received
14070878-050B SF-S	B-5-0003		7/22/2014 9:14:00 AM	7/23/2014
14070878-051A SF-S	B-2-0003		7/22/2014 9:42:00 AM	7/23/2014
14070878-051B SF-S	B-2-0003		7/22/2014 9:42:00 AM	7/23/2014
14070878-052A SF-S	B-3-0104		7/22/2014 10:07:00 AM	7/23/2014
14070878-052B SF-S	B-3-0104		7/22/2014 10:07:00 AM	7/23/2014
14070878-053A SF-S	B-1-0104		7/22/2014 10:28:00 AM	7/23/2014
14070878-053B SF-S	B-1-0104		7/22/2014 10:28:00 AM	7/23/2014
14070878-054A SF-S	B-4-0003		7/22/2014 11:26:00 AM	7/23/2014
14070878-054B SF-S	B-4-0003		7/22/2014 11:26:00 AM	7/23/2014
14070878-055A Lime	e-SB-1-0002		7/22/2014 12:30:00 PM	7/23/2014
14070878-056A Powe	er-LP-SS-5		7/21/2014 2:40:00 PM	7/23/2014
14070878-057A Powe	er-LP-SS-6		7/21/2014 2:45:00 PM	7/23/2014
14070878-058A Powe	er-LP-SS-6-D		7/21/2014 2:45:00 PM	7/23/2014
14070878-059A Powe	er-LP-SS-7		7/21/2014 2:51:00 PM	7/23/2014
14070878-060A Powe	er-LP-SS-8		7/21/2014 2:56:00 PM	7/23/2014
14070878-061A Powe	er-LP-SS-9		7/21/2014 3:02:00 PM	7/23/2014
14070878-062A Powe	er-LP-SS-13		7/21/2014 3:55:00 PM	7/23/2014
14070878-063A Powe	er-LP-SS-14		7/21/2014 3:49:00 PM	7/23/2014
14070878-064A Powe	er-LP-SS-15		7/21/2014 3:44:00 PM	7/23/2014
14070878-065A Powe	er-LP-SS-16		7/21/2014 3:40:00 PM	7/23/2014
14070878-066A Powe	er-LP-SS-17		7/21/2014 3:12:00 PM	7/23/2014
14070878-067A Powe	er-LP-SS-18		7/21/2014 3:35:00 PM	7/23/2014
14070878-068A Powe	er-LP-SS-19		7/21/2014 3:20:00 PM	7/23/2014
14070878-069A Powe	er-LP-SS-20		7/21/2014 3:24:00 PM	7/23/2014
14070878-070A Ceda	ar-SB-3-0003		7/23/2014 12:50:00 PM	7/23/2014
14070878-070B Ceda	ar-SB-3-0003		7/23/2014 12:50:00 PM	7/23/2014
14070878-071A Powe	er-OD-SB-1-0003		7/23/2014 1:30:00 PM	7/23/2014
14070878-071B Powe	er-OD-SB-1-0003		7/23/2014 1:30:00 PM	7/23/2014
14070878-072A Powe	er-OD-SB-1-0608		7/23/2014 1:40:00 PM	7/23/2014
14070878-072B Powe	er-OD-SB-1-0608		7/23/2014 1:40:00 PM	7/23/2014
14070878-073A Powe	er-OD-SB-2-0507		7/23/2014 2:25:00 PM	7/23/2014
14070878-073B Powe	er-OD-SB-2-0507		7/23/2014 2:25:00 PM	7/23/2014
14070878-074A Powe	er-OD-SB-2-0507-D		7/23/2014 2:25:00 PM	7/23/2014
14070878-074B Powe	er-OD-SB-2-0507-D		7/23/2014 2:25:00 PM	7/23/2014
14070878-075A T-SS	-7-S8-D		7/21/2014 10:37:00 AM	7/23/2014
14070878-076A T-SS	-5-S9		7/21/2014 10:17:00 AM	7/23/2014
14070878-077A T-SS	-8-T1		7/21/2014 10:50:00 AM	7/23/2014
14070878-078A T-SS	-14-U5		7/21/2014 12:06:00 PM	7/23/2014
14070878-079A T-SS	-16-U6		7/21/2014 1:30:00 PM	7/23/2014
14070878-080A T-SS	-20-U7		7/21/2014 1:15:00 PM	7/23/2014

Client: Tetra Tech EM Inc.
Project: TPMHC, Tinley Park
Work Order: 14070878 Revision 0

Work Order Sample Summary

Lab Sample ID (Client Sample ID	Tag Number	Collection Date	Date Received
14070878-081A T-	-SS-17-U8		7/21/2014 1:36:00 PM	7/23/2014
14070878-082A T-	-SS-1-U9		7/21/2014 9:20:00 AM	7/23/2014
14070878-083A T-	-SS-2-V1		7/21/2014 9:29:00 AM	7/23/2014
14070878-084A T-	-SS-3-V2		7/21/2014 9:41:00 AM	7/23/2014
14070878-085A S _I	pruce-T-SS-18		7/21/2014 1:55:00 PM	7/23/2014
14070878-086A A	dmin-T-SS-19		7/21/2014 2:10:00 PM	7/23/2014
14070878-087A Po	ower-LP-SS-1		7/21/2014 1:30:00 PM	7/23/2014
14070878-088A Po	ower-LP-SS-2		7/21/2014 1:34:00 PM	7/23/2014
14070878-089A Po	ower-LP-SS-3		7/21/2014 2:30:00 PM	7/23/2014
14070878-090A Po	ower-LP-SS-4		7/21/2014 2:34:00 PM	7/23/2014
14070878-091A M	Iaint-GW-1		7/21/2014 11:40:00 AM	7/23/2014
14070878-092A C	edar-SB-1-0003		7/23/2014 11:10:00 AM	7/23/2014
14070878-092B C	edar-SB-1-0003		7/23/2014 11:10:00 AM	7/23/2014
14070878-093A C	edar-SB-2-0003		7/23/2014 12:20:00 PM	7/23/2014
14070878-093B C	edar-SB-2-0003		7/23/2014 12:20:00 PM	7/23/2014
14070878-094A Po	ower-OD-SB-3-0507		7/23/2014 2:50:00 PM	7/23/2014
14070878-094B Po	ower-OD-SB-3-0507		7/23/2014 2:50:00 PM	7/23/2014
14070878-095A C	edar-FB-SS-1		7/23/2014 12:30:00 PM	7/23/2014
14070878-096A C	edar-FB-SS-2		7/23/2014 12:36:00 PM	7/23/2014
14070878-097A C	edar-FB-SS-2-D		7/23/2014 12:36:00 PM	7/23/2014
14070878-098A C	edar-FB-SS-3		7/23/2014 12:47:00 PM	7/23/2014
14070878-099A C	edar-FB-SS-4		7/23/2014 12:44:00 PM	7/23/2014

Date: August 05, 2014

CLIENT: Tetra Tech EM Inc.

Project: TPMHC, Tinley Park

Work Order: 14070878 Revision 0

CASE NARRATIVE

The mercury Matrix Spike/Matrix Spike Duplicate (MS/MSD) prepared from sample Cedar-FB-SS-4 (14070878-099) had Lead recovery outside control limits. The sample concentration is greater than four times the spike level used.

The metals Matrix Spike/Matrix Spike Duplicate (MS/MSD) prepared from sample Lime-SB-3-0204 (14070878-025) had Antimony recovery outside control limits (10%/15% (MS/MSD) recovery, QC limits 75-125), 21% RPD, QC limit < 20%). The MS/MSD had recovery of other analytes outside of control limits, however the analyte concentration in the sample was greater than four times the spiking level for those elements.

The metals Matrix Spike/Matrix Spike Duplicate (MS/MSD) prepared from sample SF-SB-2-0003 (14070878-051) had the following outside control limits:

Antimony: 24%/23% (MS/MSD) recovery (QC limits 75-125%)

Lead: 73% (MS) recovery (QC limits 75-125%)

The MS/MSD had recovery of other analytes outside of control limits, however the analyte concentration in the sample was greater than four times the spike level for those elements.

The metals Matrix Spike/Matrix Spike Duplicate (MS/MSD) prepared from sample SF-SB-2-0003 (14070878-051) had relative percent difference (RPD) outside of control limits for the following elements:

Calcium: 24% RPD, (QC limits < 20%) Manganese: 24% RPD, (QC limits < 20%)

The metals Matrix Spike/Matrix Spike Duplicate (MS/MSD) prepared from sample Power-LP-SS-13 (14070878-062) had Lead recovery outside control limits. The sample concentration is greater than four times the spike level used.

The metals Matrix Spike/Matrix Spike Duplicate (MS/MSD) prepared from sample Cedar-SB-2-0003 (14070878-093) had Antimony recovery outside control limits (35%/30% (MS/MSD) recovery, QC limits 75-125). The MS/MSD had recovery of other analytes outside of control limits, however the analyte concentration in the sample was greater than four times the spiking level for those elements.

Sample Power-OD-SB-1-0608 (14070878-072) had recovery of VOC surrogate 4-Bromofluorobenzene outside of control limits (42% recovery, QC Limits 44-114%). Recovery of all other surrogates were within control limits.

Sample Power-OD-SB-3-0507 (14070878-094) had recovery of VOC surrogate Dibromofluoromethane outside of control limits (73% recovery, QC Limits 74-150%). Recovery of all other surrogates were within control limits.

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Matrix: Soil

Client Sample ID: Maint-SB-1-0003

Collection Date: 7/21/2014 9:23:00 AM

Lab ID: 14070878-001

Analyses H	Result	RL Quali	fier Units	DF	Date Analyzed
Metals by ICP/MS	SW60	20 (SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Lead	2.6	0.53	mg/Kg-dry	10	7/25/2014
Polynuclear Aromatic Hydrocarbons by GC/MS	SW82	70C (SW3550B)	Prep	Date: 7/27/2014	Analyst: MEP
Acenaphthene	ND	0.034	mg/Kg-dry	1	7/28/2014
Acenaphthylene	ND	0.034	mg/Kg-dry	1	7/28/2014
Anthracene	ND	0.034	mg/Kg-dry	1	7/28/2014
Benz(a)anthracene	ND	0.034	mg/Kg-dry	1	7/28/2014
Benzo(a)pyrene	ND	0.034	mg/Kg-dry	1	7/28/2014
Benzo(b)fluoranthene	ND	0.034	mg/Kg-dry	1	7/28/2014
Benzo(g,h,i)perylene	ND	0.034	mg/Kg-dry	1	7/28/2014
Benzo(k)fluoranthene	ND	0.034	mg/Kg-dry	1	7/28/2014
Chrysene	ND	0.034	mg/Kg-dry	1	7/28/2014
Dibenz(a,h)anthracene	ND	0.034	mg/Kg-dry	1	7/28/2014
Fluoranthene	ND	0.034	mg/Kg-dry	1	7/28/2014
Fluorene	ND	0.034	mg/Kg-dry	1	7/28/2014
Indeno(1,2,3-cd)pyrene	ND	0.034	mg/Kg-dry	1	7/28/2014
Naphthalene	ND	0.034	mg/Kg-dry	1	7/28/2014
Phenanthrene	ND	0.034	mg/Kg-dry	1	7/28/2014
Pyrene	ND	0.034	mg/Kg-dry	1	7/28/2014
BTEX by GC/MS	SW50	35/8260B	Prep	Date: 7/24/2014	Analyst: PS
Benzene	ND	0.0048	mg/Kg-dry	1	7/29/2014
Ethylbenzene	ND	0.0048	mg/Kg-dry	1	7/29/2014
Toluene	ND	0.0048	mg/Kg-dry	1	7/29/2014
Xylenes, Total	ND	0.014	mg/Kg-dry	1	7/29/2014
pH (25 °C)	SW90	45C	Prep	Date: 7/25/2014	Analyst: RW
рН	8.6		pH Units	1	7/25/2014
Percent Moisture	D2974	4	Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	3.7	0.2	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

H - Holding time exceeded

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Lab ID:

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

14070878-002

Collection Date: 7/21/2014 9:34:00 AM

Matrix: Soil

Client Sample ID: Maint-SB-1-0810

Analyses Result **RL** Qualifier Units DF **Date Analyzed** Metals by ICP/MS SW6020 (SW3050B) Prep Date: 7/25/2014 Analyst: JG Lead 25 0.56 mg/Kg-dry 7/25/2014 10 SW8270C (SW3550B) Polynuclear Aromatic Hydrocarbons by GC/MS Prep Date: 7/27/2014 Analyst: MEP Acenaphthene ND 0.037 mg/Kg-dry 7/28/2014 ND 0.037 Acenaphthylene mg/Kg-dry 1 7/28/2014 Anthracene ND 0.037 7/28/2014 mg/Kg-dry 1 ND 7/28/2014 Benz(a)anthracene 0.037 1 mg/Kg-dry Benzo(a)pyrene ND 0.037 mg/Kg-dry 1 7/28/2014 Benzo(b)fluoranthene ND 0.037 mg/Kg-dry 1 7/28/2014 Benzo(g,h,i)perylene ND 0.037 mg/Kg-dry 1 7/28/2014 Benzo(k)fluoranthene ND 0.037 mg/Kg-dry 1 7/28/2014 ND 0.037 Chrysene mg/Kg-dry 1 7/28/2014 Dibenz(a,h)anthracene ND 0.037 mg/Kg-dry 7/28/2014 Fluoranthene ND 0.037 mg/Kg-dry 1 7/28/2014 ND 0.037 1 7/28/2014 Fluorene mg/Kg-dry ND Indeno(1,2,3-cd)pyrene 0.037 mg/Kg-dry 1 7/28/2014 ND Naphthalene 0.037 mg/Kg-dry 1 7/28/2014 ND Phenanthrene 0.037 mg/Kg-dry 1 7/28/2014 Pyrene 0.037 mg/Kg-dry 1 7/28/2014 BTEX by GC/MS SW5035/8260B Prep Date: 7/24/2014 Analyst: PS Benzene ND 0.0041 mg/Kg-dry 7/29/2014 ND 1 Ethylbenzene 0.0041 mg/Kg-dry 7/29/2014 ND 1 Toluene 0.0041 mg/Kg-dry 7/29/2014 Xylenes, Total ND 0.012 mg/Kg-dry 7/29/2014 pH (25 °C) SW9045C Prep Date: 7/25/2014 Analyst: RW 7.5 pH Units 7/25/2014 рΗ 1 **Percent Moisture** D2974 Prep Date: 7/24/2014 Analyst: RW Percent Moisture 11.7 0.2 wt% 7/25/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

H - Holding time exceeded

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: Maint-SB-2-0003

Work Order: 14070878 Revision 0
Project: TPMHC, Tinley Park

Collection Date: 7/21/2014 10:53:00 AM

Project: TPMHC, Tinley Park
Lab ID: 14070878-003

Matrix: Soil

Analyses I	Result	RL Quali	fier Units	DF	Date Analyzed
Metals by ICP/MS	SW60	20 (SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Lead	5.5	0.53	mg/Kg-dry	10	7/25/2014
Polynuclear Aromatic Hydrocarbons by GC/MS	SW82	70C (SW3550B)	Prep	Date: 7/27/2014	Analyst: MEP
Acenaphthene	ND	0.034	mg/Kg-dry	1	7/28/2014
Acenaphthylene	ND	0.034	mg/Kg-dry	1	7/28/2014
Anthracene	ND	0.034	mg/Kg-dry	1	7/28/2014
Benz(a)anthracene	ND	0.034	mg/Kg-dry	1	7/28/2014
Benzo(a)pyrene	ND	0.034	mg/Kg-dry	1	7/28/2014
Benzo(b)fluoranthene	ND	0.034	mg/Kg-dry	1	7/28/2014
Benzo(g,h,i)perylene	ND	0.034	mg/Kg-dry	1	7/28/2014
Benzo(k)fluoranthene	ND	0.034	mg/Kg-dry	1	7/28/2014
Chrysene	ND	0.034	mg/Kg-dry	1	7/28/2014
Dibenz(a,h)anthracene	ND	0.034	mg/Kg-dry	1	7/28/2014
Fluoranthene	ND	0.034	mg/Kg-dry	1	7/28/2014
Fluorene	ND	0.034	mg/Kg-dry	1	7/28/2014
Indeno(1,2,3-cd)pyrene	ND	0.034	mg/Kg-dry	1	7/28/2014
Naphthalene	ND	0.034	mg/Kg-dry	1	7/28/2014
Phenanthrene	ND	0.034	mg/Kg-dry	1	7/28/2014
Pyrene	ND	0.034	mg/Kg-dry	1	7/28/2014
BTEX by GC/MS	SW50	35/8260B	Prep	Date: 7/24/2014	Analyst: PS
Benzene	ND	0.0055	mg/Kg-dry	1	7/29/2014
Ethylbenzene	ND	0.0055	mg/Kg-dry	1	7/29/2014
Toluene	ND	0.0055	mg/Kg-dry	1	7/29/2014
Xylenes, Total	ND	0.017	mg/Kg-dry	1	7/29/2014
pH (25 °C)	SW90	45C	Prep	Date: 7/25/2014	Analyst: RW
pH	8.3		pH Units	1	7/25/2014
Percent Moisture	D2974	4	Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	2.8	0.2 *	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: Maint-SB-2-1012

Work Order: 14070878 Revision 0 **Collection Date**: 7/21/2014 10:58:00 AM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14070878-004

Analyses	Result	RL Qualifi	er Units	DF	Date Analyzed
Metals by ICP/MS	SW6	020 (SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Lead	15	0.57	mg/Kg-dry	10	7/25/2014
Polynuclear Aromatic Hydrocarbons by GC/MS	SW8	270C (SW3550B)	Prep	Date: 7/27/2014	Analyst: MEP
Acenaphthene	ND	0.038	mg/Kg-dry	1	7/28/2014
Acenaphthylene	ND	0.038	mg/Kg-dry	1	7/28/2014
Anthracene	ND	0.038	mg/Kg-dry	1	7/28/2014
Benz(a)anthracene	ND	0.038	mg/Kg-dry	1	7/28/2014
Benzo(a)pyrene	ND	0.038	mg/Kg-dry	1	7/28/2014
Benzo(b)fluoranthene	ND	0.038	mg/Kg-dry	1	7/28/2014
Benzo(g,h,i)perylene	ND	0.038	mg/Kg-dry	1	7/28/2014
Benzo(k)fluoranthene	ND	0.038	mg/Kg-dry	1	7/28/2014
Chrysene	ND	0.038	mg/Kg-dry	1	7/28/2014
Dibenz(a,h)anthracene	ND	0.038	mg/Kg-dry	1	7/28/2014
Fluoranthene	ND	0.038	mg/Kg-dry	1	7/28/2014
Fluorene	ND	0.038	mg/Kg-dry	1	7/28/2014
Indeno(1,2,3-cd)pyrene	ND	0.038	mg/Kg-dry	1	7/28/2014
Naphthalene	ND	0.038	mg/Kg-dry	1	7/28/2014
Phenanthrene	ND	0.038	mg/Kg-dry	1	7/28/2014
Pyrene	ND	0.038	mg/Kg-dry	1	7/28/2014
BTEX by GC/MS	SW5	035/8260B	Prep	Date: 7/24/2014	Analyst: PS
Benzene	ND	0.0046	mg/Kg-dry	1	7/29/2014
Ethylbenzene	ND	0.0046	mg/Kg-dry	1	7/29/2014
Toluene	ND	0.0046	mg/Kg-dry	1	7/29/2014
Xylenes, Total	ND	0.014	mg/Kg-dry	1	7/29/2014
pH (25 °C)	SW9	045C	Prep	Date: 7/25/2014	Analyst: RW
pH	7.8		pH Units	1	7/25/2014
Percent Moisture	D297	74	Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	14.1	0.2 *	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Work Order: 14070878 Revision 0 TPMHC, Tinley Park **Project:**

Collection Date: 7/21/2014 1:50:00 PM Matrix: Soil

Client Sample ID: Maint-SB-3-0003

Lab ID: 14070878-005

Analyses	Result	RL Qualif	fier Units	DF	Date Analyzed
Metals by ICP/MS	SW6	020 (SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Lead	15	0.48	mg/Kg-dry	10	7/28/2014
Polynuclear Aromatic Hydrocarbons by GC/MS	S SW8	270C (SW3550B)	Prep	Date: 7/27/2014	Analyst: MEP
Acenaphthene	ND	0.034	mg/Kg-dry	1	7/28/2014
Acenaphthylene	ND	0.034	mg/Kg-dry	1	7/28/2014
Anthracene	ND	0.034	mg/Kg-dry	1	7/28/2014
Benz(a)anthracene	ND	0.034	mg/Kg-dry	1	7/28/2014
Benzo(a)pyrene	ND	0.034	mg/Kg-dry	1	7/28/2014
Benzo(b)fluoranthene	ND	0.034	mg/Kg-dry	1	7/28/2014
Benzo(g,h,i)perylene	ND	0.034	mg/Kg-dry	1	7/28/2014
Benzo(k)fluoranthene	ND	0.034	mg/Kg-dry	1	7/28/2014
Chrysene	ND	0.034	mg/Kg-dry	1	7/28/2014
Dibenz(a,h)anthracene	ND	0.034	mg/Kg-dry	1	7/28/2014
Fluoranthene	ND	0.034	mg/Kg-dry	1	7/28/2014
Fluorene	ND	0.034	mg/Kg-dry	1	7/28/2014
Indeno(1,2,3-cd)pyrene	ND	0.034	mg/Kg-dry	1	7/28/2014
Naphthalene	ND	0.034	mg/Kg-dry	1	7/28/2014
Phenanthrene	ND	0.034	mg/Kg-dry	1	7/28/2014
Pyrene	ND	0.034	mg/Kg-dry	1	7/28/2014
BTEX by GC/MS	SW5	035/8260B	Prep	Date: 7/24/2014	Analyst: PS
Benzene	ND	0.0044	mg/Kg-dry	1	7/29/2014
Ethylbenzene	ND	0.0044	mg/Kg-dry	1	7/29/2014
Toluene	ND	0.0044	mg/Kg-dry	1	7/29/2014
Xylenes, Total	ND	0.013	mg/Kg-dry	1	7/29/2014
pH (25 °C)	SW9	045C	Prep	Date: 7/25/2014	Analyst: RW
pH	8.5		pH Units	1	7/25/2014
Percent Moisture	D297	'4	Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	2.4	0.2 *	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Client Sample ID: Maint-SB-2-1012-D

Collection Date: 7/21/2014 10:58:00 AM

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

TPMHC, Tinley Park

Matrix: Soil

Lab ID: 14070878-006

Analyses I	Result	RL Qualif	ier Units	DF	Date Analyzed
Metals by ICP/MS	SW6	020 (SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Lead	12	0.60	mg/Kg-dry	10	7/28/2014
Polynuclear Aromatic Hydrocarbons by GC/MS	SW82	270C (SW3550B)	Prep	Date: 7/27/2014	Analyst: MEP
Acenaphthene	ND	0.038	mg/Kg-dry	1	7/28/2014
Acenaphthylene	ND	0.038	mg/Kg-dry	1	7/28/2014
Anthracene	ND	0.038	mg/Kg-dry	1	7/28/2014
Benz(a)anthracene	ND	0.038	mg/Kg-dry	1	7/28/2014
Benzo(a)pyrene	ND	0.038	mg/Kg-dry	1	7/28/2014
Benzo(b)fluoranthene	ND	0.038	mg/Kg-dry	1	7/28/2014
Benzo(g,h,i)perylene	ND	0.038	mg/Kg-dry	1	7/28/2014
Benzo(k)fluoranthene	ND	0.038	mg/Kg-dry	1	7/28/2014
Chrysene	ND	0.038	mg/Kg-dry	1	7/28/2014
Dibenz(a,h)anthracene	ND	0.038	mg/Kg-dry	1	7/28/2014
Fluoranthene	ND	0.038	mg/Kg-dry	1	7/28/2014
Fluorene	ND	0.038	mg/Kg-dry	1	7/28/2014
Indeno(1,2,3-cd)pyrene	ND	0.038	mg/Kg-dry	1	7/28/2014
Naphthalene	ND	0.038	mg/Kg-dry	1	7/28/2014
Phenanthrene	ND	0.038	mg/Kg-dry	1	7/28/2014
Pyrene	ND	0.038	mg/Kg-dry	1	7/28/2014
BTEX by GC/MS	SW5	035/8260B	Prep	Date: 7/24/2014	Analyst: PS
Benzene	ND	0.0044	mg/Kg-dry	1	7/29/2014
Ethylbenzene	ND	0.0044	mg/Kg-dry	1	7/29/2014
Toluene	ND	0.0044	mg/Kg-dry	1	7/29/2014
Xylenes, Total	ND	0.013	mg/Kg-dry	1	7/29/2014
pH (25 °C)	SW9	045C	Prep	Date: 7/25/2014	Analyst: RW
pH	7.9		pH Units	1	7/25/2014
Percent Moisture	D297	4	Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	14.8	0.2 *	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Collection Date: 7/21/2014 2:23:00 PM
Matrix: Soil

Client Sample ID: Maint-SB-3-1214

Lab ID: 14070878-007

Analyses F	Result	RL Qualif	ier Units	DF	Date Analyzed
Metals by ICP/MS	SW6	6020 (SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Lead	11	0.53	mg/Kg-dry	10	7/28/2014
Polynuclear Aromatic Hydrocarbons by GC/MS	SW8	3270C (SW3550B)	Prep	Date: 7/27/2014	Analyst: MEP
Acenaphthene	ND	0.039	mg/Kg-dry	1	7/28/2014
Acenaphthylene	ND	0.039	mg/Kg-dry	1	7/28/2014
Anthracene	ND	0.039	mg/Kg-dry	1	7/28/2014
Benz(a)anthracene	ND	0.039	mg/Kg-dry	1	7/28/2014
Benzo(a)pyrene	ND	0.039	mg/Kg-dry	1	7/28/2014
Benzo(b)fluoranthene	ND	0.039	mg/Kg-dry	1	7/28/2014
Benzo(g,h,i)perylene	ND	0.039	mg/Kg-dry	1	7/28/2014
Benzo(k)fluoranthene	ND	0.039	mg/Kg-dry	1	7/28/2014
Chrysene	ND	0.039	mg/Kg-dry	1	7/28/2014
Dibenz(a,h)anthracene	ND	0.039	mg/Kg-dry	1	7/28/2014
Fluoranthene	ND	0.039	mg/Kg-dry	1	7/28/2014
Fluorene	ND	0.039	mg/Kg-dry	1	7/28/2014
Indeno(1,2,3-cd)pyrene	ND	0.039	mg/Kg-dry	1	7/28/2014
Naphthalene	ND	0.039	mg/Kg-dry	1	7/28/2014
Phenanthrene	ND	0.039	mg/Kg-dry	1	7/28/2014
Pyrene	ND	0.039	mg/Kg-dry	1	7/28/2014
BTEX by GC/MS	SWS	5035/8260B	Prep	Date: 7/24/2014	Analyst: PS
Benzene	ND	0.0046	mg/Kg-dry	1	7/29/2014
Ethylbenzene	ND	0.0046	mg/Kg-dry	1	7/29/2014
Toluene	ND	0.0046	mg/Kg-dry	1	7/29/2014
Xylenes, Total	ND	0.014	mg/Kg-dry	1	7/29/2014
pH (25 °C)	SWS	9045C	Prep	Date: 7/25/2014	Analyst: RW
pH	7.8		pH Units	1	7/25/2014
Percent Moisture	D29	74	Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	16.4	0.2 *	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Collection Date: 7/21/2014 2:44:00 PM
Matrix: Soil

Client Sample ID: Maint-SB-4-0003

Lab ID: 14070878-008

Analyses	Result	RL Qualit	fier Units	DF	Date Analyzed
Metals by ICP/MS	SW60	020 (SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Lead	17	0.55	mg/Kg-dry	10	7/28/2014
Polynuclear Aromatic Hydrocarbons by GC/	MS SW82	270C (SW3550B)	Prep	Date: 7/27/2014	Analyst: MEP
Acenaphthene	0.069	0.037	mg/Kg-dry	1	7/28/2014
Acenaphthylene	ND	0.037	mg/Kg-dry	1	7/28/2014
Anthracene	0.096	0.037	mg/Kg-dry	1	7/28/2014
Benz(a)anthracene	0.29	0.037	mg/Kg-dry	1	7/28/2014
Benzo(a)pyrene	0.27	0.037	mg/Kg-dry	1	7/28/2014
Benzo(b)fluoranthene	0.29	0.037	mg/Kg-dry	1	7/28/2014
Benzo(g,h,i)perylene	0.13	0.037	mg/Kg-dry	1	7/28/2014
Benzo(k)fluoranthene	0.23	0.037	mg/Kg-dry	1	7/28/2014
Chrysene	0.34	0.037	mg/Kg-dry	1	7/28/2014
Dibenz(a,h)anthracene	ND	0.037	mg/Kg-dry	1	7/28/2014
Fluoranthene	0.70	0.037	mg/Kg-dry	1	7/28/2014
Fluorene	0.057	0.037	mg/Kg-dry	1	7/28/2014
Indeno(1,2,3-cd)pyrene	0.13	0.037	mg/Kg-dry	1	7/28/2014
Naphthalene	ND	0.037	mg/Kg-dry	1	7/28/2014
Phenanthrene	0.54	0.037	mg/Kg-dry	1	7/28/2014
Pyrene	0.54	0.037	mg/Kg-dry	1	7/28/2014
BTEX by GC/MS	SW50	35/8260B	Prep	Date: 7/24/2014	Analyst: PS
Benzene	ND	0.0048	mg/Kg-dry	1	7/29/2014
Ethylbenzene	ND	0.0048	mg/Kg-dry	1	7/29/2014
Toluene	ND	0.0048	mg/Kg-dry	1	7/29/2014
Xylenes, Total	ND	0.014	mg/Kg-dry	1	7/29/2014
pH (25 °C)	SW90)45C	Prep	Date: 7/25/2014	Analyst: RW
pH	8.1		pH Units	1	7/25/2014
Percent Moisture	D297	4	Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	11.3	0.2 *	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Lab ID:

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

14070878-009

Collection Date: 7/21/2014 3:02:00 PM

Matrix: Soil

Client Sample ID: Maint-SB-4-0810

Analyses	Result	RL Qualifi	ier Units	DF	Date Analyzed
Metals by ICP/MS	SW60	020 (SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Lead	14	0.57	mg/Kg-dry	10	7/28/2014
Polynuclear Aromatic Hydrocarbons by GC/MS	S SW82	270C (SW3550B)	Prep	Date: 7/27/2014	Analyst: MEP
Acenaphthene	ND	0.038	mg/Kg-dry	1	7/28/2014
Acenaphthylene	ND	0.038	mg/Kg-dry	1	7/28/2014
Anthracene	ND	0.038	mg/Kg-dry	1	7/28/2014
Benz(a)anthracene	ND	0.038	mg/Kg-dry	1	7/28/2014
Benzo(a)pyrene	ND	0.038	mg/Kg-dry	1	7/28/2014
Benzo(b)fluoranthene	ND	0.038	mg/Kg-dry	1	7/28/2014
Benzo(g,h,i)perylene	ND	0.038	mg/Kg-dry	1	7/28/2014
Benzo(k)fluoranthene	ND	0.038	mg/Kg-dry	1	7/28/2014
Chrysene	ND	0.038	mg/Kg-dry	1	7/28/2014
Dibenz(a,h)anthracene	ND	0.038	mg/Kg-dry	1	7/28/2014
Fluoranthene	ND	0.038	mg/Kg-dry	1	7/28/2014
Fluorene	ND	0.038	mg/Kg-dry	1	7/28/2014
Indeno(1,2,3-cd)pyrene	ND	0.038	mg/Kg-dry	1	7/28/2014
Naphthalene	ND	0.038	mg/Kg-dry	1	7/28/2014
Phenanthrene	ND	0.038	mg/Kg-dry	1	7/28/2014
Pyrene	ND	0.038	mg/Kg-dry	1	7/28/2014
BTEX by GC/MS	SW50	035/8260B	Prep	Date: 7/24/2014	Analyst: PS
Benzene	ND	0.0046	mg/Kg-dry	1	7/29/2014
Ethylbenzene	ND	0.0046	mg/Kg-dry	1	7/29/2014
Toluene	ND	0.0046	mg/Kg-dry	1	7/29/2014
Xylenes, Total	ND	0.014	mg/Kg-dry	1	7/29/2014
pH (25 °C)	SW90	045C	Prep	Date: 7/25/2014	Analyst: RW
pH	8.0		pH Units	1	7/25/2014
Percent Moisture	D297	4	Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	12.4	0.2 *	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Collection Date: 7/21/2014 3:34:00 PM

Client Sample ID: Maint-SB-5-0003

Lab ID: 14070878-010 Matrix: Soil

Analyses	Result	RL Qualifi	er Units	DF	Date Analyzed
Metals by ICP/MS	SW60	020 (SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Lead	37	0.60	mg/Kg-dry	10	7/28/2014
Polynuclear Aromatic Hydrocarbons by GC/I	MS SW82	270C (SW3550B)	Prep	Date: 7/27/2014	Analyst: MEP
Acenaphthene	ND	0.038	mg/Kg-dry	1	7/28/2014
Acenaphthylene	ND	0.038	mg/Kg-dry	1	7/28/2014
Anthracene	0.040	0.038	mg/Kg-dry	1	7/28/2014
Benz(a)anthracene	0.13	0.038	mg/Kg-dry	1	7/28/2014
Benzo(a)pyrene	0.12	0.038	mg/Kg-dry	1	7/28/2014
Benzo(b)fluoranthene	0.13	0.038	mg/Kg-dry	1	7/28/2014
Benzo(g,h,i)perylene	0.067	0.038	mg/Kg-dry	1	7/28/2014
Benzo(k)fluoranthene	0.11	0.038	mg/Kg-dry	1	7/28/2014
Chrysene	0.16	0.038	mg/Kg-dry	1	7/28/2014
Dibenz(a,h)anthracene	ND	0.038	mg/Kg-dry	1	7/28/2014
Fluoranthene	0.31	0.038	mg/Kg-dry	1	7/28/2014
Fluorene	ND	0.038	mg/Kg-dry	1	7/28/2014
Indeno(1,2,3-cd)pyrene	0.060	0.038	mg/Kg-dry	1	7/28/2014
Naphthalene	ND	0.038	mg/Kg-dry	1	7/28/2014
Phenanthrene	0.19	0.038	mg/Kg-dry	1	7/28/2014
Pyrene	0.25	0.038	mg/Kg-dry	1	7/28/2014
BTEX by GC/MS	SW50	035/8260B	Prep	Date: 7/24/2014	Analyst: PS
Benzene	ND	0.0047	mg/Kg-dry	1	7/29/2014
Ethylbenzene	ND	0.0047	mg/Kg-dry	1	7/29/2014
Toluene	ND	0.0047	mg/Kg-dry	1	7/29/2014
Xylenes, Total	ND	0.014	mg/Kg-dry	1	7/29/2014
pH (25 °C)	SW90	045C	Prep	Date: 7/25/2014	Analyst: RW
pH	7.8		pH Units	1	7/25/2014
Percent Moisture	D297	4	Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	14.7	0.2 *	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Client Sample ID: Maint-SB-5-0810

Collection Date: 7/21/2014 3:45:00 PM

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

TPMHC, Tinley Park

Matrix: Soil

Lab ID: 14070878-011

Analyses I	Result	RL Qualif	ier Units	DF	Date Analyzed
Metals by ICP/MS	SW60)20 (SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Lead	15	0.66	mg/Kg-dry	10	7/25/2014
Polynuclear Aromatic Hydrocarbons by GC/MS	SW82	270C (SW3550B)	Prep	Date: 7/27/2014	Analyst: MEP
Acenaphthene	ND	0.042	mg/Kg-dry	1	7/28/2014
Acenaphthylene	ND	0.042	mg/Kg-dry	1	7/28/2014
Anthracene	ND	0.042	mg/Kg-dry	1	7/28/2014
Benz(a)anthracene	ND	0.042	mg/Kg-dry	1	7/28/2014
Benzo(a)pyrene	ND	0.042	mg/Kg-dry	1	7/28/2014
Benzo(b)fluoranthene	ND	0.042	mg/Kg-dry	1	7/28/2014
Benzo(g,h,i)perylene	ND	0.042	mg/Kg-dry	1	7/28/2014
Benzo(k)fluoranthene	ND	0.042	mg/Kg-dry	1	7/28/2014
Chrysene	ND	0.042	mg/Kg-dry	1	7/28/2014
Dibenz(a,h)anthracene	ND	0.042	mg/Kg-dry	1	7/28/2014
Fluoranthene	ND	0.042	mg/Kg-dry	1	7/28/2014
Fluorene	ND	0.042	mg/Kg-dry	1	7/28/2014
Indeno(1,2,3-cd)pyrene	ND	0.042	mg/Kg-dry	1	7/28/2014
Naphthalene	ND	0.042	mg/Kg-dry	1	7/28/2014
Phenanthrene	ND	0.042	mg/Kg-dry	1	7/28/2014
Pyrene	ND	0.042	mg/Kg-dry	1	7/28/2014
BTEX by GC/MS	SW50	35/8260B	Prep	Date: 7/24/2014	Analyst: PS
Benzene	ND	0.0042	mg/Kg-dry	1	7/29/2014
Ethylbenzene	ND	0.0042	mg/Kg-dry	1	7/29/2014
Toluene	ND	0.0042	mg/Kg-dry	1	7/29/2014
Xylenes, Total	ND	0.012	mg/Kg-dry	1	7/29/2014
pH (25 °C)	SW90)45C	Prep	Date: 7/25/2014	Analyst: RW
pH	7.2		pH Units	1	7/25/2014
Percent Moisture	D297	4	Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	21.4	0.2 *	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14070878-012

Client Sample ID: T-SS-11-S1

Collection Date: 7/21/2014 11:05:00 AM

Matrix: Soil

Analyses	Result	RL Quali	fier Units	DF	Date Analyzed
PCBs	SW8082	(SW3550B)	Prep	Date: 7/25/2014	Analyst: GVC
Aroclor 1016	ND	0.095	mg/Kg-dry	1	7/26/2014
Aroclor 1221	ND	0.095	mg/Kg-dry	1	7/26/2014
Aroclor 1232	ND	0.095	mg/Kg-dry	1	7/26/2014
Aroclor 1242	ND	0.095	mg/Kg-dry	1	7/26/2014
Aroclor 1248	ND	0.095	mg/Kg-dry	1	7/26/2014
Aroclor 1254	ND	0.095	mg/Kg-dry	1	7/26/2014
Aroclor 1260	ND	0.095	mg/Kg-dry	1	7/26/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	16.2	0.2 *	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14070878-013

Client Sample ID: T-SS-9-S2

Collection Date: 7/21/2014 11:10:00 AM

Matrix: Soil

Analyses	Result	RL Quali	fier Units	DF	Date Analyzed
PCBs	SW8082	(SW3550B)	Prep	Date: 7/25/2014	Analyst: GVC
Aroclor 1016	ND	0.096	mg/Kg-dry	1	7/26/2014
Aroclor 1221	ND	0.096	mg/Kg-dry	1	7/26/2014
Aroclor 1232	ND	0.096	mg/Kg-dry	1	7/26/2014
Aroclor 1242	ND	0.096	mg/Kg-dry	1	7/26/2014
Aroclor 1248	ND	0.096	mg/Kg-dry	1	7/26/2014
Aroclor 1254	ND	0.096	mg/Kg-dry	1	7/26/2014
Aroclor 1260	ND	0.096	mg/Kg-dry	1	7/26/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	16.6	0.2 *	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Lab ID:

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

14070878-014

Project: TPMHC, Tinley Park

Collection Date: 7/21/2014 11:15:00 AM

Matrix: Soil

Client Sample ID: T-SS-12-S3

Analyses	Result	RL Qu	alifier Units	DF	Date Analyzed
PCBs	SW8082	(SW3550B) Prep	Date: 7/25/2014	Analyst: GVC
Aroclor 1016	ND	0.094	mg/Kg-dry	1	7/26/2014
Aroclor 1221	ND	0.094	mg/Kg-dry	1	7/26/2014
Aroclor 1232	ND	0.094	mg/Kg-dry	1	7/26/2014
Aroclor 1242	ND	0.094	mg/Kg-dry	1	7/26/2014
Aroclor 1248	ND	0.094	mg/Kg-dry	1	7/26/2014
Aroclor 1254	ND	0.094	mg/Kg-dry	1	7/26/2014
Aroclor 1260	ND	0.094	mg/Kg-dry	1	7/26/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	15.4	0.2	* wt%	1	7/25/2014

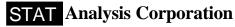
ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter


Qualifiers:

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14070878-015

Client Sample ID: T-SS-10-S4

Collection Date: 7/21/2014 11:20:00 AM

Matrix: Soil

Analyses	Result	RL Quali	ifier Units	DF	Date Analyzed
PCBs	SW8082	(SW3550B)	Prep	Date: 7/25/2014	Analyst: GVC
Aroclor 1016	ND	0.095	mg/Kg-dry	1	7/26/2014
Aroclor 1221	ND	0.095	mg/Kg-dry	1	7/26/2014
Aroclor 1232	ND	0.095	mg/Kg-dry	1	7/26/2014
Aroclor 1242	ND	0.095	mg/Kg-dry	1	7/26/2014
Aroclor 1248	ND	0.095	mg/Kg-dry	1	7/26/2014
Aroclor 1254	ND	0.095	mg/Kg-dry	1	7/26/2014
Aroclor 1260	ND	0.095	mg/Kg-dry	1	7/26/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	16.8	0.2	* wt%	1	7/25/2014

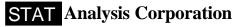
ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter


Qualifiers:

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14070878-016

Client Sample ID: T-SS-13-S5

Collection Date: 7/21/2014 11:55:00 AM

Matrix: Soil

Analyses	Result	RL Qua	alifier Units	DF	Date Analyzed
PCBs	SW8082	(SW3550B)	Prep	Date: 7/25/2014	Analyst: GVC
Aroclor 1016	ND	0.097	mg/Kg-dry	1	7/26/2014
Aroclor 1221	ND	0.097	mg/Kg-dry	1	7/26/2014
Aroclor 1232	ND	0.097	mg/Kg-dry	1	7/26/2014
Aroclor 1242	ND	0.097	mg/Kg-dry	1	7/26/2014
Aroclor 1248	ND	0.097	mg/Kg-dry	1	7/26/2014
Aroclor 1254	ND	0.097	mg/Kg-dry	1	7/26/2014
Aroclor 1260	ND	0.097	mg/Kg-dry	1	7/26/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	17.5	0.2	* wt%	1	7/25/2014

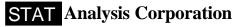
ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter


Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14070878-017

Client Sample ID: T-SS-4-S6

Collection Date: 7/21/2014 10:05:00 AM

Matrix: Soil

Analyses	Result	RL Quali	fier Units	DF	Date Analyzed
PCBs	SW8082	(SW3550B)	Prep	Date: 7/25/2014	Analyst: GVC
Aroclor 1016	ND	0.096	mg/Kg-dry	1	7/26/2014
Aroclor 1221	ND	0.096	mg/Kg-dry	1	7/26/2014
Aroclor 1232	ND	0.096	mg/Kg-dry	1	7/26/2014
Aroclor 1242	ND	0.096	mg/Kg-dry	1	7/26/2014
Aroclor 1248	ND	0.096	mg/Kg-dry	1	7/26/2014
Aroclor 1254	ND	0.096	mg/Kg-dry	1	7/26/2014
Aroclor 1260	ND	0.096	mg/Kg-dry	1	7/26/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	16.3	0.2 *	wt%	1	7/25/2014

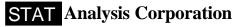
ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter


Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14070878-018

Client Sample ID: T-SS-6-S7

Collection Date: 7/21/2014 10:25:00 AM

Matrix: Soil

Analyses	Result	RL Quali	fier Units	DF	Date Analyzed
PCBs	SW8082	(SW3550B)	Prep	Date: 7/25/2014	Analyst: GVC
Aroclor 1016	ND	0.095	mg/Kg-dry	1	7/26/2014
Aroclor 1221	ND	0.095	mg/Kg-dry	1	7/26/2014
Aroclor 1232	ND	0.095	mg/Kg-dry	1	7/26/2014
Aroclor 1242	ND	0.095	mg/Kg-dry	1	7/26/2014
Aroclor 1248	ND	0.095	mg/Kg-dry	1	7/26/2014
Aroclor 1254	ND	0.095	mg/Kg-dry	1	7/26/2014
Aroclor 1260	ND	0.095	mg/Kg-dry	1	7/26/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	16.9	0.2 *	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: T-SS-7-S8

Work Order: 14070878 Revision 0 **Collection Date**: 7/21/2014 10:37:00 AM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14070878-019

Analyses	Result	RL Quali	fier Units	DF	Date Analyzed
PCBs	SW8082	(SW3550B)	Prep	Date: 7/25/2014	Analyst: GVC
Aroclor 1016	ND	0.092	mg/Kg-dry	1	7/26/2014
Aroclor 1221	ND	0.092	mg/Kg-dry	1	7/26/2014
Aroclor 1232	ND	0.092	mg/Kg-dry	1	7/26/2014
Aroclor 1242	ND	0.092	mg/Kg-dry	1	7/26/2014
Aroclor 1248	ND	0.092	mg/Kg-dry	1	7/26/2014
Aroclor 1254	ND	0.092	mg/Kg-dry	1	7/26/2014
Aroclor 1260	ND	0.092	mg/Kg-dry	1	7/26/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	14.0	0.2 *	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: Lime-SB-1-0204

Work Order: 14070878 Revision 0 **Collection Date**: 7/22/2014 12:35:00 PM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14070878-020

Analyses	Result	RL Quali	fier Units	DF	Date Analyzed
Mercury	SW747	71A	Prep I	Date: 7/25/2014	Analyst: JG
Mercury	0.039	0.025	mg/Kg-dry	1	7/25/2014
Metals by ICP/MS	SW602	20 (SW3050B)	Prep I	Date: 7/25/2014	Analyst: JG
Aluminum	25000	240	mg/Kg-dry	100	7/25/2014
Antimony	ND	2.4	mg/Kg-dry	10	7/28/2014
Arsenic	5.6	1.2	mg/Kg-dry	10	7/28/2014
Barium	220	1.2	mg/Kg-dry	10	7/28/2014
Beryllium	1.4	0.59	mg/Kg-dry	10	7/28/2014
Cadmium	ND	0.59	mg/Kg-dry	10	7/28/2014
Calcium	5400	710	mg/Kg-dry	100	7/25/2014
Chromium	27	1.2	mg/Kg-dry	10	7/28/2014
Cobalt	10	1.2	mg/Kg-dry	10	7/28/2014
Copper	27	3.0	mg/Kg-dry	10	7/28/2014
Iron	29000	360	mg/Kg-dry	100	7/25/2014
Lead	23	0.59	mg/Kg-dry	10	7/28/2014
Magnesium	5700	36	mg/Kg-dry	10	7/28/2014
Manganese	140	1.2	mg/Kg-dry	10	7/28/2014
Nickel	24	1.2	mg/Kg-dry	10	7/28/2014
Potassium	1300	36	mg/Kg-dry	10	7/28/2014
Selenium	ND	1.2	mg/Kg-dry	10	7/28/2014
Silver	ND	1.2	mg/Kg-dry	10	7/28/2014
Sodium	310	71	mg/Kg-dry	10	7/28/2014
Thallium	ND	1.2	mg/Kg-dry	10	7/28/2014
Vanadium	41	1.2	mg/Kg-dry	10	7/28/2014
Zinc	60	5.9	mg/Kg-dry	10	7/28/2014
Cyanide, Total	SW901	12A	Prep I	Date: 7/24/2014	Analyst: YZ
Cyanide	ND	0.32	mg/Kg-dry	1	7/25/2014
pH (25 °C)	SW904	45C	Prep I	Date: 7/25/2014	Analyst: RW
рН	7.8		pH Units	1	7/25/2014
Percent Moisture	D2974		Prep I	Date: 7/24/2014	Analyst: RW
Percent Moisture	21.4	0.2 *	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: Lime-SB-2-0002

Work Order: 14070878 Revision 0 **Collection Date**: 7/22/2014 12:45:00 PM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14070878-021

Analyses	Result	RL Qual	ifier Units	DF	Date Analyzed
Mercury	SW747	'1A	Prep I	Date: 7/25/2014	Analyst: JG
Mercury	ND	0.019	mg/Kg-dry	1	7/25/2014
Metals by ICP/MS	SW602	20 (SW3050B)	Prep I	Date: 7/25/2014	Analyst: JG
Aluminum	610	230	mg/Kg-dry	100	7/25/2014
Antimony	ND	2.3	mg/Kg-dry	10	7/28/2014
Arsenic	ND	1.2	mg/Kg-dry	10	7/28/2014
Barium	4.2	1.2	mg/Kg-dry	10	7/28/2014
Beryllium	ND	0.59	mg/Kg-dry	10	7/28/2014
Cadmium	ND	0.59	mg/Kg-dry	10	7/28/2014
Calcium	220000	700	mg/Kg-dry	100	7/25/2014
Chromium	7.0	1.2	mg/Kg-dry	10	7/28/2014
Cobalt	ND	1.2	mg/Kg-dry	10	7/28/2014
Copper	ND	2.9	mg/Kg-dry	10	7/28/2014
Iron	3000	35	mg/Kg-dry	10	7/28/2014
Lead	4.1	0.59	mg/Kg-dry	10	7/28/2014
Magnesium	130000	350	mg/Kg-dry	100	7/25/2014
Manganese	210	1.2	mg/Kg-dry	10	7/28/2014
Nickel	2.5	1.2	mg/Kg-dry	10	7/28/2014
Potassium	290	35	mg/Kg-dry	10	7/28/2014
Selenium	ND	1.2	mg/Kg-dry	10	7/28/2014
Silver	ND	1.2	mg/Kg-dry	10	7/28/2014
Sodium	200	70	mg/Kg-dry	10	7/28/2014
Thallium	ND	1.2	mg/Kg-dry	10	7/28/2014
Vanadium	1.8	1.2	mg/Kg-dry	10	7/28/2014
Zinc	23	5.9	mg/Kg-dry	10	7/28/2014
Cyanide, Total	SW901	2A	Prep I	Date: 7/24/2014	Analyst: YZ
Cyanide	ND	0.30	mg/Kg-dry	1	7/25/2014
pH (25 °C)	SW904	15C	Prep I	Date: 7/25/2014	Analyst: RW
рН	9.4		pH Units	1	7/25/2014
Percent Moisture	D2974		Prep I	Date: 7/24/2014	Analyst: RW
Percent Moisture	17.8	0.2	* wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: Lime-SB-2-0204

Work Order: 14070878 Revision 0 Collection Date: 7/22/2014 12:47:00 PM

TPMHC, Tinley Park **Project:** Matrix: Soil

Lab ID: 14070878-022

Analyses	Result	RL Qual	lifier Units	DF	Date Analyzed
Mercury	SW747	1A	Prep	Date: 7/25/2014	Analyst: JG
Mercury	0.035	0.024	mg/Kg-dry	1	7/25/2014
Metals by ICP/MS	SW602	0 (SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Aluminum	8600	260	mg/Kg-dry	100	7/25/2014
Antimony	ND	2.6	mg/Kg-dry	10	7/28/2014
Arsenic	13	1.3	mg/Kg-dry	10	7/28/2014
Barium	83	1.3	mg/Kg-dry	10	7/28/2014
Beryllium	0.74	0.66	mg/Kg-dry	10	7/28/2014
Cadmium	ND	0.66	mg/Kg-dry	10	7/28/2014
Calcium	6200	790	mg/Kg-dry	100	7/25/2014
Chromium	13	1.3	mg/Kg-dry	10	7/28/2014
Cobalt	13	1.3	mg/Kg-dry	10	7/28/2014
Copper	33	3.3	mg/Kg-dry	10	7/28/2014
Iron	26000	390	mg/Kg-dry	100	7/25/2014
Lead	24	0.66	mg/Kg-dry	10	7/28/2014
Magnesium	5400	39	mg/Kg-dry	10	7/28/2014
Manganese	920	1.3	mg/Kg-dry	10	7/28/2014
Nickel	38	1.3	mg/Kg-dry	10	7/28/2014
Potassium	900	39	mg/Kg-dry	10	7/28/2014
Selenium	ND	1.3	mg/Kg-dry	10	7/28/2014
Silver	ND	1.3	mg/Kg-dry	10	7/28/2014
Sodium	83	79	mg/Kg-dry	10	7/28/2014
Thallium	ND	1.3	mg/Kg-dry	10	7/28/2014
Vanadium	20	1.3	mg/Kg-dry	10	7/28/2014
Zinc	63	6.6	mg/Kg-dry	10	7/28/2014
Cyanide, Total	SW901	2A	Prep	Date: 7/24/2014	Analyst: YZ
Cyanide	ND	0.35	mg/Kg-dry	1	7/25/2014
pH (25 °C)	SW904	5C	Prep	Date: 7/25/2014	Analyst: RW
рН	7.5		pH Units	1	7/25/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	27.8	0.2	* wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Collection Date: 7/22/2014 1:10:00 PM

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Client Sample ID: Lime-SB-3-0002

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14070878-023

Analyses	Result	RL Qu	alifier Units	DF	Date Analyzed
Mercury	SW747	1 A	Prep I	Date: 7/28/2014	Analyst: LB
Mercury	ND	0.025	mg/Kg-dry	1	7/28/2014
Metals by ICP/MS	SW602	0 (SW3050E	B) Prep I	Date: 7/25/2014	Analyst: JG
Aluminum	26000	250	mg/Kg-dry	100	7/25/2014
Antimony	ND	2.5	mg/Kg-dry	10	7/28/2014
Arsenic	12	1.2	mg/Kg-dry	10	7/28/2014
Barium	140	1.2	mg/Kg-dry	10	7/28/2014
Beryllium	1.3	0.62	mg/Kg-dry	10	7/28/2014
Cadmium	ND	0.62	mg/Kg-dry	10	7/28/2014
Calcium	13000	750	mg/Kg-dry	100	7/25/2014
Chromium	30	1.2	mg/Kg-dry	10	7/28/2014
Cobalt	16	1.2	mg/Kg-dry	10	7/28/2014
Copper	27	3.1	mg/Kg-dry	10	7/28/2014
Iron	42000	370	mg/Kg-dry	100	7/25/2014
Lead	22	0.62	mg/Kg-dry	10	7/28/2014
Magnesium	9400	37	mg/Kg-dry	10	7/28/2014
Manganese	600	1.2	mg/Kg-dry	10	7/28/2014
Nickel	45	1.2	mg/Kg-dry	10	7/28/2014
Potassium	2200	37	mg/Kg-dry	10	7/28/2014
Selenium	ND	1.2	mg/Kg-dry	10	7/28/2014
Silver	ND	1.2	mg/Kg-dry	10	7/28/2014
Sodium	98	75	mg/Kg-dry	10	7/28/2014
Thallium	ND	1.2	mg/Kg-dry	10	7/28/2014
Vanadium	34	1.2	mg/Kg-dry	10	7/28/2014
Zinc	66	6.2	mg/Kg-dry	10	7/28/2014
Cyanide, Total	SW9012	2A	Prep I	Date: 7/24/2014	Analyst: YZ
Cyanide	ND	0.33	mg/Kg-dry	1	7/25/2014
pH (25 °C)	SW904	5C	Prep I	Date: 7/25/2014	Analyst: RW
рН	8.0		pH Units	1	7/25/2014
Percent Moisture	D2974		Prep I	Date: 7/24/2014	Analyst: RW
Percent Moisture	24.5	0.2	* wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Collection Date: 7/22/2014 1:10:00 PM
Matrix: Soil

Client Sample ID: Lime-SB-3-0002-D

Lab ID: 14070878-024

Analyses	Result	RL Qual	ifier Units	DF	Date Analyzed
Mercury	SW747	1 A	Prep I	Date: 7/28/2014	Analyst: LB
Mercury	ND	0.027	mg/Kg-dry	1	7/28/2014
Metals by ICP/MS	SW602	0 (SW3050B)	Prep I	Date: 7/25/2014	Analyst: JG
Aluminum	20000	240	mg/Kg-dry	100	7/25/2014
Antimony	ND	2.4	mg/Kg-dry	10	7/28/2014
Arsenic	8.8	1.2	mg/Kg-dry	10	7/28/2014
Barium	110	1.2	mg/Kg-dry	10	7/28/2014
Beryllium	1.0	0.61	mg/Kg-dry	10	7/28/2014
Cadmium	ND	0.61	mg/Kg-dry	10	7/28/2014
Calcium	90000	730	mg/Kg-dry	100	7/25/2014
Chromium	26	1.2	mg/Kg-dry	10	7/28/2014
Cobalt	12	1.2	mg/Kg-dry	10	7/28/2014
Copper	20	3.0	mg/Kg-dry	10	7/28/2014
Iron	28000	370	mg/Kg-dry	100	7/25/2014
Lead	29	0.61	mg/Kg-dry	10	7/28/2014
Magnesium	16000	37	mg/Kg-dry	10	7/28/2014
Manganese	380	1.2	mg/Kg-dry	10	7/28/2014
Nickel	31	1.2	mg/Kg-dry	10	7/28/2014
Potassium	2300	37	mg/Kg-dry	10	7/28/2014
Selenium	ND	1.2	mg/Kg-dry	10	7/28/2014
Silver	ND	1.2	mg/Kg-dry	10	7/28/2014
Sodium	140	73	mg/Kg-dry	10	7/28/2014
Thallium	ND	1.2	mg/Kg-dry	10	7/28/2014
Vanadium	32	1.2	mg/Kg-dry	10	7/28/2014
Zinc	60	6.1	mg/Kg-dry	10	7/28/2014
Cyanide, Total	SW901	2A	Prep I	Date: 7/24/2014	Analyst: YZ
Cyanide	ND	0.34	mg/Kg-dry	1	7/25/2014
pH (25 °C)	SW904	5C	Prep I	Date: 7/25/2014	Analyst: RW
рН	7.7		pH Units	1	7/25/2014
Percent Moisture	D2974		Prep I	Date: 7/24/2014	Analyst: RW
Percent Moisture	27.5	0.2	* wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Client Sample ID: Lime-SB-3-0204

Collection Date: 7/22/2014 1:15:00 PM

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.
Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14070878-025

Analyses	Result	RL Quali	ifier Units	DF	Date Analyzed
Mercury	SW747	′1A	Prep I	Date: 7/25/2014	Analyst: JG
Mercury	ND	0.025	mg/Kg-dry	1	7/25/2014
Metals by ICP/MS	SW602	20 (SW3050B)	Prep I	Date: 7/25/2014	Analyst: JG
Aluminum	15000	220	mg/Kg-dry	100	7/25/2014
Antimony	ND	2.2	mg/Kg-dry	10	7/28/2014
Arsenic	5.7	1.1	mg/Kg-dry	10	7/28/2014
Barium	73	11	mg/Kg-dry	100	7/25/2014
Beryllium	0.96	0.56	mg/Kg-dry	10	7/28/2014
Cadmium	ND	0.56	mg/Kg-dry	10	7/28/2014
Calcium	81000	670	mg/Kg-dry	100	7/25/2014
Chromium	28	11	mg/Kg-dry	100	7/25/2014
Cobalt	13	1.1	mg/Kg-dry	10	7/28/2014
Copper	19	2.8	mg/Kg-dry	10	7/28/2014
Iron	25000	340	mg/Kg-dry	100	7/25/2014
Lead	12	5.6	mg/Kg-dry	100	7/25/2014
Magnesium	25000	34	mg/Kg-dry	10	7/28/2014
Manganese	500	1.1	mg/Kg-dry	10	7/28/2014
Nickel	34	1.1	mg/Kg-dry	10	7/28/2014
Potassium	2400	34	mg/Kg-dry	10	7/28/2014
Selenium	ND	1.1	mg/Kg-dry	10	7/28/2014
Silver	ND	1.1	mg/Kg-dry	10	7/28/2014
Sodium	160	67	mg/Kg-dry	10	7/28/2014
Thallium	ND	1.1	mg/Kg-dry	10	7/28/2014
Vanadium	27	1.1	mg/Kg-dry	10	7/28/2014
Zinc	53	5.6	mg/Kg-dry	10	7/28/2014
Cyanide, Total	SW901	2A	Prep I	Date: 7/24/2014	Analyst: YZ
Cyanide	ND	0.31	mg/Kg-dry	1	7/25/2014
pH (25 °C)	SW904	15C	Prep I	Date: 7/25/2014	Analyst: RW
pH	8.1		pH Units	1	7/25/2014
Percent Moisture	D2974		Prep I	Date: 7/24/2014	Analyst: RW
Percent Moisture	20.1	0.2	* wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

Date Printed:

ANALYTICAL RESULTS

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

August 05, 2014

Collection Date: 7/22/2014 2:06:00 PM

Matrix: Soil

Client Sample ID: Power-SB-1-0003

Lab ID: 14070878-026

Analyses	Result	RL Qualif	ier Units	DF	Date Analyzed
Metals by ICP/MS	SW60	020 (SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Lead	15	0.52	mg/Kg-dry	10	7/28/2014
Polynuclear Aromatic Hydrocarbons by G	C/MS SW82	270C (SW3550B)	Prep	Date: 7/27/2014	Analyst: MEP
Acenaphthene	ND	0.035	mg/Kg-dry	1	7/28/2014
Acenaphthylene	ND	0.035	mg/Kg-dry	1	7/28/2014
Anthracene	ND	0.035	mg/Kg-dry	1	7/28/2014
Benz(a)anthracene	0.12	0.035	mg/Kg-dry	1	7/28/2014
Benzo(a)pyrene	0.14	0.035	mg/Kg-dry	1	7/28/2014
Benzo(b)fluoranthene	0.15	0.035	mg/Kg-dry	1	7/28/2014
Benzo(g,h,i)perylene	0.11	0.035	mg/Kg-dry	1	7/28/2014
Benzo(k)fluoranthene	0.12	0.035	mg/Kg-dry	1	7/28/2014
Chrysene	0.15	0.035	mg/Kg-dry	1	7/28/2014
Dibenz(a,h)anthracene	0.053	0.035	mg/Kg-dry	1	7/28/2014
Fluoranthene	0.23	0.035	mg/Kg-dry	1	7/28/2014
Fluorene	ND	0.035	mg/Kg-dry	1	7/28/2014
Indeno(1,2,3-cd)pyrene	0.090	0.035	mg/Kg-dry	1	7/28/2014
Naphthalene	ND	0.035	mg/Kg-dry	1	7/28/2014
Phenanthrene	0.082	0.035	mg/Kg-dry	1	7/28/2014
Pyrene	0.24	0.035	mg/Kg-dry	1	7/28/2014
BTEX by GC/MS	SW50	035/8260B	Prep	Date: 7/24/2014	Analyst: PS
Benzene	ND	0.0046	mg/Kg-dry	1	7/29/2014
Ethylbenzene	ND	0.0046	mg/Kg-dry	1	7/29/2014
Toluene	ND	0.0046	mg/Kg-dry	1	7/29/2014
Xylenes, Total	ND	0.014	mg/Kg-dry	1	7/29/2014
pH (25 °C)	SW90)45C	Prep	Date: 7/25/2014	Analyst: RW
pH	7.8		pH Units	1	7/25/2014
Percent Moisture	D297	4	Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	5.1	0.2 *	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Work Order: 14070878 Revision 0 **Project:**

TPMHC, Tinley Park

Lab ID: 14070878-027 Client Sample ID: Power-SB-1-1416 Collection Date: 7/22/2014 2:10:00 PM

Matrix: Soil

Analyses	Result	RL Qualif	ier Units	DF	Date Analyzed
Metals by ICP/MS	SW60)20 (SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Lead	13	0.54	mg/Kg-dry	10	7/28/2014
Polynuclear Aromatic Hydrocarbons by GC/MS	SW82	270C (SW3550B)	Prep	Date: 7/28/2014	Analyst: DM
Acenaphthene	ND	0.039	mg/Kg-dry	1	7/28/2014
Acenaphthylene	ND	0.039	mg/Kg-dry	1	7/28/2014
Anthracene	ND	0.039	mg/Kg-dry	1	7/28/2014
Benz(a)anthracene	ND	0.039	mg/Kg-dry	1	7/28/2014
Benzo(a)pyrene	ND	0.039	mg/Kg-dry	1	7/28/2014
Benzo(b)fluoranthene	ND	0.039	mg/Kg-dry	1	7/28/2014
Benzo(g,h,i)perylene	ND	0.039	mg/Kg-dry	1	7/28/2014
Benzo(k)fluoranthene	ND	0.039	mg/Kg-dry	1	7/28/2014
Chrysene	ND	0.039	mg/Kg-dry	1	7/28/2014
Dibenz(a,h)anthracene	ND	0.039	mg/Kg-dry	1	7/28/2014
Fluoranthene	ND	0.039	mg/Kg-dry	1	7/28/2014
Fluorene	ND	0.039	mg/Kg-dry	1	7/28/2014
Indeno(1,2,3-cd)pyrene	ND	0.039	mg/Kg-dry	1	7/28/2014
Naphthalene	ND	0.039	mg/Kg-dry	1	7/28/2014
Phenanthrene	ND	0.039	mg/Kg-dry	1	7/28/2014
Pyrene	ND	0.039	mg/Kg-dry	1	7/28/2014
BTEX by GC/MS	SW50	35/8260B	Prep	Date: 7/24/2014	Analyst: PS
Benzene	ND	0.0047	mg/Kg-dry	1	7/29/2014
Ethylbenzene	ND	0.0047	mg/Kg-dry	1	7/29/2014
Toluene	ND	0.0047	mg/Kg-dry	1	7/29/2014
Xylenes, Total	ND	0.014	mg/Kg-dry	1	7/29/2014
pH (25 °C)	SW90)45C	Prep	Date: 7/25/2014	Analyst: RW
pH	9.8		pH Units	1	7/25/2014
Percent Moisture	D297	4	Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	16.8	0.2 *	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Collection Date: 7/22/2014 2:38:00 PM
Matrix: Soil

Client Sample ID: Power-SB-2-0003

Lab ID: 14070878-028

Analyses	Result	RL Qualifi	ier Units	DF	Date Analyzed
Metals by ICP/MS	SW6	020 (SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Lead	24	0.51	mg/Kg-dry	10	7/29/2014
Polynuclear Aromatic Hydrocarbons by GC/MS	SW8	270C (SW3550B)	Prep	Date: 7/28/2014	Analyst: DM
Acenaphthene	0.15	0.034	mg/Kg-dry	1	7/28/2014
Acenaphthylene	ND	0.034	mg/Kg-dry	1	7/28/2014
Anthracene	0.39	0.034	mg/Kg-dry	1	7/28/2014
Benz(a)anthracene	0.80	0.034	mg/Kg-dry	1	7/28/2014
Benzo(a)pyrene	0.81	0.034	mg/Kg-dry	1	7/28/2014
Benzo(b)fluoranthene	0.85	0.034	mg/Kg-dry	1	7/28/2014
Benzo(g,h,i)perylene	0.45	0.034	mg/Kg-dry	1	7/28/2014
Benzo(k)fluoranthene	0.60	0.034	mg/Kg-dry	1	7/28/2014
Chrysene	0.83	0.034	mg/Kg-dry	1	7/28/2014
Dibenz(a,h)anthracene	0.20	0.034	mg/Kg-dry	1	7/28/2014
Fluoranthene	1.9	0.034	mg/Kg-dry	1	7/28/2014
Fluorene	0.16	0.034	mg/Kg-dry	1	7/28/2014
Indeno(1,2,3-cd)pyrene	0.40	0.034	mg/Kg-dry	1	7/28/2014
Naphthalene	ND	0.034	mg/Kg-dry	1	7/28/2014
Phenanthrene	1.6	0.034	mg/Kg-dry	1	7/28/2014
Pyrene	1.6	0.034	mg/Kg-dry	1	7/28/2014
BTEX by GC/MS	SW5	035/8260B	Prep	Date: 7/24/2014	Analyst: PS
Benzene	ND	0.0043	mg/Kg-dry	1	7/29/2014
Ethylbenzene	ND	0.0043	mg/Kg-dry	1	7/29/2014
Toluene	ND	0.0043	mg/Kg-dry	1	7/29/2014
Xylenes, Total	ND	0.013	mg/Kg-dry	1	7/29/2014
pH (25 °C)	SW9	045C	Prep	Date: 7/25/2014	Analyst: RW
pH	9.0		pH Units	1	7/25/2014
Percent Moisture	D297	7 4	Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	4.8	0.2 *	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Client Sample ID: Power-SB-2-1416

Collection Date: 7/22/2014 2:40:00 PM

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

TPMHC, Tinley Park

Matrix: Soil

Lab ID: 14070878-029

Analyses	Result	RL Quali	fier Units	DF	Date Analyzed
Metals by ICP/MS	SW60	20 (SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Lead	15	0.60	mg/Kg-dry	10	7/29/2014
Polynuclear Aromatic Hydrocarbons by GC/MS	S SW82	70C (SW3550B)	Prep	Date: 7/28/2014	Analyst: DM
Acenaphthene	ND	0.040	mg/Kg-dry	1	7/28/2014
Acenaphthylene	ND	0.040	mg/Kg-dry	1	7/28/2014
Anthracene	ND	0.040	mg/Kg-dry	1	7/28/2014
Benz(a)anthracene	ND	0.040	mg/Kg-dry	1	7/28/2014
Benzo(a)pyrene	ND	0.040	mg/Kg-dry	1	7/28/2014
Benzo(b)fluoranthene	ND	0.040	mg/Kg-dry	1	7/28/2014
Benzo(g,h,i)perylene	ND	0.040	mg/Kg-dry	1	7/28/2014
Benzo(k)fluoranthene	ND	0.040	mg/Kg-dry	1	7/28/2014
Chrysene	ND	0.040	mg/Kg-dry	1	7/28/2014
Dibenz(a,h)anthracene	ND	0.040	mg/Kg-dry	1	7/28/2014
Fluoranthene	ND	0.040	mg/Kg-dry	1	7/28/2014
Fluorene	ND	0.040	mg/Kg-dry	1	7/28/2014
Indeno(1,2,3-cd)pyrene	ND	0.040	mg/Kg-dry	1	7/28/2014
Naphthalene	ND	0.040	mg/Kg-dry	1	7/28/2014
Phenanthrene	ND	0.040	mg/Kg-dry	1	7/28/2014
Pyrene	ND	0.040	mg/Kg-dry	1	7/28/2014
BTEX by GC/MS	SW50	35/8260B	Prep	Date: 7/24/2014	Analyst: PS
Benzene	ND	0.0045	mg/Kg-dry	1	7/29/2014
Ethylbenzene	ND	0.0045	mg/Kg-dry	1	7/29/2014
Toluene	ND	0.0045	mg/Kg-dry	1	7/29/2014
Xylenes, Total	ND	0.013	mg/Kg-dry	1	7/29/2014
pH (25 °C)	SW90	45C	Prep	Date: 7/28/2014	Analyst: RW
рН	8.1		pH Units	1	7/28/2014
Percent Moisture	D2974	1	Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	17.4	0.2 *	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Lab ID:

Client: Tetra Tech EM Inc. Work Order: 14070878 Revision 0 TPMHC, Tinley Park **Project:**

14070878-030

Client Sample ID: Power-SB-3-0003 Collection Date: 7/23/2014 7:35:00 AM

Matrix: Soil

Analyses	Result	RL Qualif	fier Units	DF	Date Analyzed
Metals by ICP/MS	SW6	020 (SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Lead	5.3	0.51	mg/Kg-dry	10	7/29/2014
Polynuclear Aromatic Hydrocarbons by GC/N	IS SW8	270C (SW3550B)	Prep	Date: 7/28/2014	Analyst: DM
Acenaphthene	ND	0.034	mg/Kg-dry	1	7/28/2014
Acenaphthylene	ND	0.034	mg/Kg-dry	1	7/28/2014
Anthracene	ND	0.034	mg/Kg-dry	1	7/28/2014
Benz(a)anthracene	ND	0.034	mg/Kg-dry	1	7/28/2014
Benzo(a)pyrene	ND	0.034	mg/Kg-dry	1	7/28/2014
Benzo(b)fluoranthene	ND	0.034	mg/Kg-dry	1	7/28/2014
Benzo(g,h,i)perylene	ND	0.034	mg/Kg-dry	1	7/28/2014
Benzo(k)fluoranthene	ND	0.034	mg/Kg-dry	1	7/28/2014
Chrysene	ND	0.034	mg/Kg-dry	1	7/28/2014
Dibenz(a,h)anthracene	ND	0.034	mg/Kg-dry	1	7/28/2014
Fluoranthene	0.037	0.034	mg/Kg-dry	1	7/28/2014
Fluorene	ND	0.034	mg/Kg-dry	1	7/28/2014
Indeno(1,2,3-cd)pyrene	ND	0.034	mg/Kg-dry	1	7/28/2014
Naphthalene	ND	0.034	mg/Kg-dry	1	7/28/2014
Phenanthrene	ND	0.034	mg/Kg-dry	1	7/28/2014
Pyrene	0.036	0.034	mg/Kg-dry	1	7/28/2014
BTEX by GC/MS	SW5	035/8260B	Prep	Date: 7/24/2014	Analyst: PS
Benzene	ND	0.0048	mg/Kg-dry	1	7/29/2014
Ethylbenzene	ND	0.0048	mg/Kg-dry	1	7/29/2014
Toluene	ND	0.0048	mg/Kg-dry	1	7/29/2014
Xylenes, Total	ND	0.014	mg/Kg-dry	1	7/29/2014
pH (25 °C)	SW9	045C	Prep	Date: 7/28/2014	Analyst: RW
pH	8.9		pH Units	1	7/28/2014
Percent Moisture	D297	' 4	Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	3.8	0.2 *	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Client Sample ID: Power-SB-3-1012 Collection Date: 7/23/2014 7:40:00 AM

Lab ID: 14070878-031 Matrix: Soil

Analyses	Result	RL Qualifi	ier Units	DF	Date Analyzed
Metals by ICP/MS	SW602	20 (SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Lead	11	0.52	mg/Kg-dry	10	7/29/2014
Polynuclear Aromatic Hydrocarbons by GC/MS	S SW827	OC (SW3550B)	Prep	Date: 7/28/2014	Analyst: DM
Acenaphthene	ND	0.034	mg/Kg-dry	1	7/28/2014
Acenaphthylene	ND	0.034	mg/Kg-dry	1	7/28/2014
Anthracene	ND	0.034	mg/Kg-dry	1	7/28/2014
Benz(a)anthracene	ND	0.034	mg/Kg-dry	1	7/28/2014
Benzo(a)pyrene	ND	0.034	mg/Kg-dry	1	7/28/2014
Benzo(b)fluoranthene	ND	0.034	mg/Kg-dry	1	7/28/2014
Benzo(g,h,i)perylene	ND	0.034	mg/Kg-dry	1	7/28/2014
Benzo(k)fluoranthene	ND	0.034	mg/Kg-dry	1	7/28/2014
Chrysene	ND	0.034	mg/Kg-dry	1	7/28/2014
Dibenz(a,h)anthracene	ND	0.034	mg/Kg-dry	1	7/28/2014
Fluoranthene	ND	0.034	mg/Kg-dry	1	7/28/2014
Fluorene	ND	0.034	mg/Kg-dry	1	7/28/2014
Indeno(1,2,3-cd)pyrene	ND	0.034	mg/Kg-dry	1	7/28/2014
Naphthalene	ND	0.034	mg/Kg-dry	1	7/28/2014
Phenanthrene	ND	0.034	mg/Kg-dry	1	7/28/2014
Pyrene	ND	0.034	mg/Kg-dry	1	7/28/2014
BTEX by GC/MS	SW503	5/8260B	Prep	Date: 7/24/2014	Analyst: PS
Benzene	ND	0.0040	mg/Kg-dry	1	7/29/2014
Ethylbenzene	ND	0.0040	mg/Kg-dry	1	7/29/2014
Toluene	ND	0.0040	mg/Kg-dry	1	7/29/2014
Xylenes, Total	ND	0.012	mg/Kg-dry	1	7/29/2014
pH (25 °C)	SW904	15C	Prep	Date: 7/28/2014	Analyst: RW
рН	7.9		pH Units	1	7/28/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	3.5	0.2 *	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Collection Date: 7/23/2014 8:55:00 AM

Matrix: Soil

Client Sample ID: Power-SB-4-0608

Lab ID: 14070878-032

Analyses	Result	RL Qualif	ier Units	DF	Date Analyzed
Metals by ICP/MS	SW6	020 (SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Lead	18	0.56	mg/Kg-dry	10	7/29/2014
Polynuclear Aromatic Hydrocarbons by GC/MS	SW8	270C (SW3550B)	Prep	Date: 7/28/2014	Analyst: DM
Acenaphthene	ND	0.043	mg/Kg-dry	1	7/28/2014
Acenaphthylene	ND	0.043	mg/Kg-dry	1	7/28/2014
Anthracene	ND	0.043	mg/Kg-dry	1	7/28/2014
Benz(a)anthracene	ND	0.043	mg/Kg-dry	1	7/28/2014
Benzo(a)pyrene	ND	0.043	mg/Kg-dry	1	7/28/2014
Benzo(b)fluoranthene	ND	0.043	mg/Kg-dry	1	7/28/2014
Benzo(g,h,i)perylene	ND	0.043	mg/Kg-dry	1	7/28/2014
Benzo(k)fluoranthene	ND	0.043	mg/Kg-dry	1	7/28/2014
Chrysene	ND	0.043	mg/Kg-dry	1	7/28/2014
Dibenz(a,h)anthracene	ND	0.043	mg/Kg-dry	1	7/28/2014
Fluoranthene	ND	0.043	mg/Kg-dry	1	7/28/2014
Fluorene	ND	0.043	mg/Kg-dry	1	7/28/2014
Indeno(1,2,3-cd)pyrene	ND	0.043	mg/Kg-dry	1	7/28/2014
Naphthalene	ND	0.043	mg/Kg-dry	1	7/28/2014
Phenanthrene	ND	0.043	mg/Kg-dry	1	7/28/2014
Pyrene	ND	0.043	mg/Kg-dry	1	7/28/2014
BTEX by GC/MS	SW5	035/8260B	Prep	Date: 7/24/2014	Analyst: PS
Benzene	ND	0.0058	mg/Kg-dry	1	7/29/2014
Ethylbenzene	ND	0.0058	mg/Kg-dry	1	7/29/2014
Toluene	ND	0.0058	mg/Kg-dry	1	7/29/2014
Xylenes, Total	ND	0.017	mg/Kg-dry	1	7/29/2014
pH (25 °C)	SW9	045C	Prep	Date: 7/28/2014	Analyst: RW
pH	8.4		pH Units	1	7/28/2014
Percent Moisture	D297	74	Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	24.5	0.2 *	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Client Sample ID: Power-SB-4-1012

Collection Date: 7/23/2014 9:00:00 AM

Date Printed: August 05, 2014

Lab ID:

Client: Tetra Tech EM Inc. Work Order: 14070878 Revision 0 **Project:**

TPMHC, Tinley Park

Matrix: Soil 14070878-033

Analyses	Result	RL Qualif	ier Units	DF	Date Analyzed
Metals by ICP/MS	SW60	020 (SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Lead	20	0.56	mg/Kg-dry	10	7/29/2014
Polynuclear Aromatic Hydrocarbons by GC/M	S SW82	270C (SW3550B)	Prep	Date: 7/28/2014	Analyst: DM
Acenaphthene	ND	0.038	mg/Kg-dry	1	7/28/2014
Acenaphthylene	ND	0.038	mg/Kg-dry	1	7/28/2014
Anthracene	ND	0.038	mg/Kg-dry	1	7/28/2014
Benz(a)anthracene	ND	0.038	mg/Kg-dry	1	7/28/2014
Benzo(a)pyrene	ND	0.038	mg/Kg-dry	1	7/28/2014
Benzo(b)fluoranthene	ND	0.038	mg/Kg-dry	1	7/28/2014
Benzo(g,h,i)perylene	ND	0.038	mg/Kg-dry	1	7/28/2014
Benzo(k)fluoranthene	ND	0.038	mg/Kg-dry	1	7/28/2014
Chrysene	ND	0.038	mg/Kg-dry	1	7/28/2014
Dibenz(a,h)anthracene	ND	0.038	mg/Kg-dry	1	7/28/2014
Fluoranthene	ND	0.038	mg/Kg-dry	1	7/28/2014
Fluorene	ND	0.038	mg/Kg-dry	1	7/28/2014
Indeno(1,2,3-cd)pyrene	ND	0.038	mg/Kg-dry	1	7/28/2014
Naphthalene	ND	0.038	mg/Kg-dry	1	7/28/2014
Phenanthrene	ND	0.038	mg/Kg-dry	1	7/28/2014
Pyrene	ND	0.038	mg/Kg-dry	1	7/28/2014
BTEX by GC/MS	SW50	035/8260B	Prep	Date: 7/24/2014	Analyst: PS
Benzene	ND	0.0048	mg/Kg-dry	1	7/29/2014
Ethylbenzene	ND	0.0048	mg/Kg-dry	1	7/29/2014
Toluene	ND	0.0048	mg/Kg-dry	1	7/29/2014
Xylenes, Total	ND	0.014	mg/Kg-dry	1	7/29/2014
pH (25 °C)	SW90	045C	Prep	Date: 7/28/2014	Analyst: RW
pH	8.3		pH Units	1	7/28/2014
Percent Moisture	D297	4	Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	13.4	0.2 *	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Collection Date: 7/23/2014 9:22:00 AM

Client Sample ID: Power-SB-5-0003

Matrix: Soil

Lab ID: 14070878-034

Analyses	Result	RL Quali	fier Units	DF	Date Analyzed
Metals by ICP/MS	SW6020	0 (SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Lead	20	0.58	mg/Kg-dry	10	7/29/2014
Polynuclear Aromatic Hydrocarbons by GC/MS	S SW827	0C (SW3550B)	Prep	Date: 7/28/2014	Analyst: DM
Acenaphthene	ND	0.040	mg/Kg-dry	1	7/28/2014
Acenaphthylene	ND	0.040	mg/Kg-dry	1	7/28/2014
Anthracene	ND	0.040	mg/Kg-dry	1	7/28/2014
Benz(a)anthracene	ND	0.040	mg/Kg-dry	1	7/28/2014
Benzo(a)pyrene	ND	0.040	mg/Kg-dry	1	7/28/2014
Benzo(b)fluoranthene	ND	0.040	mg/Kg-dry	1	7/28/2014
Benzo(g,h,i)perylene	ND	0.040	mg/Kg-dry	1	7/28/2014
Benzo(k)fluoranthene	ND	0.040	mg/Kg-dry	1	7/28/2014
Chrysene	ND	0.040	mg/Kg-dry	1	7/28/2014
Dibenz(a,h)anthracene	ND	0.040	mg/Kg-dry	1	7/28/2014
Fluoranthene	ND	0.040	mg/Kg-dry	1	7/28/2014
Fluorene	ND	0.040	mg/Kg-dry	1	7/28/2014
Indeno(1,2,3-cd)pyrene	ND	0.040	mg/Kg-dry	1	7/28/2014
Naphthalene	ND	0.040	mg/Kg-dry	1	7/28/2014
Phenanthrene	ND	0.040	mg/Kg-dry	1	7/28/2014
Pyrene	ND	0.040	mg/Kg-dry	1	7/28/2014
BTEX by GC/MS	SW503	5/8260B	Prep	Date: 7/24/2014	Analyst: PS
Benzene	ND	0.0054	mg/Kg-dry	1	7/29/2014
Ethylbenzene	ND	0.0054	mg/Kg-dry	1	7/29/2014
Toluene	ND	0.0054	mg/Kg-dry	1	7/29/2014
Xylenes, Total	ND	0.016	mg/Kg-dry	1	7/29/2014
pH (25 °C)	SW904	5C	Prep	Date: 7/28/2014	Analyst: RW
pH	8.1		pH Units	1	7/28/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	17.2	0.2 *	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Collection Date: 7/23/2014 9:27:00 AM

Matrix: Soil

Client Sample ID: Power-SB-5-0406

Lab ID: 14070878-035

Analyses	Result	RL Qualif	ier Units	DF	Date Analyzed
Metals by ICP/MS	SW6	020 (SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Lead	20	0.56	mg/Kg-dry	10	7/29/2014
Polynuclear Aromatic Hydrocarbons by GC/MS	S SW8	270C (SW3550B)	Prep	Date: 7/28/2014	Analyst: MEP
Acenaphthene	ND	0.039	mg/Kg-dry	1	7/28/2014
Acenaphthylene	ND	0.039	mg/Kg-dry	1	7/28/2014
Anthracene	ND	0.039	mg/Kg-dry	1	7/28/2014
Benz(a)anthracene	ND	0.039	mg/Kg-dry	1	7/28/2014
Benzo(a)pyrene	ND	0.039	mg/Kg-dry	1	7/28/2014
Benzo(b)fluoranthene	ND	0.039	mg/Kg-dry	1	7/28/2014
Benzo(g,h,i)perylene	ND	0.039	mg/Kg-dry	1	7/28/2014
Benzo(k)fluoranthene	ND	0.039	mg/Kg-dry	1	7/28/2014
Chrysene	ND	0.039	mg/Kg-dry	1	7/28/2014
Dibenz(a,h)anthracene	ND	0.039	mg/Kg-dry	1	7/28/2014
Fluoranthene	ND	0.039	mg/Kg-dry	1	7/28/2014
Fluorene	ND	0.039	mg/Kg-dry	1	7/28/2014
Indeno(1,2,3-cd)pyrene	ND	0.039	mg/Kg-dry	1	7/28/2014
Naphthalene	ND	0.039	mg/Kg-dry	1	7/28/2014
Phenanthrene	ND	0.039	mg/Kg-dry	1	7/28/2014
Pyrene	ND	0.039	mg/Kg-dry	1	7/28/2014
BTEX by GC/MS	SW5	035/8260B	Prep	Date: 7/24/2014	Analyst: PS
Benzene	ND	0.0046	mg/Kg-dry	1	7/30/2014
Ethylbenzene	ND	0.0046	mg/Kg-dry	1	7/30/2014
Toluene	ND	0.0046	mg/Kg-dry	1	7/30/2014
Xylenes, Total	ND	0.014	mg/Kg-dry	1	7/30/2014
pH (25 °C)	SW9	045C	Prep	Date: 7/28/2014	Analyst: RW
pH	7.6		pH Units	1	7/28/2014
Percent Moisture	D297	4	Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	16.8	0.2 *	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

STAT Analysis Corporation

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: Cedar-SB-6-0003

Work Order: 14070878 Revision 0 **Collection Date**: 7/23/2014 10:02:00 AM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14070878-036

Analyses	Result	RL Qu	alifier Units	DF	Date Analyzed
Mercury	SW747	'1A	Prep [Date: 7/28/2014	Analyst: LB
Mercury	0.027	0.024	mg/Kg-dry	1	7/28/2014
Metals by ICP/MS	SW602	20 (SW3050B	B) Prep [Date: 7/25/2014	Analyst: JG
Aluminum	14000	250	mg/Kg-dry	100	7/25/2014
Antimony	ND	2.5	mg/Kg-dry	10	7/28/2014
Arsenic	6.7	1.2	mg/Kg-dry	10	7/28/2014
Barium	160	1.2	mg/Kg-dry	10	7/28/2014
Beryllium	1.0	0.62	mg/Kg-dry	10	7/28/2014
Cadmium	ND	0.62	mg/Kg-dry	10	7/28/2014
Calcium	5600	750	mg/Kg-dry	100	7/25/2014
Chromium	18	1.2	mg/Kg-dry	10	7/28/2014
Cobalt	13	1.2	mg/Kg-dry	10	7/28/2014
Copper	22	3.1	mg/Kg-dry	10	7/28/2014
Iron	21000	370	mg/Kg-dry	100	7/25/2014
Lead	25	0.62	mg/Kg-dry	10	7/28/2014
Magnesium	3600	37	mg/Kg-dry	10	7/28/2014
Manganese	590	12	mg/Kg-dry	100	7/25/2014
Nickel	21	1.2	mg/Kg-dry	10	7/28/2014
Potassium	1500	37	mg/Kg-dry	10	7/28/2014
Selenium	ND	1.2	mg/Kg-dry	10	7/28/2014
Silver	ND	1.2	mg/Kg-dry	10	7/28/2014
Sodium	ND	75	mg/Kg-dry	10	7/28/2014
Thallium	ND	1.2	mg/Kg-dry	10	7/28/2014
Vanadium	31	1.2	mg/Kg-dry	10	7/28/2014
Zinc	69	6.2	mg/Kg-dry	10	7/28/2014
Semivolatile Organic Compounds by GC/MS	SW827	OC (SW3550	DB) Prep [Date: 7/28/2014	Analyst: MEP
Acenaphthene	ND	0.040	mg/Kg-dry	1	7/28/2014
Acenaphthylene	ND	0.040	mg/Kg-dry	1	7/28/2014
Aniline	ND	0.41	mg/Kg-dry	1	7/28/2014
Anthracene	ND	0.040	mg/Kg-dry	1	7/28/2014
Benz(a)anthracene	ND	0.040	mg/Kg-dry	1	7/28/2014
Benzidine	ND	0.40	mg/Kg-dry	1	7/28/2014
Benzo(a)pyrene	ND	0.040	mg/Kg-dry	1	7/28/2014
Benzo(b)fluoranthene	ND	0.040	mg/Kg-dry	1	7/28/2014
Benzo(g,h,i)perylene	ND	0.040	mg/Kg-dry	1	7/28/2014
Benzo(k)fluoranthene	ND	0.040	mg/Kg-dry	1	7/28/2014
Benzoic acid	ND	1.0	mg/Kg-dry	1	7/28/2014
Benzyl alcohol	ND	0.21	mg/Kg-dry	1	7/28/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: Cedar-SB-6-0003

Work Order: 14070878 Revision 0 **Collection Date**: 7/23/2014 10:02:00 AM

Project: TPMHC, Tinley Park
Lab ID: 14070878-036

Matrix: Soil

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW8270	0C (SW3	550B) Prep	Date: 7/28/201 4	1 Analyst: MEP
Bis(2-chloroethoxy)methane	ND	0.21	mg/Kg-dry	1	7/28/2014
Bis(2-chloroethyl)ether	ND	0.21	mg/Kg-dry	1	7/28/2014
Bis(2-ethylhexyl)phthalate	ND	1.0	mg/Kg-dry	1	7/28/2014
4-Bromophenyl phenyl ether	ND	0.21	mg/Kg-dry	1	7/28/2014
Butyl benzyl phthalate	ND	0.21	mg/Kg-dry	1	7/28/2014
Carbazole	ND	0.21	mg/Kg-dry	1	7/28/2014
4-Chloroaniline	ND	0.21	mg/Kg-dry	1	7/28/2014
4-Chloro-3-methylphenol	ND	0.40	mg/Kg-dry	1	7/28/2014
2-Chloronaphthalene	ND	0.21	mg/Kg-dry	1	7/28/2014
2-Chlorophenol	ND	0.21	mg/Kg-dry	1	7/28/2014
4-Chlorophenyl phenyl ether	ND	0.21	mg/Kg-dry	1	7/28/2014
Chrysene	ND	0.040	mg/Kg-dry	1	7/28/2014
Dibenz(a,h)anthracene	ND	0.040	mg/Kg-dry	1	7/28/2014
Dibenzofuran	ND	0.21	mg/Kg-dry	1	7/28/2014
1,2-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	7/28/2014
1,3-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	7/28/2014
1,4-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	7/28/2014
3,3´-Dichlorobenzidine	ND	0.21	mg/Kg-dry	1	7/28/2014
2,4-Dichlorophenol	ND	0.21	mg/Kg-dry	1	7/28/2014
Diethyl phthalate	ND	0.21	mg/Kg-dry	1	7/28/2014
2,4-Dimethylphenol	ND	0.21	mg/Kg-dry	1	7/28/2014
Dimethyl phthalate	ND	0.21	mg/Kg-dry	1	7/28/2014
4,6-Dinitro-2-methylphenol	ND	0.40	mg/Kg-dry	1	7/28/2014
2,4-Dinitrophenol	ND	1.0	mg/Kg-dry	1	7/28/2014
2,4-Dinitrotoluene	ND	0.040	mg/Kg-dry	1	7/28/2014
2,6-Dinitrotoluene	ND	0.040	mg/Kg-dry	1	7/28/2014
Di-n-butyl phthalate	ND	0.21	mg/Kg-dry	1	7/28/2014
Di-n-octyl phthalate	ND	0.21	mg/Kg-dry	1	7/28/2014
Fluoranthene	ND	0.040	mg/Kg-dry	1	7/28/2014
Fluorene	ND	0.040	mg/Kg-dry	1	7/28/2014
Hexachlorobenzene	ND	0.21	mg/Kg-dry	1	7/28/2014
Hexachlorobutadiene	ND	0.21	mg/Kg-dry	1	7/28/2014
Hexachlorocyclopentadiene	ND	0.21	mg/Kg-dry	1	7/28/2014
Hexachloroethane	ND	0.21	mg/Kg-dry	1	7/28/2014
Indeno(1,2,3-cd)pyrene	ND	0.040	mg/Kg-dry	1	7/28/2014
Isophorone	ND	0.21	mg/Kg-dry	1	7/28/2014
2-Methylnaphthalene	ND	0.21	mg/Kg-dry	1	7/28/2014
2-Methylphenol	ND	0.21	mg/Kg-dry	1	7/28/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

STAT Analysis Corporation

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: Cedar-SB-6-0003

Work Order: 14070878 Revision 0 Collection Date: 7/23/2014 10:02:00 AM TPMHC, Tinley Park

Project: Matrix: Soil Lab ID: 14070878-036

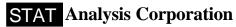
Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW3	550B) Prep	Date: 7/28/2014	Analyst: MEP
4-Methylphenol	ND	0.21	mg/Kg-dry	1	7/28/2014
Naphthalene	ND	0.040	mg/Kg-dry	1	7/28/2014
2-Nitroaniline	ND	0.21	mg/Kg-dry	1	7/28/2014
3-Nitroaniline	ND	0.21	mg/Kg-dry	1	7/28/2014
4-Nitroaniline	ND	0.21	mg/Kg-dry	1	7/28/2014
2-Nitrophenol	ND	0.21	mg/Kg-dry	1	7/28/2014
4-Nitrophenol	ND	0.40	mg/Kg-dry	1	7/28/2014
Nitrobenzene	ND	0.040	mg/Kg-dry	1	7/28/2014
N-Nitrosodi-n-propylamine	ND	0.040	mg/Kg-dry	1	7/28/2014
N-Nitrosodimethylamine	ND	0.21	mg/Kg-dry	1	7/28/2014
N-Nitrosodiphenylamine	ND	0.040	mg/Kg-dry	1	7/28/2014
2, 2'-oxybis(1-Chloropropane)	ND	0.21	mg/Kg-dry	1	7/28/2014
Pentachlorophenol	ND	0.082	mg/Kg-dry	1	7/28/2014
Phenanthrene	ND	0.040	mg/Kg-dry	1	7/28/2014
Phenol	ND	0.21	mg/Kg-dry	1	7/28/2014
Pyrene	ND	0.040	mg/Kg-dry	1	7/28/2014
Pyridine	ND	0.82	mg/Kg-dry	1	7/28/2014
1,2,4-Trichlorobenzene	ND	0.21	mg/Kg-dry	1	7/28/2014
2,4,5-Trichlorophenol	ND	0.21	mg/Kg-dry	1	7/28/2014
2,4,6-Trichlorophenol	ND	0.21	mg/Kg-dry	1	7/28/2014
Volatile Organic Compounds by GC/MS	SW50	035/8260B	Prep	Date: 7/24/2014	Analyst: PS
Acetone	ND	0.077	mg/Kg-dry	1	7/30/2014
Benzene	ND	0.0052	mg/Kg-dry	1	7/30/2014
Bromodichloromethane	ND	0.0052	mg/Kg-dry	1	7/30/2014
Bromoform	ND	0.0052	mg/Kg-dry	1	7/30/2014
Bromomethane	ND	0.010	mg/Kg-dry	1	7/30/2014
2-Butanone	ND	0.077	mg/Kg-dry	1	7/30/2014
Carbon disulfide	ND	0.052	mg/Kg-dry	1	7/30/2014
Carbon tetrachloride	ND	0.0052	mg/Kg-dry	1	7/30/2014
Chlorobenzene	ND	0.0052	mg/Kg-dry	1	7/30/2014
Chloroethane	ND	0.010	mg/Kg-dry	1	7/30/2014
Chloroform	ND	0.0052	mg/Kg-dry	1	7/30/2014
Chloromethane	ND	0.010	mg/Kg-dry	1	7/30/2014
Dibromochloromethane	ND	0.0052	mg/Kg-dry	1	7/30/2014
1,1-Dichloroethane	ND	0.0052	mg/Kg-dry	1	7/30/2014
1,2-Dichloroethane	ND	0.0052	mg/Kg-dry	1	7/30/2014
1,1-Dichloroethene	ND	0.0052	mg/Kg-dry	1	7/30/2014
cis-1,2-Dichloroethene	ND	0.0052	mg/Kg-dry	1	7/30/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time


* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: Cedar-SB-6-0003

Work Order: 14070878 Revision 0
Project: TPMHC, Tinley Park

Collection Date: 7/23/2014 10:02:00 AM

Motair: Soil

Lab ID: 14070878-036 Matrix: Soil

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW50)35/8260B	Prep	Date: 7/24/2014	Analyst: PS
trans-1,2-Dichloroethene	ND	0.0052	mg/Kg-dry	1	7/30/2014
1,2-Dichloropropane	ND	0.0052	mg/Kg-dry	1	7/30/2014
cis-1,3-Dichloropropene	ND	0.0021	mg/Kg-dry	1	7/30/2014
trans-1,3-Dichloropropene	ND	0.0021	mg/Kg-dry	1	7/30/2014
Ethylbenzene	ND	0.0052	mg/Kg-dry	1	7/30/2014
2-Hexanone	ND	0.021	mg/Kg-dry	1	7/30/2014
4-Methyl-2-pentanone	ND	0.021	mg/Kg-dry	1	7/30/2014
Methylene chloride	ND	0.010	mg/Kg-dry	1	7/30/2014
Methyl tert-butyl ether	ND	0.0052	mg/Kg-dry	1	7/30/2014
Styrene	ND	0.0052	mg/Kg-dry	1	7/30/2014
1,1,2,2-Tetrachloroethane	ND	0.0052	mg/Kg-dry	1	7/30/2014
Tetrachloroethene	ND	0.0052	mg/Kg-dry	1	7/30/2014
Toluene	ND	0.0052	mg/Kg-dry	1	7/30/2014
1,1,1-Trichloroethane	ND	0.0052	mg/Kg-dry	1	7/30/2014
1,1,2-Trichloroethane	ND	0.0052	mg/Kg-dry	1	7/30/2014
Trichloroethene	ND	0.0052	mg/Kg-dry	1	7/30/2014
Vinyl chloride	ND	0.0052	mg/Kg-dry	1	7/30/2014
Xylenes, Total	ND	0.015	mg/Kg-dry	1	7/30/2014
Cyanide, Total	SW90)12A	Prep	Date: 7/24/2014	Analyst: YZ
Cyanide	ND	0.31	mg/Kg-dry	1	7/25/2014
pH (25 °C)	SW90	045C	Prep	Date: 7/28/2014	Analyst: RW
рН	7.4		pH Units	1	7/28/2014
Percent Moisture	D297	4	Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	18.8	0.2	* wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014 **Date Printed:** August 05, 2014

ANALYTICAL RESULTS

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Collection Date: 7/23/2014 10:18:00 AM

Project: TPMHC, Tinley Park

 Lab ID: 14070878-037

Matrix: Soil

Client Sample ID: Cedar-SB-4-0104

Analyses	Result	RL Qı	ialifier Units	DF	Date Analyzed
Mercury	SW7	471A	Prep	Date: 7/28/2014	Analyst: LB
Mercury	0.030	0.022	mg/Kg-dry	1	7/28/2014
Metals by ICP/MS	SW6	020 (SW3050E	3) Prep	Date: 7/25/2014	Analyst: JG
Aluminum	19000	250	mg/Kg-dry	100	7/25/2014
Antimony	ND	2.5	mg/Kg-dry	10	7/28/2014
Arsenic	7.5	1.3	mg/Kg-dry	10	7/28/2014
Barium	170	1.3	mg/Kg-dry	10	7/28/2014
Beryllium	1.1	0.63	mg/Kg-dry	10	7/28/2014
Cadmium	ND	0.63	mg/Kg-dry	10	7/28/2014
Calcium	7500	750	mg/Kg-dry	100	7/25/2014
Chromium	20	1.3	mg/Kg-dry	10	7/28/2014
Cobalt	10	1.3	mg/Kg-dry	10	7/28/2014
Copper	27	3.1	mg/Kg-dry	10	7/28/2014
Iron	29000	380	mg/Kg-dry	100	7/25/2014
Lead	21	0.63	mg/Kg-dry	10	7/28/2014
Magnesium	4300	38	mg/Kg-dry	10	7/28/2014
Manganese	310	13	mg/Kg-dry	100	7/25/2014
Nickel	26	1.3	mg/Kg-dry	10	7/28/2014
Potassium	1300	38	mg/Kg-dry	10	7/28/2014
Selenium	ND	1.3	mg/Kg-dry	10	7/28/2014
Silver	ND	1.3	mg/Kg-dry	10	7/28/2014
Sodium	ND	75	mg/Kg-dry	10	7/28/2014
Thallium	ND	1.3	mg/Kg-dry	10	7/28/2014
Vanadium	29	1.3	mg/Kg-dry	10	7/28/2014
Zinc	71	6.3	mg/Kg-dry	10	7/28/2014
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW355	0B) Prep	Date: 7/28/2014	Analyst: MEP
Acenaphthene	ND	0.050	mg/Kg-dry	1	7/28/2014
Acenaphthylene	ND	0.050	mg/Kg-dry	1	7/28/2014
Aniline	ND	0.50	mg/Kg-dry	1	7/28/2014
Anthracene	ND	0.050	mg/Kg-dry	1	7/28/2014
Benz(a)anthracene	ND	0.050	mg/Kg-dry	1	7/28/2014
Benzidine	ND	0.50	mg/Kg-dry	1	7/28/2014
Benzo(a)pyrene	ND	0.050	mg/Kg-dry	1	7/28/2014
Benzo(b)fluoranthene	ND	0.050	mg/Kg-dry	1	7/28/2014
Benzo(g,h,i)perylene	ND	0.050	mg/Kg-dry	1	7/28/2014
Benzo(k)fluoranthene	ND	0.050	mg/Kg-dry	1	7/28/2014
Benzoic acid	ND	1.2	mg/Kg-dry	1	7/28/2014
Benzyl alcohol	ND	0.26	mg/Kg-dry	1	7/28/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: Cedar-SB-4-0104

Work Order: 14070878 Revision 0 **Collection Date**: 7/23/2014 10:18:00 AM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14070878-037

Analyses	Result	RL (Qualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	70C (SW3	550B) Pre	p Date: 7/28/201	4 Analyst: MEP
Bis(2-chloroethoxy)methane	ND	0.26	mg/Kg-dry	, 1	7/28/2014
Bis(2-chloroethyl)ether	ND	0.26	mg/Kg-dry	<i>,</i> 1	7/28/2014
Bis(2-ethylhexyl)phthalate	ND	1.2	mg/Kg-dry	<i>,</i> 1	7/28/2014
4-Bromophenyl phenyl ether	ND	0.26	mg/Kg-dry	<i>,</i> 1	7/28/2014
Butyl benzyl phthalate	ND	0.26	mg/Kg-dry	<i>,</i> 1	7/28/2014
Carbazole	ND	0.26	mg/Kg-dry	<i>,</i> 1	7/28/2014
4-Chloroaniline	ND	0.26	mg/Kg-dry	<i>,</i> 1	7/28/2014
4-Chloro-3-methylphenol	ND	0.50	mg/Kg-dry	<i>,</i> 1	7/28/2014
2-Chloronaphthalene	ND	0.26	mg/Kg-dry	<i>,</i> 1	7/28/2014
2-Chlorophenol	ND	0.26	mg/Kg-dry	<i>,</i> 1	7/28/2014
4-Chlorophenyl phenyl ether	ND	0.26	mg/Kg-dry	<i>,</i> 1	7/28/2014
Chrysene	ND	0.050	mg/Kg-dry	<i>,</i> 1	7/28/2014
Dibenz(a,h)anthracene	ND	0.050	mg/Kg-dry	<i>,</i> 1	7/28/2014
Dibenzofuran	ND	0.26	mg/Kg-dry	<i>,</i> 1	7/28/2014
1,2-Dichlorobenzene	ND	0.26	mg/Kg-dry	, 1	7/28/2014
1,3-Dichlorobenzene	ND	0.26	mg/Kg-dry	, 1	7/28/2014
1,4-Dichlorobenzene	ND	0.26	mg/Kg-dry	, 1	7/28/2014
3,3´-Dichlorobenzidine	ND	0.26	mg/Kg-dry	, 1	7/28/2014
2,4-Dichlorophenol	ND	0.26	mg/Kg-dry	, 1	7/28/2014
Diethyl phthalate	ND	0.26	mg/Kg-dry	, 1	7/28/2014
2,4-Dimethylphenol	ND	0.26	mg/Kg-dry	, 1	7/28/2014
Dimethyl phthalate	ND	0.26	mg/Kg-dry	, 1	7/28/2014
4,6-Dinitro-2-methylphenol	ND	0.50	mg/Kg-dry	, 1	7/28/2014
2,4-Dinitrophenol	ND	1.2	mg/Kg-dry	, 1	7/28/2014
2,4-Dinitrotoluene	ND	0.050	mg/Kg-dry	, 1	7/28/2014
2,6-Dinitrotoluene	ND	0.050	mg/Kg-dry	, 1	7/28/2014
Di-n-butyl phthalate	ND	0.26	mg/Kg-dry	<i>,</i> 1	7/28/2014
Di-n-octyl phthalate	ND	0.26	mg/Kg-dry	, 1	7/28/2014
Fluoranthene	ND	0.050	mg/Kg-dry	, 1	7/28/2014
Fluorene	ND	0.050	mg/Kg-dry	<i>,</i> 1	7/28/2014
Hexachlorobenzene	ND	0.26	mg/Kg-dry	, 1	7/28/2014
Hexachlorobutadiene	ND	0.26	mg/Kg-dry	, 1	7/28/2014
Hexachlorocyclopentadiene	ND	0.26	mg/Kg-dry	, 1	7/28/2014
Hexachloroethane	ND	0.26	mg/Kg-dry	, 1	7/28/2014
Indeno(1,2,3-cd)pyrene	ND	0.050	mg/Kg-dry	, 1	7/28/2014
Isophorone	ND	0.26	mg/Kg-dry		7/28/2014
2-Methylnaphthalene	ND	0.26	mg/Kg-dry	, 1	7/28/2014
2-Methylphenol	ND	0.26	mg/Kg-dry		7/28/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: Cedar-SB-4-0104

Work Order: 14070878 Revision 0 **Collection Date**: 7/23/2014 10:18:00 AM

Project: TPMHC, Tinley Park

Matrix: Soil

Lab ID: 14070878-037

Analyses	Result	RL Q	ualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW35	50B) Prep	Date: 7/28/2014	Analyst: MEP
4-Methylphenol	ND	0.26	mg/Kg-dry	1	7/28/2014
Naphthalene	ND	0.050	mg/Kg-dry	1	7/28/2014
2-Nitroaniline	ND	0.26	mg/Kg-dry	1	7/28/2014
3-Nitroaniline	ND	0.26	mg/Kg-dry	1	7/28/2014
4-Nitroaniline	ND	0.26	mg/Kg-dry	1	7/28/2014
2-Nitrophenol	ND	0.26	mg/Kg-dry	1	7/28/2014
4-Nitrophenol	ND	0.50	mg/Kg-dry	1	7/28/2014
Nitrobenzene	ND	0.050	mg/Kg-dry	1	7/28/2014
N-Nitrosodi-n-propylamine	ND	0.050	mg/Kg-dry	1	7/28/2014
N-Nitrosodimethylamine	ND	0.26	mg/Kg-dry	1	7/28/2014
N-Nitrosodiphenylamine	ND	0.050	mg/Kg-dry	1	7/28/2014
2, 2'-oxybis(1-Chloropropane)	ND	0.26	mg/Kg-dry	1	7/28/2014
Pentachlorophenol	ND	0.10	mg/Kg-dry	1	7/28/2014
Phenanthrene	ND	0.050	mg/Kg-dry	1	7/28/2014
Phenol	ND	0.26	mg/Kg-dry	1	7/28/2014
Pyrene	ND	0.050	mg/Kg-dry	1	7/28/2014
Pyridine	ND	1.0	mg/Kg-dry	1	7/28/2014
1,2,4-Trichlorobenzene	ND	0.26	mg/Kg-dry	1	7/28/2014
2,4,5-Trichlorophenol	ND	0.26	mg/Kg-dry	1	7/28/2014
2,4,6-Trichlorophenol	ND	0.26	mg/Kg-dry	1	7/28/2014
Volatile Organic Compounds by GC/MS	SW50	35/8260B	Prep	Date: 7/24/2014	Analyst: PS
Acetone	0.10	0.084	mg/Kg-dry	1	7/31/2014
Benzene	ND	0.0056	mg/Kg-dry	1	7/31/2014
Bromodichloromethane	ND	0.0056	mg/Kg-dry	1	7/31/2014
Bromoform	ND	0.0056	mg/Kg-dry	1	7/31/2014
Bromomethane	ND	0.011	mg/Kg-dry	1	7/31/2014
2-Butanone	ND	0.084	mg/Kg-dry	1	7/31/2014
Carbon disulfide	ND	0.056	mg/Kg-dry	1	7/31/2014
Carbon tetrachloride	ND	0.0056	mg/Kg-dry	1	7/31/2014
Chlorobenzene	ND	0.0056	mg/Kg-dry	1	7/31/2014
Chloroethane	ND	0.011	mg/Kg-dry	1	7/31/2014
Chloroform	ND	0.0056	mg/Kg-dry	1	7/31/2014
Chloromethane	ND	0.011	mg/Kg-dry	1	7/31/2014
Dibromochloromethane	ND	0.0056	mg/Kg-dry	1	7/31/2014
1,1-Dichloroethane	ND	0.0056	mg/Kg-dry	1	7/31/2014
1,2-Dichloroethane	ND	0.0056	mg/Kg-dry	1	7/31/2014
1,1-Dichloroethene	ND	0.0056	mg/Kg-dry	1	7/31/2014
cis-1,2-Dichloroethene	ND	0.0056	mg/Kg-dry	1	7/31/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

ANALYTICAL RESULTS

Date Reported: August 05, 2014 **Date Printed:** August 05, 2014

Client:

Tetra Tech EM Inc.

Client Sample ID: Cedar-SB-4-0104

Work Order: 14070878 Revision 0 **Collection Date**: 7/23/2014 10:18:00 AM

Project: TPMHC, Tinley Park
Lab ID: 14070878-037

Matrix: Soil

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 7/24/2014	Analyst: PS
trans-1,2-Dichloroethene	ND	0.0056	mg/Kg-dry	1	7/31/2014
1,2-Dichloropropane	ND	0.0056	mg/Kg-dry	1	7/31/2014
cis-1,3-Dichloropropene	ND	0.0022	mg/Kg-dry	1	7/31/2014
trans-1,3-Dichloropropene	ND	0.0022	mg/Kg-dry	1	7/31/2014
Ethylbenzene	ND	0.0056	mg/Kg-dry	1	7/31/2014
2-Hexanone	ND	0.022	mg/Kg-dry	1	7/31/2014
4-Methyl-2-pentanone	ND	0.022	mg/Kg-dry	1	7/31/2014
Methylene chloride	ND	0.011	mg/Kg-dry	1	7/31/2014
Methyl tert-butyl ether	ND	0.0056	mg/Kg-dry	1	7/31/2014
Styrene	ND	0.0056	mg/Kg-dry	1	7/31/2014
1,1,2,2-Tetrachloroethane	ND	0.0056	mg/Kg-dry	1	7/31/2014
Tetrachloroethene	ND	0.0056	mg/Kg-dry	1	7/31/2014
Toluene	ND	0.0056	mg/Kg-dry	1	7/31/2014
1,1,1-Trichloroethane	ND	0.0056	mg/Kg-dry	1	7/31/2014
1,1,2-Trichloroethane	ND	0.0056	mg/Kg-dry	1	7/31/2014
Trichloroethene	ND	0.0056	mg/Kg-dry	1	7/31/2014
Vinyl chloride	ND	0.0056	mg/Kg-dry	1	7/31/2014
Xylenes, Total	ND	0.017	mg/Kg-dry	1	7/31/2014
Cyanide, Total	SW90	012A	Prep	Date: 7/24/2014	Analyst: YZ
Cyanide	ND	0.31	mg/Kg-dry	1	7/25/2014
pH (25 °C)	SW9	045C	Prep	Date: 7/28/2014	Analyst: RW
рН	7.5		pH Units	1	7/28/2014
Percent Moisture	D297	' 4	Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	20.2	0.2	* wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

ANALYTICAL RESULTS

Date Reported: August 05, 2014 **Date Printed:** August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: Cedar-SB-5-0003

Work Order: 14070878 Revision 0 Collection Date: 7/23/2014 10:40:00 AM

TPMHC, Tinley Park **Project:** Matrix: Soil

Lab ID: 14070878-038

Mercury 0.038 0.024 mg/Kg-0	rep Date: 7/25/20 1 dry 100 dry 10 dry 10 dry 10 dry 10 dry 10	7/28/2014
Metals by ICP/MS SW6020 (SW3050B) P Aluminum 16000 260 mg/Kg-c Antimony ND 2.6 mg/Kg-c Arsenic 8.4 1.3 mg/Kg-c Barium 160 1.3 mg/Kg-c Beryllium 1.1 0.64 mg/Kg-c Cadmium ND 0.64 mg/Kg-c Calcium 7700 770 mg/Kg-c Chromium 23 1.3 mg/Kg-c Cobalt 12 1.3 mg/Kg-c Copper 23 3.2 mg/Kg-c	rep Date: 7/25/20 1 dry 100 dry 10 dry 10 dry 10 dry 10 dry 10	7/28/2014 14 Analyst: JG 7/25/2014 7/28/2014 7/28/2014
Aluminum 16000 260 mg/Kg-c Antimony ND 2.6 mg/Kg-c Arsenic 8.4 1.3 mg/Kg-c Barium 160 1.3 mg/Kg-c Beryllium 1.1 0.64 mg/Kg-c Cadmium ND 0.64 mg/Kg-c Calcium 7700 770 mg/Kg-c Chromium 23 1.3 mg/Kg-c Cobalt 12 1.3 mg/Kg-c Copper 23 3.2 mg/Kg-c	dry 100 dry 10 dry 10 dry 10 dry 10	7/25/2014 7/28/2014 7/28/2014
Aluminum 16000 260 mg/Kg-c Antimony ND 2.6 mg/Kg-c Arsenic 8.4 1.3 mg/Kg-c Barium 160 1.3 mg/Kg-c Beryllium 1.1 0.64 mg/Kg-c Cadmium ND 0.64 mg/Kg-c Calcium 7700 770 mg/Kg-c Chromium 23 1.3 mg/Kg-c Cobalt 12 1.3 mg/Kg-c Copper 23 3.2 mg/Kg-c	dry 100 dry 10 dry 10 dry 10 dry 10	7/25/2014 7/28/2014 7/28/2014
Arsenic 8.4 1.3 mg/Kg-c Barium 160 1.3 mg/Kg-c Beryllium 1.1 0.64 mg/Kg-c Cadmium ND 0.64 mg/Kg-c Calcium 7700 770 mg/Kg-c Chromium 23 1.3 mg/Kg-c Cobalt 12 1.3 mg/Kg-c Copper 23 3.2 mg/Kg-c	dry 10 dry 10 dry 10	7/28/2014
Barium 160 1.3 mg/Kg-c Beryllium 1.1 0.64 mg/Kg-c Cadmium ND 0.64 mg/Kg-c Calcium 7700 770 mg/Kg-c Chromium 23 1.3 mg/Kg-c Cobalt 12 1.3 mg/Kg-c Copper 23 3.2 mg/Kg-c	dry 10 dry 10	
Beryllium 1.1 0.64 mg/Kg-c Cadmium ND 0.64 mg/Kg-c Calcium 7700 770 mg/Kg-c Chromium 23 1.3 mg/Kg-c Cobalt 12 1.3 mg/Kg-c Copper 23 3.2 mg/Kg-c	dry 10	7/28/2014
Cadmium ND 0.64 mg/Kg-c Calcium 7700 770 mg/Kg-c Chromium 23 1.3 mg/Kg-c Cobalt 12 1.3 mg/Kg-c Copper 23 3.2 mg/Kg-c	-	
Calcium 7700 770 mg/Kg-c Chromium 23 1.3 mg/Kg-c Cobalt 12 1.3 mg/Kg-c Copper 23 3.2 mg/Kg-c	drv 10	7/28/2014
Calcium 7700 770 mg/Kg-c Chromium 23 1.3 mg/Kg-c Cobalt 12 1.3 mg/Kg-c Copper 23 3.2 mg/Kg-c	,	7/28/2014
Cobalt 12 1.3 mg/Kg-c Copper 23 3.2 mg/Kg-c		7/25/2014
Copper 23 3.2 mg/Kg-c	dry 10	7/28/2014
3 3	dry 10	7/28/2014
Iron 24000 390 mg/Kg-r	dry 10	7/28/2014
	dry 100	7/25/2014
Lead 33 0.64 mg/Kg-c	dry 10	7/28/2014
Magnesium 4900 39 mg/Kg-c	dry 10	7/28/2014
Manganese 670 13 mg/Kg-c	dry 100	7/25/2014
Nickel 25 1.3 mg/Kg-c	dry 10	7/28/2014
Potassium 1700 39 mg/Kg-c		7/28/2014
Selenium ND 1.3 mg/Kg-c	dry 10	7/28/2014
Silver ND 1.3 mg/Kg-c	dry 10	7/28/2014
Sodium ND 77 mg/Kg-c	dry 10	7/28/2014
Thallium ND 1.3 mg/Kg-c	dry 10	7/28/2014
Vanadium 35 1.3 mg/Kg-c	dry 10	7/28/2014
Zinc 79 6.4 mg/Kg-c	dry 10	7/28/2014
Semivolatile Organic Compounds by GC/MS SW8270C (SW3550B)	rep Date: 7/28/20 1	14 Analyst: MEP
Acenaphthene ND 0.043 mg/Kg-c	dry 1	7/28/2014
Acenaphthylene ND 0.043 mg/Kg-c	dry 1	7/28/2014
Aniline ND 0.43 mg/Kg-c	dry 1	7/28/2014
Anthracene ND 0.043 mg/Kg-c	dry 1	7/28/2014
Benz(a)anthracene ND 0.043 mg/Kg-c	dry 1	7/28/2014
Benzidine ND 0.43 mg/Kg-c		7/28/2014
Benzo(a)pyrene ND 0.043 mg/Kg-c	-	7/28/2014
Benzo(b)fluoranthene ND 0.043 mg/Kg-c	-	7/28/2014
Benzo(g,h,i)perylene ND 0.043 mg/Kg-c	-	7/28/2014
Benzo(k)fluoranthene ND 0.043 mg/Kg-c	dry 1	7/28/2014
Benzoic acid ND 1.1 mg/Kg-c	-	7/28/2014
Benzyl alcohol ND 0.22 mg/Kg-c	dry 1	

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: Cedar-SB-5-0003

Work Order: 14070878 Revision 0 Collection Date: 7/23/2014 10:40:00 AM

TPMHC, Tinley Park **Project:** Matrix: Soil Lab ID: 14070878-038

Analyses	Result	RL Qua	lifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	70C (SW3550E	B) Prep I	Date: 7/28/2014	Analyst: MEP
Bis(2-chloroethoxy)methane	ND	0.22	mg/Kg-dry	1	7/28/2014
Bis(2-chloroethyl)ether	ND	0.22	mg/Kg-dry	1	7/28/2014
Bis(2-ethylhexyl)phthalate	ND	1.1	mg/Kg-dry	1	7/28/2014
4-Bromophenyl phenyl ether	ND	0.22	mg/Kg-dry	1	7/28/2014
Butyl benzyl phthalate	ND	0.22	mg/Kg-dry	1	7/28/2014
Carbazole	ND	0.22	mg/Kg-dry	1	7/28/2014
4-Chloroaniline	ND	0.22	mg/Kg-dry	1	7/28/2014
4-Chloro-3-methylphenol	ND	0.43	mg/Kg-dry	1	7/28/2014
2-Chloronaphthalene	ND	0.22	mg/Kg-dry	1	7/28/2014
2-Chlorophenol	ND	0.22	mg/Kg-dry	1	7/28/2014
4-Chlorophenyl phenyl ether	ND	0.22	mg/Kg-dry	1	7/28/2014
Chrysene	ND	0.043	mg/Kg-dry	1	7/28/2014
Dibenz(a,h)anthracene	ND	0.043	mg/Kg-dry	1	7/28/2014
Dibenzofuran	ND	0.22	mg/Kg-dry	1	7/28/2014
1,2-Dichlorobenzene	ND	0.22	mg/Kg-dry	1	7/28/2014
1,3-Dichlorobenzene	ND	0.22	mg/Kg-dry	1	7/28/2014
1,4-Dichlorobenzene	ND	0.22	mg/Kg-dry	1	7/28/2014
3,3´-Dichlorobenzidine	ND	0.22	mg/Kg-dry	1	7/28/2014
2,4-Dichlorophenol	ND	0.22	mg/Kg-dry	1	7/28/2014
Diethyl phthalate	ND	0.22	mg/Kg-dry	1	7/28/2014
2,4-Dimethylphenol	ND	0.22	mg/Kg-dry	1	7/28/2014
Dimethyl phthalate	ND	0.22	mg/Kg-dry	1	7/28/2014
4,6-Dinitro-2-methylphenol	ND	0.43	mg/Kg-dry	1	7/28/2014
2,4-Dinitrophenol	ND	1.1	mg/Kg-dry	1	7/28/2014
2,4-Dinitrotoluene	ND	0.043	mg/Kg-dry	1	7/28/2014
2,6-Dinitrotoluene	ND	0.043	mg/Kg-dry	1	7/28/2014
Di-n-butyl phthalate	ND	0.22	mg/Kg-dry	1	7/28/2014
Di-n-octyl phthalate	ND	0.22	mg/Kg-dry	1	7/28/2014
Fluoranthene	ND	0.043	mg/Kg-dry	1	7/28/2014
Fluorene	ND	0.043	mg/Kg-dry	1	7/28/2014
Hexachlorobenzene	ND	0.22	mg/Kg-dry	1	7/28/2014
Hexachlorobutadiene	ND	0.22	mg/Kg-dry	1	7/28/2014
Hexachlorocyclopentadiene	ND	0.22	mg/Kg-dry	1	7/28/2014
Hexachloroethane	ND	0.22	mg/Kg-dry	1	7/28/2014
Indeno(1,2,3-cd)pyrene	ND	0.043	mg/Kg-dry	1	7/28/2014
Isophorone	ND	0.22	mg/Kg-dry	1	7/28/2014
2-Methylnaphthalene	ND	0.22	mg/Kg-dry	1	7/28/2014
2-Methylphenol	ND	0.22	mg/Kg-dry	1	7/28/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: Cedar-SB-5-0003

Work Order: 14070878 Revision 0 **Collection Date**: 7/23/2014 10:40:00 AM

Project: TPMHC, Tinley Park
Lab ID: 14070878-038

Matrix: Soil

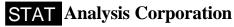
Analyses	Result	RL Q	Qualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW35	50B) Prep	Date: 7/28/2014	Analyst: MEP
4-Methylphenol	ND	0.22	mg/Kg-dry	1	7/28/2014
Naphthalene	ND	0.043	mg/Kg-dry	1	7/28/2014
2-Nitroaniline	ND	0.22	mg/Kg-dry	1	7/28/2014
3-Nitroaniline	ND	0.22	mg/Kg-dry	1	7/28/2014
4-Nitroaniline	ND	0.22	mg/Kg-dry	1	7/28/2014
2-Nitrophenol	ND	0.22	mg/Kg-dry	1	7/28/2014
4-Nitrophenol	ND	0.43	mg/Kg-dry	1	7/28/2014
Nitrobenzene	ND	0.043	mg/Kg-dry	1	7/28/2014
N-Nitrosodi-n-propylamine	ND	0.043	mg/Kg-dry	1	7/28/2014
N-Nitrosodimethylamine	ND	0.22	mg/Kg-dry	1	7/28/2014
N-Nitrosodiphenylamine	ND	0.043	mg/Kg-dry	1	7/28/2014
2, 2'-oxybis(1-Chloropropane)	ND	0.22	mg/Kg-dry	1	7/28/2014
Pentachlorophenol	ND	0.087	mg/Kg-dry	1	7/28/2014
Phenanthrene	ND	0.043	mg/Kg-dry	1	7/28/2014
Phenol	ND	0.22	mg/Kg-dry	1	7/28/2014
Pyrene	ND	0.043	mg/Kg-dry	1	7/28/2014
Pyridine	ND	0.87	mg/Kg-dry	1	7/28/2014
1,2,4-Trichlorobenzene	ND	0.22	mg/Kg-dry	1	7/28/2014
2,4,5-Trichlorophenol	ND	0.22	mg/Kg-dry	1	7/28/2014
2,4,6-Trichlorophenol	ND	0.22	mg/Kg-dry	1	7/28/2014
Volatile Organic Compounds by GC/MS	SW50	035/8260B	Prep l	Date: 7/24/2014	Analyst: PS
Acetone	ND	0.073	mg/Kg-dry	1	7/31/2014
Benzene	ND	0.0049	mg/Kg-dry	1	7/31/2014
Bromodichloromethane	ND	0.0049	mg/Kg-dry	1	7/31/2014
Bromoform	ND	0.0049	mg/Kg-dry	1	7/31/2014
Bromomethane	ND	0.0097	mg/Kg-dry	1	7/31/2014
2-Butanone	ND	0.073	mg/Kg-dry	1	7/31/2014
Carbon disulfide	ND	0.049	mg/Kg-dry	1	7/31/2014
Carbon tetrachloride	ND	0.0049	mg/Kg-dry	1	7/31/2014
Chlorobenzene	ND	0.0049	mg/Kg-dry	1	7/31/2014
Chloroethane	ND	0.0097	mg/Kg-dry	1	7/31/2014
Chloroform	ND	0.0049	mg/Kg-dry	1	7/31/2014
Chloromethane	ND	0.0097	mg/Kg-dry	1	7/31/2014
Dibromochloromethane	ND	0.0049	mg/Kg-dry	1	7/31/2014
1,1-Dichloroethane	ND	0.0049	mg/Kg-dry	1	7/31/2014
1,2-Dichloroethane	ND	0.0049	mg/Kg-dry	1	7/31/2014
1,1-Dichloroethene	ND	0.0049	mg/Kg-dry	1	7/31/2014
cis-1,2-Dichloroethene	ND	0.0049	mg/Kg-dry	1	7/31/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time


* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Percent Moisture

Qualifiers:

Client: Tetra Tech EM Inc. Client Sample ID: Cedar-SB-5-0003 14070878 Revision 0

Work Order: Collection Date: 7/23/2014 10:40:00 AM

Project: TPMHC, Tinley Park Matrix: Soil 14070878-038

Lab ID: **Analyses** Result RLQualifier Units DF **Date Analyzed Volatile Organic Compounds by GC/MS** SW5035/8260B Prep Date: 7/24/2014 Analyst: PS trans-1,2-Dichloroethene ND mg/Kg-dry 7/31/2014 0.0049 1 1,2-Dichloropropane ND 0.0049 mg/Kg-dry 1 7/31/2014 ND 1 7/31/2014 cis-1,3-Dichloropropene 0.0019 mg/Kg-dry trans-1,3-Dichloropropene ND 0.0019 mg/Kg-dry 1 7/31/2014 Ethylbenzene ND 0.0049 mg/Kg-dry 1 7/31/2014 2-Hexanone ND 0.019 mg/Kg-dry 1 7/31/2014 4-Methyl-2-pentanone ND 0.019 mg/Kg-dry 1 7/31/2014 Methylene chloride ND 1 0.0097 mg/Kg-dry 7/31/2014 Methyl tert-butyl ether ND 7/31/2014 0.0049 mg/Kg-dry ND Styrene 0.0049 mg/Kg-dry 1 7/31/2014 1,1,2,2-Tetrachloroethane ND 0.0049 mg/Kg-dry 1 7/31/2014 Tetrachloroethene ND 0.0049 mg/Kg-dry 1 7/31/2014 mg/Kg-dry Toluene ND 0.0049 1 7/31/2014 ND 1,1,1-Trichloroethane 0.0049 mg/Kg-dry 1 7/31/2014 1,1,2-Trichloroethane ND 0.0049 1 7/31/2014 mg/Kg-dry Trichloroethene ND 0.0049 mg/Kg-dry 1 7/31/2014 Vinyl chloride ND 7/31/2014 0.0049 mg/Kg-dry 1 Xylenes, Total ND 0.015 mg/Kg-dry 7/31/2014 Cyanide, Total SW9012A Prep Date: 7/24/2014 Analyst: YZ Cyanide ND 0.33 mg/Kg-dry 7/25/2014 pH (25 °C) SW9045C Prep Date: 7/28/2014 Analyst: RW 7/28/2014 7.4 pH Units рΗ **Percent Moisture** D2974 Prep Date: 7/24/2014 Analyst: RW

0.2

23.3

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

H - Holding time exceeded

wt%

7/25/2014

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Client Sample ID: Power-LP-SS-10

Project: TPMHC, Tinley Park Collection Date: 7/22/2014 3:01:00 PM

Lab ID: 14070878-039 Matrix: Soil

Analyses	Result	RL Qualif	fier Units	DF	Date Analyzed
Metals by ICP/MS Lead	SW6020 (85	SW3050B) 0.55	Prep mg/Kg-dry	Date: 7/25/2014 10	Analyst: JG 7/29/2014
pH (25 °C)	SW9045C		Prep	Date: 7/28/2014	Analyst: RW
pH	7.8		pH Units	1	7/28/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	19.2	0.2 *	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations:IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Client Sample ID: Power-LP-SS-11

Project: TPMHC, Tinley Park

Collection Date: 7/22/2014 2:55:00 PM

Matrix: Soil

Lab ID: 14070878-040 Matrix: Soil

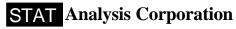
Analyses	Result	RL Qu	alifier Units	DF	Date Analyzed
Metals by ICP/MS	SW6020 (•	p Date: 7/25/ 2	,
Lead	74	0.70	mg/Kg-dry	10	7/29/2014
pH (25 °C)	SW9045C		Pre	p Date: 7/28/ 2	2014 Analyst: RW
рН	7.4		pH Units	1	7/28/2014
Percent Moisture	D2974		Pre	p Date: 7/24/ 2	2014 Analyst: RW
Percent Moisture	26.2	0.2	* wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time


* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Client Sample ID: Power-LP-SS-12

Project: TPMHC, Tinley Park

Collection Date: 7/22/2014 2:58:00 PM

Motorica Soil

Lab ID: 14070878-041 Matrix: Soil

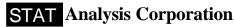
Analyses	Result	RL Quali	fier Units	DF	Date Analyzed
Metals by ICP/MS Lead	SW6020 120	(SW3050B) 0.61	Prep mg/Kg-dry	Date: 7/25/2014	Analyst: JG 7/29/2014
pH (25 °C) pH	SW9045 6	С	Prep pH Units	Date: 7/28/2014	Analyst: RW 7/28/2014
Percent Moisture Percent Moisture	D2974 18.2	0.2 *		Date: 7/24/2014	Analyst: RW 7/25/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time


* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Collection Date: 7/22/2014 2:58:00 PM
Matrix: Soil

Client Sample ID: Power-LP-SS-12-D

Lab ID: 14070878-042

Analyses	Result	RL Qualif	ier Units	DF	Date Analyzed
Metals by ICP/MS	SW6020	(SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Lead	130	0.67	mg/Kg-dry	10	7/29/2014
pH (25 °C)	SW9045	C	Prep	Date: 7/28/2014	Analyst: RW
рН	7.9		pH Units	1	7/28/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	22.3	0.2 *	wt%	1	7/25/2014

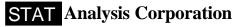
ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter


Qualifiers:

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

TPMHC, Tinley Park **Project:**

Lab ID: 14070878-043

Client Sample ID: Power-T-SS-1

Collection Date: 7/22/2014 3:17:00 PM

Matrix: Soil

Analyses	Result	RL Quali	fier Units	DF	Date Analyzed
PCBs	SW8082	(SW3550B)	Prep	Date: 7/24/2014	Analyst: GVC
Aroclor 1016	ND	0.090	mg/Kg-dry	1	7/24/2014
Aroclor 1221	ND	0.090	mg/Kg-dry	1	7/24/2014
Aroclor 1232	ND	0.090	mg/Kg-dry	1	7/24/2014
Aroclor 1242	ND	0.090	mg/Kg-dry	1	7/24/2014
Aroclor 1248	ND	0.090	mg/Kg-dry	1	7/24/2014
Aroclor 1254	0.46	0.090	mg/Kg-dry	1	7/24/2014
Aroclor 1260	0.43	0.090	mg/Kg-dry	1	7/24/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	11.8	0.2 *	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14070878-044

Client Sample ID: Cattage-T-SS-1

Collection Date: 7/22/2014 3:30:00 PM

Matrix: Soil

Analyses	Result	RL Qualif	fier Units	DF	Date Analyzed
PCBs	SW8082	(SW3550B)	Prep	Date: 7/25/2014	Analyst: GVC
Aroclor 1016	ND	0.094	mg/Kg-dry	1	7/26/2014
Aroclor 1221	ND	0.094	mg/Kg-dry	1	7/26/2014
Aroclor 1232	ND	0.094	mg/Kg-dry	1	7/26/2014
Aroclor 1242	ND	0.094	mg/Kg-dry	1	7/26/2014
Aroclor 1248	ND	0.094	mg/Kg-dry	1	7/26/2014
Aroclor 1254	ND	0.094	mg/Kg-dry	1	7/26/2014
Aroclor 1260	ND	0.094	mg/Kg-dry	1	7/26/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	16.0	0.2 *	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14070878-045

Client Sample ID: Cattage-T-SS-D

Collection Date: 7/22/2014 3:30:00 PM

Matrix: Soil

Analyses	Result	RL Qualifi	er Units	DF	Date Analyzed
PCBs	SW8082	(SW3550B)	Prep	Date: 7/25/2014	Analyst: GVC
Aroclor 1016	ND	0.095	mg/Kg-dry	1	7/26/2014
Aroclor 1221	ND	0.095	mg/Kg-dry	1	7/26/2014
Aroclor 1232	ND	0.095	mg/Kg-dry	1	7/26/2014
Aroclor 1242	ND	0.095	mg/Kg-dry	1	7/26/2014
Aroclor 1248	ND	0.095	mg/Kg-dry	1	7/26/2014
Aroclor 1254	ND	0.095	mg/Kg-dry	1	7/26/2014
Aroclor 1260	ND	0.095	mg/Kg-dry	1	7/26/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	15.9	0.2 *	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IFPA FLAP 100445-ORFLAP IL 300001-AIHA-LAP LLC 101160-

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014 **Date Printed:** August 05, 2014

Tetra Tech EM Inc.

Client:

Client Sample ID: SF-SB-8-0003

ANALYTICAL RESULTS

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Collection Date: 7/22/2014 7:45:00 AM

Lab ID: 14070878-046 Matrix: Soil

Analyses	Result	RL Qua	lifier Units	DF	Date Analyzed
Mercury	SW	7471A	Prep	Date: 7/28/2014	Analyst: LB
Mercury	0.035	0.020	mg/Kg-dry	1	7/28/2014
Metals by ICP/MS	SW	6020 (SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Aluminum	7700	230	mg/Kg-dry	100	7/25/2014
Antimony	ND	2.3	mg/Kg-dry	10	7/25/2014
Arsenic	9.7	1.2	mg/Kg-dry	10	7/25/2014
Barium	60	1.2	mg/Kg-dry	10	7/25/2014
Beryllium	ND	0.58	mg/Kg-dry	10	7/25/2014
Cadmium	ND	0.58	mg/Kg-dry	10	7/25/2014
Calcium	75000	690	mg/Kg-dry	100	7/25/2014
Chromium	15	1.2	mg/Kg-dry	10	7/25/2014
Cobalt	7.2	1.2	mg/Kg-dry	10	7/25/2014
Copper	19	2.9	mg/Kg-dry	10	7/25/2014
Iron	23000	350	mg/Kg-dry	100	7/25/2014
Lead	30	0.58	mg/Kg-dry	10	7/25/2014
Magnesium	36000	35	mg/Kg-dry	10	7/25/2014
Manganese	430	1.2	mg/Kg-dry	10	7/25/2014
Nickel	19	1.2	mg/Kg-dry	10	7/25/2014
Potassium	1300	35	mg/Kg-dry	10	7/25/2014
Selenium	ND	1.2	mg/Kg-dry	10	7/25/2014
Silver	ND	1.2	mg/Kg-dry	10	7/25/2014
Sodium	110	69	mg/Kg-dry	10	7/25/2014
Thallium	ND	1.2	mg/Kg-dry	10	7/25/2014
Vanadium	17	1.2	mg/Kg-dry	10	7/25/2014
Zinc	54	5.8	mg/Kg-dry	10	7/25/2014
Semivolatile Organic Compounds by GC/MS	SW	8270C (SW3550E	B) Prep	Date: 7/28/2014	Analyst: MEP
Acenaphthene	ND	0.037	mg/Kg-dry	1	7/28/2014
Acenaphthylene	ND	0.037	mg/Kg-dry	1	7/28/2014
Aniline	ND	0.38	mg/Kg-dry	1	7/28/2014
Anthracene	0.11	0.037	mg/Kg-dry	1	7/28/2014
Benz(a)anthracene	0.41	0.037	mg/Kg-dry	1	7/28/2014
Benzidine	ND	0.37	mg/Kg-dry	1	7/28/2014
Benzo(a)pyrene	0.38	0.037	mg/Kg-dry	1	7/28/2014
Benzo(b)fluoranthene	0.39	0.037	mg/Kg-dry	1	7/28/2014
Benzo(g,h,i)perylene	0.21	0.037	mg/Kg-dry	1	7/28/2014
Benzo(k)fluoranthene	0.33	0.037	mg/Kg-dry	1	7/28/2014
Benzoic acid	ND	0.94	mg/Kg-dry	1	7/28/2014
Benzyl alcohol	ND	0.19	mg/Kg-dry	1	7/28/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: SF-SB-8-0003

Work Order: 14070878 Revision 0 **Collection Date**: 7/22/2014 7:45:00 AM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14070878-046

Analyses	Result	RL Q	ualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	70C (SW355	50B) Prep I	Date: 7/28/2014	Analyst: MEP
Bis(2-chloroethoxy)methane	ND	0.19	mg/Kg-dry	1	7/28/2014
Bis(2-chloroethyl)ether	ND	0.19	mg/Kg-dry	1	7/28/2014
Bis(2-ethylhexyl)phthalate	ND	0.94	mg/Kg-dry	1	7/28/2014
4-Bromophenyl phenyl ether	ND	0.19	mg/Kg-dry	1	7/28/2014
Butyl benzyl phthalate	ND	0.19	mg/Kg-dry	1	7/28/2014
Carbazole	ND	0.19	mg/Kg-dry	1	7/28/2014
4-Chloroaniline	ND	0.19	mg/Kg-dry	1	7/28/2014
4-Chloro-3-methylphenol	ND	0.37	mg/Kg-dry	1	7/28/2014
2-Chloronaphthalene	ND	0.19	mg/Kg-dry	1	7/28/2014
2-Chlorophenol	ND	0.19	mg/Kg-dry	1	7/28/2014
4-Chlorophenyl phenyl ether	ND	0.19	mg/Kg-dry	1	7/28/2014
Chrysene	0.48	0.037	mg/Kg-dry	1	7/28/2014
Dibenz(a,h)anthracene	0.10	0.037	mg/Kg-dry	1	7/28/2014
Dibenzofuran	ND	0.19	mg/Kg-dry	1	7/28/2014
1,2-Dichlorobenzene	ND	0.19	mg/Kg-dry	1	7/28/2014
1,3-Dichlorobenzene	ND	0.19	mg/Kg-dry	1	7/28/2014
1,4-Dichlorobenzene	ND	0.19	mg/Kg-dry	1	7/28/2014
3,3´-Dichlorobenzidine	ND	0.19	mg/Kg-dry	1	7/28/2014
2,4-Dichlorophenol	ND	0.19	mg/Kg-dry	1	7/28/2014
Diethyl phthalate	ND	0.19	mg/Kg-dry	1	7/28/2014
2,4-Dimethylphenol	ND	0.19	mg/Kg-dry	1	7/28/2014
Dimethyl phthalate	ND	0.19	mg/Kg-dry	1	7/28/2014
4,6-Dinitro-2-methylphenol	ND	0.37	mg/Kg-dry	1	7/28/2014
2,4-Dinitrophenol	ND	0.94	mg/Kg-dry	1	7/28/2014
2,4-Dinitrotoluene	ND	0.037	mg/Kg-dry	1	7/28/2014
2,6-Dinitrotoluene	ND	0.037	mg/Kg-dry	1	7/28/2014
Di-n-butyl phthalate	ND	0.19	mg/Kg-dry	1	7/28/2014
Di-n-octyl phthalate	ND	0.19	mg/Kg-dry	1	7/28/2014
Fluoranthene	1.0	0.037	mg/Kg-dry	1	7/28/2014
Fluorene	0.037	0.037	mg/Kg-dry	1	7/28/2014
Hexachlorobenzene	ND	0.19	mg/Kg-dry	1	7/28/2014
Hexachlorobutadiene	ND	0.19	mg/Kg-dry	1	7/28/2014
Hexachlorocyclopentadiene	ND	0.19	mg/Kg-dry	1	7/28/2014
Hexachloroethane	ND	0.19	mg/Kg-dry	1	7/28/2014
Indeno(1,2,3-cd)pyrene	0.20	0.037	mg/Kg-dry	1	7/28/2014
Isophorone	ND	0.19	mg/Kg-dry	1	7/28/2014
2-Methylnaphthalene	ND	0.19	mg/Kg-dry	1	7/28/2014
2-Methylphenol	ND	0.19	mg/Kg-dry	1	7/28/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: SF-SB-8-0003

Work Order: 14070878 Revision 0 **Collection Date**: 7/22/2014 7:45:00 AM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14070878-046

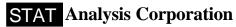
Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW	3550B) Prep	Date: 7/28/201	4 Analyst: MEP
4-Methylphenol	ND	0.19	mg/Kg-dry	1	7/28/2014
Naphthalene	ND	0.037	mg/Kg-dry	1	7/28/2014
2-Nitroaniline	ND	0.19	mg/Kg-dry	1	7/28/2014
3-Nitroaniline	ND	0.19	mg/Kg-dry	1	7/28/2014
4-Nitroaniline	ND	0.19	mg/Kg-dry	1	7/28/2014
2-Nitrophenol	ND	0.19	mg/Kg-dry	1	7/28/2014
4-Nitrophenol	ND	0.37	mg/Kg-dry	1	7/28/2014
Nitrobenzene	ND	0.037	mg/Kg-dry	1	7/28/2014
N-Nitrosodi-n-propylamine	ND	0.037	mg/Kg-dry	1	7/28/2014
N-Nitrosodimethylamine	ND	0.19	mg/Kg-dry	1	7/28/2014
N-Nitrosodiphenylamine	ND	0.037	mg/Kg-dry	1	7/28/2014
2, 2'-oxybis(1-Chloropropane)	ND	0.19	mg/Kg-dry	1	7/28/2014
Pentachlorophenol	ND	0.076	mg/Kg-dry	1	7/28/2014
Phenanthrene	0.59	0.037	mg/Kg-dry	1	7/28/2014
Phenol	ND	0.19	mg/Kg-dry	1	7/28/2014
Pyrene	0.86	0.037	mg/Kg-dry	1	7/28/2014
Pyridine	ND	0.76	mg/Kg-dry	1	7/28/2014
1,2,4-Trichlorobenzene	ND	0.19	mg/Kg-dry	1	7/28/2014
2,4,5-Trichlorophenol	ND	0.19	mg/Kg-dry	1	7/28/2014
2,4,6-Trichlorophenol	ND	0.19	mg/Kg-dry	1	7/28/2014
Volatile Organic Compounds by GC/MS	SW50	035/8260B	Prep	Date: 7/24/201	4 Analyst: PS
Acetone	ND	0.073	mg/Kg-dry	1	7/31/2014
Benzene	ND	0.0049	mg/Kg-dry	1	7/31/2014
Bromodichloromethane	ND	0.0049	mg/Kg-dry	1	7/31/2014
Bromoform	ND	0.0049	mg/Kg-dry	1	7/31/2014
Bromomethane	ND	0.0097	mg/Kg-dry	1	7/31/2014
2-Butanone	ND	0.073	mg/Kg-dry	1	7/31/2014
Carbon disulfide	ND	0.049	mg/Kg-dry	1	7/31/2014
Carbon tetrachloride	ND	0.0049	mg/Kg-dry	1	7/31/2014
Chlorobenzene	ND	0.0049	mg/Kg-dry	1	7/31/2014
Chloroethane	ND	0.0097	mg/Kg-dry	1	7/31/2014
Chloroform	ND	0.0049	mg/Kg-dry	1	7/31/2014
Chloromethane	ND	0.0097	mg/Kg-dry	1	7/31/2014
Dibromochloromethane	ND	0.0049	mg/Kg-dry	1	7/31/2014
1,1-Dichloroethane	ND	0.0049	mg/Kg-dry	1	7/31/2014
1,2-Dichloroethane	ND	0.0049	mg/Kg-dry	1	7/31/2014
1,1-Dichloroethene	ND	0.0049	mg/Kg-dry	1	7/31/2014
cis-1,2-Dichloroethene	ND	0.0049	mg/Kg-dry	1	7/31/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time


* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Client Sample ID: SF-SB-8-0003

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0 **Collection Date**: 7/22/2014 7:45:00 AM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14070878-046

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW50)35/8260B	Prep	Date: 7/24/2014	Analyst: PS
trans-1,2-Dichloroethene	ND	0.0049	mg/Kg-dry	1	7/31/2014
1,2-Dichloropropane	ND	0.0049	mg/Kg-dry	1	7/31/2014
cis-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	7/31/2014
trans-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	7/31/2014
Ethylbenzene	ND	0.0049	mg/Kg-dry	1	7/31/2014
2-Hexanone	ND	0.019	mg/Kg-dry	1	7/31/2014
4-Methyl-2-pentanone	ND	0.019	mg/Kg-dry	1	7/31/2014
Methylene chloride	ND	0.0097	mg/Kg-dry	1	7/31/2014
Methyl tert-butyl ether	ND	0.0049	mg/Kg-dry	1	7/31/2014
Styrene	ND	0.0049	mg/Kg-dry	1	7/31/2014
1,1,2,2-Tetrachloroethane	ND	0.0049	mg/Kg-dry	1	7/31/2014
Tetrachloroethene	ND	0.0049	mg/Kg-dry	1	7/31/2014
Toluene	ND	0.0049	mg/Kg-dry	1	7/31/2014
1,1,1-Trichloroethane	ND	0.0049	mg/Kg-dry	1	7/31/2014
1,1,2-Trichloroethane	ND	0.0049	mg/Kg-dry	1	7/31/2014
Trichloroethene	ND	0.0049	mg/Kg-dry	1	7/31/2014
Vinyl chloride	ND	0.0049	mg/Kg-dry	1	7/31/2014
Xylenes, Total	ND	0.015	mg/Kg-dry	1	7/31/2014
Cyanide, Total	SW90)12A	Prep	Date: 7/24/2014	Analyst: YZ
Cyanide	ND	0.28	mg/Kg-dry	1	7/25/2014
pH (25 °C)	SW90	045C	Prep	Date: 7/30/2014	Analyst: RW
pH	8.3		pH Units	1	7/30/2014
Percent Moisture	D297	4	Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	11.6	0.2	* wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accorditations: IEPA FLAP 100445: ORFLAP II 300001: AIHA LAP II C 101160:)

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

ANALYTICAL RESULTS

Date Reported: August 05, 2014 **Date Printed:** August 05, 2014

Tetra Tech EM Inc. Client Sample ID: SF-SB-7-0306

Work Order: 14070878 Revision 0 **Collection Date**: 7/22/2014 8:15:00 AM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14070878-047

Client:

Mercury SW7471A Prey Date: 7728/2014 Analyst: JG Metab by ICP/MS SW6020 (SW3050B) Prey Date: 7725/2014 Analyst: JG Aluminum 11000 260 mg/Kg-dry 10 725/2014 Antimony ND 2.6 mg/Kg-dry 10 725/2014 Arsenic 11 1.3 mg/Kg-dry 10 725/2014 Barium 96 1.3 mg/Kg-dry 10 725/2014 Cadmium ND 0.65 mg/Kg-dry 10 725/2014 Cadmium 45000 780 mg/Kg-dry 10 725/2014 Cadmium 17 1.3 mg/Kg-dry 10 725/2014 Chromium 17 1.3 mg/Kg-dry 10 725/2014 Chobalt 11 1.3 mg/Kg-dry 10 725/2014 Cobalt 11 1.3 mg/Kg-dry 10 725/2014 Itead 36 0.65 mg/Kg-dry 10 725/2014	Analyses	Result	RL Qı	ualifier Units	DF	Date Analyzed
Mercury 0.029 0.022 mg/kg-dry 1 7/28/2014 Metals by ICP/MS SW6020 (SW3050B) Prep Date: 7/25/2014 Analyst: JG Aluminum 11000 260 mg/kg-dry 100 7/25/2014 Antimory ND 2.6 mg/kg-dry 10 7/25/2014 Arsenic 11 1.3 mg/kg-dry 10 7/25/2014 Barilum 96 1.3 mg/kg-dry 10 7/25/2014 Cadmium ND 0.65 mg/kg-dry 10 7/25/2014 Cadicium 45000 780 mg/kg-dry 10 7/25/2014 Cobalt 11 1.3 mg/kg-dry 10 7/25/2014 Lead 36 0.65 mg/kg-dry 10 <t< td=""><td>Mercury</td><td>SW7</td><td>′471A</td><td>Prep</td><td>Date: 7/28/2014</td><td>Analyst: LB</td></t<>	Mercury	SW7	′471A	Prep	Date: 7/28/2014	Analyst: LB
Aluminum 11000 260 mg/Kg-dry 100 7/25/2014 Antimony ND 2.6 mg/Kg-dry 10 7/25/2014 Arsenic 111 1.3 mg/Kg-dry 10 7/25/2014 Barium 96 1.3 mg/Kg-dry 10 7/25/2014 Beryllium ND 0.65 mg/Kg-dry 10 7/25/2014 Cadmium ND 0.65 mg/Kg-dry 10 7/25/2014 Calcium 45000 780 mg/Kg-dry 10 7/25/2014 Chromium 17 1.3 mg/Kg-dry 10 7/25/2014 Chromium 17 1.3 mg/Kg-dry 10 7/25/2014 Copper 24 3.2 mg/Kg-dry 10 7/25/2014 Lead 36 0.65 mg/Kg-dry 10 7/25/2014 Magnesium 22000 39 mg/Kg-dry 10 7/25/2014 Manganese 480 1.3 mg/Kg-dry 10<	Mercury	0.029	0.022	•		<u>-</u>
Aluminum 11000 260 mg/Kg-dry 100 7/25/2014 Antimony ND 2.6 mg/Kg-dry 10 7/25/2014 Arsenic 111 1.3 mg/Kg-dry 10 7/25/2014 Barium 96 1.3 mg/Kg-dry 10 7/25/2014 Beryllium ND 0.65 mg/Kg-dry 10 7/25/2014 Cadmium ND 0.65 mg/Kg-dry 10 7/25/2014 Calcium 45000 780 mg/Kg-dry 10 7/25/2014 Chromium 17 1.3 mg/Kg-dry 10 7/25/2014 Chromium 17 1.3 mg/Kg-dry 10 7/25/2014 Copper 24 3.2 mg/Kg-dry 10 7/25/2014 Lead 36 0.65 mg/Kg-dry 10 7/25/2014 Magnesium 22000 39 mg/Kg-dry 10 7/25/2014 Manganese 480 1.3 mg/Kg-dry 10<	Metals by ICP/MS	SW6	6020 (SW3050)	B) Prep	Date: 7/25/2014	Analyst: JG
Arsenic 11 1.3 mg/Kg-dry 10 7/25/2014 Barium 96 1.3 mg/Kg-dry 10 7/25/2014 Beryllium ND 0.65 mg/Kg-dry 10 7/25/2014 Cadmium ND 0.65 mg/Kg-dry 10 7/25/2014 Calcium 45000 780 mg/Kg-dry 10 7/25/2014 Chromium 17 1.3 mg/Kg-dry 10 7/25/2014 Cobalt 11 1.3 mg/Kg-dry 10 7/25/2014 Copper 24 3.2 mg/Kg-dry 10 7/25/2014 Lead 36 0.65 mg/Kg-dry 10 7/25/2014 Magnesium 22000 39 mg/Kg-dry 10 7/25/2014 Magnesium 22000 39 mg/Kg-dry 10 7/25/2014 Mickel 25 1.3 mg/Kg-dry 10 7/25/2014 Potassium 1500 39 mg/Kg-dry 10	-		•	•		•
Arsenic 11 1.3 mg/Kg-dry 10 7/25/2014 Barium 96 1.3 mg/Kg-dry 10 7/25/2014 Beryllium ND 0.65 mg/Kg-dry 10 7/25/2014 Cadmium ND 0.65 mg/Kg-dry 10 7/25/2014 Calcium 45000 780 mg/Kg-dry 10 7/25/2014 Chromium 17 1.3 mg/Kg-dry 10 7/25/2014 Cobalt 11 1.3 mg/Kg-dry 10 7/25/2014 Copper 24 3.2 mg/Kg-dry 10 7/25/2014 Lead 36 0.65 mg/Kg-dry 10 7/25/2014 Magnesium 22000 39 mg/Kg-dry 10 7/25/2014 Magnesium 22000 39 mg/Kg-dry 10 7/25/2014 Mickel 25 1.3 mg/Kg-dry 10 7/25/2014 Potassium 1500 39 mg/Kg-dry 10	Antimony	ND	2.6	mg/Kg-dry	10	7/25/2014
Barium 96 1.3 mg/Kg-dry 10 7/25/2014 Beryllium ND 0.65 mg/Kg-dry 10 7/25/2014 Cadmium ND 0.65 mg/Kg-dry 10 7/25/2014 Calcium 45000 780 mg/Kg-dry 100 7/25/2014 Chromium 17 1.3 mg/Kg-dry 10 7/25/2014 Cobalt 11 1.3 mg/Kg-dry 10 7/25/2014 Copper 24 3.2 mg/Kg-dry 10 7/25/2014 Iron 23000 390 mg/Kg-dry 10 7/25/2014 Lead 36 0.65 mg/Kg-dry 10 7/25/2014 Magnesium 22000 39 mg/Kg-dry 10 7/25/2014 Mickel 25 1.3 mg/Kg-dry 10 7/25/2014 Nickel 25 1.3 mg/Kg-dry 10 7/25/2014 Selenium ND 1.3 mg/Kg-dry 10	Arsenic	11	1.3		10	7/25/2014
Cadmium ND 0.65 mg/Kg-dny 10 7/25/2014 Calcium 45000 780 mg/Kg-dny 100 7/25/2014 Chromium 17 1.3 mg/Kg-dny 10 7/25/2014 Cobalt 11 1.3 mg/Kg-dny 10 7/25/2014 Copper 24 3.2 mg/Kg-dny 10 7/25/2014 Iron 23000 390 mg/Kg-dny 10 7/25/2014 Lead 36 0.65 mg/Kg-dny 10 7/25/2014 Magnesium 22000 39 mg/Kg-dny 10 7/25/2014 Manganese 480 1.3 mg/Kg-dny 10 7/25/2014 Nickel 25 1.3 mg/Kg-dny 10 7/25/2014 Selenium ND 1.3 mg/Kg-dny 10 7/25/2014 Silver ND 1.3 mg/Kg-dny 10 7/25/2014 Sodium 250 78 mg/Kg-dny 10	Barium	96	1.3		10	7/25/2014
Calcium 45000 780 mg/Kg-dry 100 7/25/2014 Chromium 17 1.3 mg/Kg-dry 10 7/25/2014 Cobalt 11 1.3 mg/Kg-dry 10 7/25/2014 Copper 24 3.2 mg/Kg-dry 10 7/25/2014 Iron 23000 390 mg/Kg-dry 10 7/25/2014 Lead 36 0.65 mg/Kg-dry 10 7/25/2014 Magnesium 22000 39 mg/Kg-dry 10 7/25/2014 Manganese 480 1.3 mg/Kg-dry 10 7/25/2014 Mickel 25 1.3 mg/Kg-dry 10 7/25/2014 Potassium 1500 39 mg/Kg-dry 10 7/25/2014 Selenium ND 1.3 mg/Kg-dry 10 7/25/2014 Sodium 250 78 mg/Kg-dry 10 7/25/2014 Thallium ND 1.3 mg/Kg-dry 10	Beryllium	ND	0.65	mg/Kg-dry	10	7/25/2014
Chromium 17 1.3 mg/Kg-dry 10 7/25/2014 Cobalt 11 1.3 mg/Kg-dry 10 7/25/2014 Copper 24 3.2 mg/Kg-dry 10 7/25/2014 Iron 23000 390 mg/Kg-dry 100 7/25/2014 Lead 36 0.65 mg/Kg-dry 10 7/25/2014 Magnesium 22000 39 mg/Kg-dry 10 7/25/2014 Manganese 480 1.3 mg/Kg-dry 10 7/25/2014 Nickel 25 1.3 mg/Kg-dry 10 7/25/2014 Selenium 1500 39 mg/Kg-dry 10 7/25/2014 Selenium ND 1.3 mg/Kg-dry 10 7/25/2014 Silver ND 1.3 mg/Kg-dry 10 7/25/2014 Sodium 250 78 mg/Kg-dry 10 7/25/2014 Thalium ND 1.3 mg/Kg-dry 10	Cadmium	ND	0.65	mg/Kg-dry	10	7/25/2014
Cobalt 11 1.3 mg/Kg-dry 10 7/25/2014 Copper 24 3.2 mg/Kg-dry 10 7/25/2014 Iron 23000 390 mg/Kg-dry 100 7/25/2014 Lead 36 0.65 mg/Kg-dry 10 7/25/2014 Magnesium 22000 39 mg/Kg-dry 10 7/25/2014 Manganese 480 1.3 mg/Kg-dry 10 7/25/2014 Nickel 25 1.3 mg/Kg-dry 10 7/25/2014 Potassium 1500 39 mg/Kg-dry 10 7/25/2014 Selenium ND 1.3 mg/Kg-dry 10 7/25/2014 Silver ND 1.3 mg/Kg-dry 10 7/25/2014 Sodium 250 78 mg/Kg-dry 10 7/25/2014 Sodium 250 78 mg/Kg-dry 10 7/25/2014 Totalium ND 1.3 mg/Kg-dry 10 <	Calcium	45000	780	mg/Kg-dry	100	7/25/2014
Copper 24 3.2 mg/Kg-dry 10 7/25/2014 Iron 23000 390 mg/Kg-dry 100 7/25/2014 Lead 36 0.65 mg/Kg-dry 10 7/25/2014 Magnesium 22000 39 mg/Kg-dry 10 7/25/2014 Manganese 480 1.3 mg/Kg-dry 10 7/25/2014 Nickel 25 1.3 mg/Kg-dry 10 7/25/2014 Potassium 1500 39 mg/Kg-dry 10 7/25/2014 Selenium ND 1.3 mg/Kg-dry 10 7/25/2014 Selenium ND 1.3 mg/Kg-dry 10 7/25/2014 Silver ND 1.3 mg/Kg-dry 10 7/25/2014 Sodium 250 78 mg/Kg-dry 10 7/25/2014 Thallium ND 1.3 mg/Kg-dry 10 7/25/2014 Vanadium 23 1.3 mg/Kg-dry 1	Chromium	17	1.3	mg/Kg-dry	10	7/25/2014
Iron	Cobalt	11	1.3	mg/Kg-dry	10	7/25/2014
Lead 36 0.65 mg/Kg-dry 10 7/25/2014 Magnesium 22000 39 mg/Kg-dry 10 7/25/2014 Manganese 480 1.3 mg/Kg-dry 10 7/25/2014 Nickel 25 1.3 mg/Kg-dry 10 7/25/2014 Potassium 1500 39 mg/Kg-dry 10 7/25/2014 Selenium ND 1.3 mg/Kg-dry 10 7/25/2014 Silver ND 1.3 mg/Kg-dry 10 7/25/2014 Sodium 250 78 mg/Kg-dry 10 7/25/2014 Thallium ND 1.3 mg/Kg-dry 10 7/25/2014 Vanadium 23 1.3 mg/Kg-dry 10 7/25/2014 Zinc 78 6.5 mg/Kg-dry 10 7/25/2014 Semivolatile Organic Compounds by GC/MS SW8270C (SW3550B) Prep Date: 7/28/2014 Analyst: MEP Acenaphthrene ND 0.041 mg/Kg-dry	Copper	24	3.2	mg/Kg-dry	10	7/25/2014
Magnesium 22000 39 mg/Kg-dry 10 7/25/2014 Manganese 480 1.3 mg/Kg-dry 10 7/25/2014 Nickel 25 1.3 mg/Kg-dry 10 7/25/2014 Potassium 1500 39 mg/Kg-dry 10 7/25/2014 Selenium ND 1.3 mg/Kg-dry 10 7/25/2014 Selenium ND 1.3 mg/Kg-dry 10 7/25/2014 Silver ND 1.3 mg/Kg-dry 10 7/25/2014 Sodium 250 78 mg/Kg-dry 10 7/25/2014 Thallium ND 1.3 mg/Kg-dry 10 7/25/2014 Vanadium 23 1.3 mg/Kg-dry 10 7/25/2014 Zinc 78 6.5 mg/Kg-dry 10 7/25/2014 Semivolatile Organic Compounds by GC/MS SW8270C (SW3550B) Prep Date: 7/28/2014 Analyst: MEP Acenaphthene ND 0.041 mg/Kg-dry	Iron	23000	390	mg/Kg-dry	100	7/25/2014
Manganese 480 1.3 mg/Kg-dry 10 7/25/2014 Nickel 25 1.3 mg/Kg-dry 10 7/25/2014 Potassium 1500 39 mg/Kg-dry 10 7/25/2014 Selenium ND 1.3 mg/Kg-dry 10 7/25/2014 Silver ND 1.3 mg/Kg-dry 10 7/25/2014 Sodium 250 78 mg/Kg-dry 10 7/25/2014 Thallium ND 1.3 mg/Kg-dry 10 7/25/2014 Vanadium 23 1.3 mg/Kg-dry 10 7/25/2014 Zinc 78 6.5 mg/Kg-dry 10 7/25/2014 Zinc 78 6.5 mg/Kg-dry 10 7/25/2014 Zinc 78 6.5 mg/Kg-dry 1 7/28/2014 Acenaphthene ND 0.041 mg/Kg-dry 1 7/28/2014 Acenaphthylene ND 0.041 mg/Kg-dry 1	Lead	36	0.65	mg/Kg-dry	10	7/25/2014
Nickel 25 1.3 mg/Kg-dry 10 7/25/2014 Potassium 1500 39 mg/Kg-dry 10 7/25/2014 Selenium ND 1.3 mg/Kg-dry 10 7/25/2014 Silver ND 1.3 mg/Kg-dry 10 7/25/2014 Sodium 250 78 mg/Kg-dry 10 7/25/2014 Thallium ND 1.3 mg/Kg-dry 10 7/25/2014 Vanadium 23 1.3 mg/Kg-dry 10 7/25/2014 Zinc 78 6.5 mg/Kg-dry 10 7/25/2014 Semivolatile Organic Compounds by GC/MS SW8270C (SW3550B) Prep Date: 7/28/2014 Analyst: MEP Acenaphthene ND 0.041 mg/Kg-dry 1 7/28/2014 Acenaphthylene ND 0.041 mg/Kg-dry 1 7/28/2014 Aniline ND 0.042 mg/Kg-dry 1 7/28/2014 Anthracene ND 0.041 mg/Kg-dry	Magnesium	22000	39	mg/Kg-dry	10	7/25/2014
Potassium 1500 39 mg/Kg-dry 10 7/25/2014 Selenium ND 1.3 mg/Kg-dry 10 7/25/2014 Silver ND 1.3 mg/Kg-dry 10 7/25/2014 Sodium 250 78 mg/Kg-dry 10 7/25/2014 Thallium ND 1.3 mg/Kg-dry 10 7/25/2014 Vanadium 23 1.3 mg/Kg-dry 10 7/25/2014 Zinc 78 6.5 mg/Kg-dry 10 7/25/2014 Semivolatile Organic Compounds by GC/MS SW8270C (SW3550B) Prep Date: 7/28/2014 Analyst: MEP Acenaphthene ND 0.041 mg/Kg-dry 1 7/28/2014 Acenaphthylene ND 0.041 mg/Kg-dry 1 7/28/2014 Aniline ND 0.042 mg/Kg-dry 1 7/28/2014 Anthracene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(a)anthracene ND 0.041	Manganese	480	1.3	mg/Kg-dry	10	7/25/2014
Selenium ND 1.3 mg/Kg-dry 10 7/25/2014 Silver ND 1.3 mg/Kg-dry 10 7/25/2014 Sodium 250 78 mg/Kg-dry 10 7/25/2014 Thallium ND 1.3 mg/Kg-dry 10 7/25/2014 Vanadium 23 1.3 mg/Kg-dry 10 7/25/2014 Zinc 78 6.5 mg/Kg-dry 10 7/25/2014 Semivolatile Organic Compounds by GC/MS SW8270C (SW3550B) Prep Date: 7/28/2014 Analyst: MEP Acenaphthene ND 0.041 mg/Kg-dry 1 7/28/2014 Acenaphthylene ND 0.041 mg/Kg-dry 1 7/28/2014 Aniline ND 0.042 mg/Kg-dry 1 7/28/2014 Anilracene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzidine ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(a)pyrene ND 0.041	Nickel	25	1.3	mg/Kg-dry	10	7/25/2014
Silver ND 1.3 mg/Kg-dry 10 7/25/2014 Sodium 250 78 mg/Kg-dry 10 7/25/2014 Thallium ND 1.3 mg/Kg-dry 10 7/25/2014 Vanadium 23 1.3 mg/Kg-dry 10 7/25/2014 Zinc 78 6.5 mg/Kg-dry 10 7/25/2014 Semivolatile Organic Compounds by GC/MS SW8270C (SW3550B) Prep Date: 7/28/2014 Analyst: MEP Acenaphthene ND 0.041 mg/Kg-dry 1 7/28/2014 Acenaphthylene ND 0.041 mg/Kg-dry 1 7/28/2014 Aniline ND 0.42 mg/Kg-dry 1 7/28/2014 Anthracene ND 0.041 mg/Kg-dry 1 7/28/2014 Benz(a)anthracene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(a)pyrene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(b)fluoranthene ND 0.0	Potassium	1500	39	mg/Kg-dry	10	7/25/2014
Sodium 250 78 mg/Kg-dry 10 7/25/2014 Thallium ND 1.3 mg/Kg-dry 10 7/25/2014 Vanadium 23 1.3 mg/Kg-dry 10 7/25/2014 Zinc 78 6.5 mg/Kg-dry 10 7/25/2014 Semivolatile Organic Compounds by GC/MS SW8270C (SW3550B) Prep Date: 7/28/2014 Analyst: MEP Acenaphthene ND 0.041 mg/Kg-dry 1 7/28/2014 Acenaphthylene ND 0.041 mg/Kg-dry 1 7/28/2014 Aniline ND 0.42 mg/Kg-dry 1 7/28/2014 Anthracene ND 0.041 mg/Kg-dry 1 7/28/2014 Benz(a)anthracene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(a)pyrene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(b)fluoranthene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(g,h,i)perylene ND	Selenium	ND	1.3	mg/Kg-dry	10	7/25/2014
Thallium ND 1.3 mg/Kg-dry 10 7/25/2014 Vanadium 23 1.3 mg/Kg-dry 10 7/25/2014 Zinc 78 6.5 mg/Kg-dry 10 7/25/2014 Semivolatile Organic Compounds by GC/MS SW8270C (SW3550B) Prep Date: 7/28/2014 Analyst: MEP Acenaphthene ND 0.041 mg/Kg-dry 1 7/28/2014 Acenaphthylene ND 0.041 mg/Kg-dry 1 7/28/2014 Aniline ND 0.042 mg/Kg-dry 1 7/28/2014 Anthracene ND 0.041 mg/Kg-dry 1 7/28/2014 Benz(a)anthracene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzidine ND 0.41 mg/Kg-dry 1 7/28/2014 Benzo(a)pyrene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(b)fluoranthene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(c)f,i)perylene ND </td <td>Silver</td> <td>ND</td> <td>1.3</td> <td>mg/Kg-dry</td> <td>10</td> <td>7/25/2014</td>	Silver	ND	1.3	mg/Kg-dry	10	7/25/2014
Vanadium 23 1.3 mg/Kg-dry 10 7/25/2014 Zinc 78 6.5 mg/Kg-dry 10 7/25/2014 Semivolatile Organic Compounds by GC/MS SW8270C (SW3550B) Prep Date: 7/28/2014 Analyst: MEP Acenaphthene ND 0.041 mg/Kg-dry 1 7/28/2014 Acenaphthylene ND 0.041 mg/Kg-dry 1 7/28/2014 Aniline ND 0.042 mg/Kg-dry 1 7/28/2014 Anthracene ND 0.041 mg/Kg-dry 1 7/28/2014 Benz(a)anthracene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(a)pyrene ND 0.41 mg/Kg-dry 1 7/28/2014 Benzo(b)fluoranthene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(g,h,i)perylene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(k)fluoranthene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(c) fluoranth	Sodium	250	78	mg/Kg-dry	10	7/25/2014
Zinc 78 6.5 mg/Kg-dry 10 7/25/2014 Semivolatile Organic Compounds by GC/MS SW8270C (SW3550B) Prep Date: 7/28/2014 Analyst: MEP Acenaphthene ND 0.041 mg/Kg-dry 1 7/28/2014 Acenaphthylene ND 0.041 mg/Kg-dry 1 7/28/2014 Aniline ND 0.42 mg/Kg-dry 1 7/28/2014 Anthracene ND 0.041 mg/Kg-dry 1 7/28/2014 Benz(a)anthracene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzidine ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(a)pyrene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(b)fluoranthene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(c)k)fluoranthene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(c)k)fluoranthene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzoic aci	Thallium	ND	1.3	mg/Kg-dry	10	7/25/2014
Semivolatile Organic Compounds by GC/MS SW8270C (SW3550B) Prep Date: 7/28/2014 Analyst: MEP Acenaphthene ND 0.041 mg/Kg-dry 1 7/28/2014 Acenaphthylene ND 0.041 mg/Kg-dry 1 7/28/2014 Aniline ND 0.42 mg/Kg-dry 1 7/28/2014 Anthracene ND 0.041 mg/Kg-dry 1 7/28/2014 Benz(a)anthracene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzidine ND 0.41 mg/Kg-dry 1 7/28/2014 Benzo(a)pyrene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(b)fluoranthene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(k)fluoranthene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(k)fluoranthene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzoic acid ND 1.0 mg/Kg-dry 1 7/28/2014	Vanadium	23	1.3	mg/Kg-dry	10	7/25/2014
Acenaphthene ND 0.041 mg/Kg-dry 1 7/28/2014 Acenaphthylene ND 0.041 mg/Kg-dry 1 7/28/2014 Aniline ND 0.42 mg/Kg-dry 1 7/28/2014 Anthracene ND 0.041 mg/Kg-dry 1 7/28/2014 Benz(a)anthracene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzidine ND 0.41 mg/Kg-dry 1 7/28/2014 Benzo(a)pyrene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(b)fluoranthene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(k)fluoranthene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzoic acid ND 1.0 mg/Kg-dry 1 7/28/2014	Zinc	78	6.5	mg/Kg-dry	10	7/25/2014
Acenaphthylene ND 0.041 mg/Kg-dry 1 7/28/2014 Aniline ND 0.42 mg/Kg-dry 1 7/28/2014 Anthracene ND 0.041 mg/Kg-dry 1 7/28/2014 Benz(a)anthracene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzidine ND 0.41 mg/Kg-dry 1 7/28/2014 Benzo(a)pyrene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(b)fluoranthene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(k)fluoranthene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzoic acid ND 1.0 mg/Kg-dry 1 7/28/2014	Semivolatile Organic Compounds by GC/MS	SW8	3270C (SW355	0B) Prep	Date: 7/28/2014	Analyst: MEP
Aniline ND 0.42 mg/Kg-dry 1 7/28/2014 Anthracene ND 0.041 mg/Kg-dry 1 7/28/2014 Benz(a)anthracene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzidine ND 0.41 mg/Kg-dry 1 7/28/2014 Benzo(a)pyrene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(b)fluoranthene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(k)fluoranthene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzoic acid ND 1.0 mg/Kg-dry 1 7/28/2014	Acenaphthene	ND	0.041	mg/Kg-dry	1	7/28/2014
Anthracene ND 0.041 mg/Kg-dry 1 7/28/2014 Benz(a)anthracene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzidine ND 0.41 mg/Kg-dry 1 7/28/2014 Benzo(a)pyrene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(b)fluoranthene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(g,h,i)perylene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(k)fluoranthene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzoic acid ND 1.0 mg/Kg-dry 1 7/28/2014	Acenaphthylene	ND	0.041	mg/Kg-dry	1	7/28/2014
Benz(a)anthracene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzidine ND 0.41 mg/Kg-dry 1 7/28/2014 Benzo(a)pyrene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(b)fluoranthene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(g,h,i)perylene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(k)fluoranthene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzoic acid ND 1.0 mg/Kg-dry 1 7/28/2014	Aniline	ND	0.42	mg/Kg-dry	1	7/28/2014
Benzidine ND 0.41 mg/Kg-dry 1 7/28/2014 Benzo(a)pyrene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(b)fluoranthene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(g,h,i)perylene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(k)fluoranthene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzoic acid ND 1.0 mg/Kg-dry 1 7/28/2014	Anthracene	ND	0.041	mg/Kg-dry	1	7/28/2014
Benzo(a)pyrene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(b)fluoranthene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(g,h,i)perylene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(k)fluoranthene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzoic acid ND 1.0 mg/Kg-dry 1 7/28/2014	Benz(a)anthracene	ND	0.041	mg/Kg-dry	1	7/28/2014
Benzo(b)fluoranthene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(g,h,i)perylene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(k)fluoranthene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzoic acid ND 1.0 mg/Kg-dry 1 7/28/2014	Benzidine	ND	0.41	mg/Kg-dry	1	7/28/2014
Benzo(g,h,i)perylene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzo(k)fluoranthene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzoic acid ND 1.0 mg/Kg-dry 1 7/28/2014	Benzo(a)pyrene	ND	0.041	mg/Kg-dry	1	7/28/2014
Benzo(k)fluoranthene ND 0.041 mg/Kg-dry 1 7/28/2014 Benzoic acid ND 1.0 mg/Kg-dry 1 7/28/2014	Benzo(b)fluoranthene	ND	0.041	mg/Kg-dry	1	7/28/2014
Benzoic acid ND 1.0 mg/Kg-dry 1 7/28/2014	Benzo(g,h,i)perylene	ND	0.041	mg/Kg-dry	1	7/28/2014
3 3 7	Benzo(k)fluoranthene	ND	0.041	mg/Kg-dry	1	7/28/2014
Benzyl alcohol ND 0.21 mg/Kg-dry 1 7/28/2014	Benzoic acid	ND	1.0	mg/Kg-dry	1	7/28/2014
	Benzyl alcohol	ND	0.21	mg/Kg-dry	1	7/28/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: SF-SB-7-0306

Work Order: 14070878 Revision 0 **Collection Date**: 7/22/2014 8:15:00 AM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14070878-047

Analyses	Result	RL Q	ualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	70C (SW355	0B) Prep	Date: 7/28/2014	Analyst: MEP
Bis(2-chloroethoxy)methane	ND	0.21	mg/Kg-dry	1	7/28/2014
Bis(2-chloroethyl)ether	ND	0.21	mg/Kg-dry	1	7/28/2014
Bis(2-ethylhexyl)phthalate	ND	1.0	mg/Kg-dry	1	7/28/2014
4-Bromophenyl phenyl ether	ND	0.21	mg/Kg-dry	1	7/28/2014
Butyl benzyl phthalate	ND	0.21	mg/Kg-dry	1	7/28/2014
Carbazole	ND	0.21	mg/Kg-dry	1	7/28/2014
4-Chloroaniline	ND	0.21	mg/Kg-dry	1	7/28/2014
4-Chloro-3-methylphenol	ND	0.41	mg/Kg-dry	1	7/28/2014
2-Chloronaphthalene	ND	0.21	mg/Kg-dry	1	7/28/2014
2-Chlorophenol	ND	0.21	mg/Kg-dry	1	7/28/2014
4-Chlorophenyl phenyl ether	ND	0.21	mg/Kg-dry	1	7/28/2014
Chrysene	ND	0.041	mg/Kg-dry	1	7/28/2014
Dibenz(a,h)anthracene	ND	0.041	mg/Kg-dry	1	7/28/2014
Dibenzofuran	ND	0.21	mg/Kg-dry	1	7/28/2014
1,2-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	7/28/2014
1,3-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	7/28/2014
1,4-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	7/28/2014
3,3´-Dichlorobenzidine	ND	0.21	mg/Kg-dry	1	7/28/2014
2,4-Dichlorophenol	ND	0.21	mg/Kg-dry	1	7/28/2014
Diethyl phthalate	ND	0.21	mg/Kg-dry	1	7/28/2014
2,4-Dimethylphenol	ND	0.21	mg/Kg-dry	1	7/28/2014
Dimethyl phthalate	ND	0.21	mg/Kg-dry	1	7/28/2014
4,6-Dinitro-2-methylphenol	ND	0.41	mg/Kg-dry	1	7/28/2014
2,4-Dinitrophenol	ND	1.0	mg/Kg-dry	1	7/28/2014
2,4-Dinitrotoluene	ND	0.041	mg/Kg-dry	1	7/28/2014
2,6-Dinitrotoluene	ND	0.041	mg/Kg-dry	1	7/28/2014
Di-n-butyl phthalate	ND	0.21	mg/Kg-dry	1	7/28/2014
Di-n-octyl phthalate	ND	0.21	mg/Kg-dry	1	7/28/2014
Fluoranthene	ND	0.041	mg/Kg-dry	1	7/28/2014
Fluorene	ND	0.041	mg/Kg-dry	1	7/28/2014
Hexachlorobenzene	ND	0.21	mg/Kg-dry	1	7/28/2014
Hexachlorobutadiene	ND	0.21	mg/Kg-dry	1	7/28/2014
Hexachlorocyclopentadiene	ND	0.21	mg/Kg-dry	1	7/28/2014
Hexachloroethane	ND	0.21	mg/Kg-dry	1	7/28/2014
Indeno(1,2,3-cd)pyrene	ND	0.041	mg/Kg-dry	1	7/28/2014
Isophorone	ND	0.21	mg/Kg-dry	1	7/28/2014
2-Methylnaphthalene	ND	0.21	mg/Kg-dry	1	7/28/2014
2-Methylphenol	ND	0.21	mg/Kg-dry	1	7/28/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

August 05, 2014

Date Printed:

ANALYTICAL RESULTS

Client: Tetra Tech EM Inc. Client Sample ID: SF-SB-7-0306 Work Order: 14070878 Revision 0

Collection Date: 7/22/2014 8:15:00 AM TPMHC, Tinley Park **Project:**

Matrix: Soil Lab ID: 14070878-047

Analyses	Result	RL (Qualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW35	550B) Prep	Date: 7/28/2014	Analyst: MEP
4-Methylphenol	ND	0.21	mg/Kg-dry	1	7/28/2014
Naphthalene	ND	0.041	mg/Kg-dry	1	7/28/2014
2-Nitroaniline	ND	0.21	mg/Kg-dry	1	7/28/2014
3-Nitroaniline	ND	0.21	mg/Kg-dry	1	7/28/2014
4-Nitroaniline	ND	0.21	mg/Kg-dry	1	7/28/2014
2-Nitrophenol	ND	0.21	mg/Kg-dry	1	7/28/2014
4-Nitrophenol	ND	0.41	mg/Kg-dry	1	7/28/2014
Nitrobenzene	ND	0.041	mg/Kg-dry	1	7/28/2014
N-Nitrosodi-n-propylamine	ND	0.041	mg/Kg-dry	1	7/28/2014
N-Nitrosodimethylamine	ND	0.21	mg/Kg-dry	1	7/28/2014
N-Nitrosodiphenylamine	ND	0.041	mg/Kg-dry	1	7/28/2014
2, 2'-oxybis(1-Chloropropane)	ND	0.21	mg/Kg-dry	1	7/28/2014
Pentachlorophenol	ND	0.084	mg/Kg-dry	1	7/28/2014
Phenanthrene	ND	0.041	mg/Kg-dry	1	7/28/2014
Phenol	ND	0.21	mg/Kg-dry	1	7/28/2014
Pyrene	ND	0.041	mg/Kg-dry	1	7/28/2014
Pyridine	ND	0.84	mg/Kg-dry	1	7/28/2014
1,2,4-Trichlorobenzene	ND	0.21	mg/Kg-dry	1	7/28/2014
2,4,5-Trichlorophenol	ND	0.21	mg/Kg-dry	1	7/28/2014
2,4,6-Trichlorophenol	ND	0.21	mg/Kg-dry	1	7/28/2014
Volatile Organic Compounds by GC/MS	SW50)35/8260B	Prep l	Date: 7/24/2014	Analyst: PS
Acetone	ND	0.073	mg/Kg-dry	1	7/31/2014
Benzene	ND	0.0049	mg/Kg-dry	1	7/31/2014
Bromodichloromethane	ND	0.0049	mg/Kg-dry	1	7/31/2014
Bromoform	ND	0.0049	mg/Kg-dry	1	7/31/2014
Bromomethane	ND	0.0097	mg/Kg-dry	1	7/31/2014
2-Butanone	ND	0.073	mg/Kg-dry	1	7/31/2014
Carbon disulfide	ND	0.049	mg/Kg-dry	1	7/31/2014
Carbon tetrachloride	ND	0.0049	mg/Kg-dry	1	7/31/2014
Chlorobenzene	ND	0.0049	mg/Kg-dry	1	7/31/2014
Chloroethane	ND	0.0097	mg/Kg-dry	1	7/31/2014
Chloroform	ND	0.0049	mg/Kg-dry	1	7/31/2014
Chloromethane	ND	0.0097	mg/Kg-dry	1	7/31/2014
Dibromochloromethane	ND	0.0049	mg/Kg-dry	1	7/31/2014
1,1-Dichloroethane	ND	0.0049	mg/Kg-dry	1	7/31/2014
1,2-Dichloroethane	ND	0.0049	mg/Kg-dry	1	7/31/2014
1,1-Dichloroethene	ND	0.0049	mg/Kg-dry	1	7/31/2014
cis-1,2-Dichloroethene	ND	0.0049	mg/Kg-dry	1	7/31/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Client Sample ID: SF-SB-7-0306

Collection Date: 7/22/2014 8:15:00 AM

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14070878-047

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW50)35/8260B	Prep	Date: 7/24/2014	Analyst: PS
trans-1,2-Dichloroethene	ND	0.0049	mg/Kg-dry	1	7/31/2014
1,2-Dichloropropane	ND	0.0049	mg/Kg-dry	1	7/31/2014
cis-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	7/31/2014
trans-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	7/31/2014
Ethylbenzene	ND	0.0049	mg/Kg-dry	1	7/31/2014
2-Hexanone	ND	0.019	mg/Kg-dry	1	7/31/2014
4-Methyl-2-pentanone	ND	0.019	mg/Kg-dry	1	7/31/2014
Methylene chloride	ND	0.0097	mg/Kg-dry	1	7/31/2014
Methyl tert-butyl ether	ND	0.0049	mg/Kg-dry	1	7/31/2014
Styrene	ND	0.0049	mg/Kg-dry	1	7/31/2014
1,1,2,2-Tetrachloroethane	ND	0.0049	mg/Kg-dry	1	7/31/2014
Tetrachloroethene	ND	0.0049	mg/Kg-dry	1	7/31/2014
Toluene	ND	0.0049	mg/Kg-dry	1	7/31/2014
1,1,1-Trichloroethane	ND	0.0049	mg/Kg-dry	1	7/31/2014
1,1,2-Trichloroethane	ND	0.0049	mg/Kg-dry	1	7/31/2014
Trichloroethene	ND	0.0049	mg/Kg-dry	1	7/31/2014
Vinyl chloride	ND	0.0049	mg/Kg-dry	1	7/31/2014
Xylenes, Total	ND	0.015	mg/Kg-dry	1	7/31/2014
Cyanide, Total	SW90	12A	Prep	Date: 7/24/2014	Analyst: YZ
Cyanide	ND	0.31	mg/Kg-dry	1	7/25/2014
pH (25 °C)	SW90	045C	Prep	Date: 7/30/2014	Analyst: RW
рН	7.5		pH Units	1	7/30/2014
Percent Moisture	D297	4	Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	20.5	0.2	* wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

Date Printed:

ANALYTICAL RESULTS

Client: Tetra Tech EM Inc.

August 05, 2014

Work Order: 14070878 Revision 0 Client Sample ID: SF-SB-6-0104

Project: TPMHC, Tinley Park Collection Date: 7/22/2014 8:43:00 AM

Lab ID: 14070878-048 Matrix: Soil

Analyses	Result	RL Quali	fier Units	DF	Date Analyzed
Mercury	SW74	171A	Prep	Date: 7/28/2014	Analyst: LB
Mercury	0.033	0.020	mg/Kg-dry	1	7/28/2014
Metals by ICP/MS	SW60	020 (SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Aluminum	8700	230	mg/Kg-dry	100	7/25/2014
Antimony	ND	2.3	mg/Kg-dry	10	7/25/2014
Arsenic	6.2	1.2	mg/Kg-dry	10	7/25/2014
Barium	130	1.2	mg/Kg-dry	10	7/25/2014
Beryllium	0.58	0.58	mg/Kg-dry	10	7/25/2014
Cadmium	0.69	0.58	mg/Kg-dry	10	7/25/2014
Calcium	83000	700	mg/Kg-dry	100	7/25/2014
Chromium	17	1.2	mg/Kg-dry	10	7/25/2014
Cobalt	5.6	1.2	mg/Kg-dry	10	7/25/2014
Copper	20	2.9	mg/Kg-dry	10	7/25/2014
Iron	16000	350	mg/Kg-dry	100	7/25/2014
Lead	61	0.58	mg/Kg-dry	10	7/25/2014
Magnesium	41000	35	mg/Kg-dry	10	7/25/2014
Manganese	550	1.2	mg/Kg-dry	10	7/25/2014
Nickel	16	1.2	mg/Kg-dry	10	7/25/2014
Potassium	1100	35	mg/Kg-dry	10	7/25/2014
Selenium	ND	1.2	mg/Kg-dry	10	7/25/2014
Silver	ND	1.2	mg/Kg-dry	10	7/25/2014
Sodium	150	70	mg/Kg-dry	10	7/25/2014
Thallium	ND	1.2	mg/Kg-dry	10	7/25/2014
Vanadium	18	1.2	mg/Kg-dry	10	7/25/2014
Zinc	85	5.8	mg/Kg-dry	10	7/25/2014
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW3550B)	Prep	Date: 7/28/2014	Analyst: MEP
Acenaphthene	ND	0.037	mg/Kg-dry	1	7/28/2014
Acenaphthylene	ND	0.037	mg/Kg-dry	1	7/28/2014
Aniline	ND	0.38	mg/Kg-dry	1	7/28/2014
Anthracene	ND	0.037	mg/Kg-dry	1	7/28/2014
Benz(a)anthracene	0.075	0.037	mg/Kg-dry	1	7/28/2014
Benzidine	ND	0.37	mg/Kg-dry	1	7/28/2014
Benzo(a)pyrene	0.064	0.037	mg/Kg-dry	1	7/28/2014
Benzo(b)fluoranthene	0.072	0.037	mg/Kg-dry	1	7/28/2014
Benzo(g,h,i)perylene	0.072	0.037	mg/Kg-dry	1	7/28/2014
Benzo(k)fluoranthene	0.059	0.037	mg/Kg-dry	1	7/28/2014
Benzoic acid	ND	0.94	mg/Kg-dry	1	7/28/2014
בסוובסוט מטוע	ND	0.04	mg/rtg-ury		1/20/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Client Sample ID: SF-SB-6-0104

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0 Collection Date: 7/22/2014 8:43:00 AM

TPMHC, Tinley Park **Project:** Matrix: Soil

Lab ID: 14070878-048

Analyses	Result	RL Q	ualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	70C (SW35	50B) Prep I	Date: 7/28/2014	Analyst: MEP
Bis(2-chloroethoxy)methane	ND	0.19	mg/Kg-dry	1	7/28/2014
Bis(2-chloroethyl)ether	ND	0.19	mg/Kg-dry	1	7/28/2014
Bis(2-ethylhexyl)phthalate	ND	0.94	mg/Kg-dry	1	7/28/2014
4-Bromophenyl phenyl ether	ND	0.19	mg/Kg-dry	1	7/28/2014
Butyl benzyl phthalate	ND	0.19	mg/Kg-dry	1	7/28/2014
Carbazole	ND	0.19	mg/Kg-dry	1	7/28/2014
4-Chloroaniline	ND	0.19	mg/Kg-dry	1	7/28/2014
4-Chloro-3-methylphenol	ND	0.37	mg/Kg-dry	1	7/28/2014
2-Chloronaphthalene	ND	0.19	mg/Kg-dry	1	7/28/2014
2-Chlorophenol	ND	0.19	mg/Kg-dry	1	7/28/2014
4-Chlorophenyl phenyl ether	ND	0.19	mg/Kg-dry	1	7/28/2014
Chrysene	0.091	0.037	mg/Kg-dry	1	7/28/2014
Dibenz(a,h)anthracene	ND	0.037	mg/Kg-dry	1	7/28/2014
Dibenzofuran	ND	0.19	mg/Kg-dry	1	7/28/2014
1,2-Dichlorobenzene	ND	0.19	mg/Kg-dry	1	7/28/2014
1,3-Dichlorobenzene	ND	0.19	mg/Kg-dry	1	7/28/2014
1,4-Dichlorobenzene	ND	0.19	mg/Kg-dry	1	7/28/2014
3,3´-Dichlorobenzidine	ND	0.19	mg/Kg-dry	1	7/28/2014
2,4-Dichlorophenol	ND	0.19	mg/Kg-dry	1	7/28/2014
Diethyl phthalate	ND	0.19	mg/Kg-dry	1	7/28/2014
2,4-Dimethylphenol	ND	0.19	mg/Kg-dry	1	7/28/2014
Dimethyl phthalate	ND	0.19	mg/Kg-dry	1	7/28/2014
4,6-Dinitro-2-methylphenol	ND	0.37	mg/Kg-dry	1	7/28/2014
2,4-Dinitrophenol	ND	0.94	mg/Kg-dry	1	7/28/2014
2,4-Dinitrotoluene	ND	0.037	mg/Kg-dry	1	7/28/2014
2,6-Dinitrotoluene	ND	0.037	mg/Kg-dry	1	7/28/2014
Di-n-butyl phthalate	ND	0.19	mg/Kg-dry	1	7/28/2014
Di-n-octyl phthalate	ND	0.19	mg/Kg-dry	1	7/28/2014
Fluoranthene	0.17	0.037	mg/Kg-dry	1	7/28/2014
Fluorene	ND	0.037	mg/Kg-dry	1	7/28/2014
Hexachlorobenzene	ND	0.19	mg/Kg-dry	1	7/28/2014
Hexachlorobutadiene	ND	0.19	mg/Kg-dry	1	7/28/2014
Hexachlorocyclopentadiene	ND	0.19	mg/Kg-dry	1	7/28/2014
Hexachloroethane	ND	0.19	mg/Kg-dry	1	7/28/2014
Indeno(1,2,3-cd)pyrene	0.040	0.037	mg/Kg-dry	1	7/28/2014
Isophorone	ND	0.19	mg/Kg-dry	1	7/28/2014
2-Methylnaphthalene	ND	0.19	mg/Kg-dry	1	7/28/2014
2-Methylphenol	ND	0.19	mg/Kg-dry	1	7/28/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: SF-SB-6-0104

Work Order: 14070878 Revision 0 Collection Date: 7/22/2014 8:43:00 AM

TPMHC, Tinley Park **Project:** Matrix: Soil

Lab ID: 14070878-048

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW3	======================================	Date: 7/28/2014	Analyst: MEP
4-Methylphenol	ND	0.19	mg/Kg-dry	1	7/28/2014
Naphthalene	ND	0.037	mg/Kg-dry	1	7/28/2014
2-Nitroaniline	ND	0.19	mg/Kg-dry	1	7/28/2014
3-Nitroaniline	ND	0.19	mg/Kg-dry	1	7/28/2014
4-Nitroaniline	ND	0.19	mg/Kg-dry	1	7/28/2014
2-Nitrophenol	ND	0.19	mg/Kg-dry	1	7/28/2014
4-Nitrophenol	ND	0.37	mg/Kg-dry	1	7/28/2014
Nitrobenzene	ND	0.037	mg/Kg-dry	1	7/28/2014
N-Nitrosodi-n-propylamine	ND	0.037	mg/Kg-dry	1	7/28/2014
N-Nitrosodimethylamine	ND	0.19	mg/Kg-dry	1	7/28/2014
N-Nitrosodiphenylamine	ND	0.037	mg/Kg-dry	1	7/28/2014
2, 2'-oxybis(1-Chloropropane)	ND	0.19	mg/Kg-dry	1	7/28/2014
Pentachlorophenol	ND	0.076	mg/Kg-dry	1	7/28/2014
Phenanthrene	0.071	0.037	mg/Kg-dry	1	7/28/2014
Phenol	ND	0.19	mg/Kg-dry	1	7/28/2014
Pyrene	0.14	0.037	mg/Kg-dry	1	7/28/2014
Pyridine	ND	0.76	mg/Kg-dry	1	7/28/2014
1,2,4-Trichlorobenzene	ND	0.19	mg/Kg-dry	1	7/28/2014
2,4,5-Trichlorophenol	ND	0.19	mg/Kg-dry	1	7/28/2014
2,4,6-Trichlorophenol	ND	0.19	mg/Kg-dry	1	7/28/2014
Volatile Organic Compounds by GC/MS	SW50	035/8260B	Prep	Date: 7/24/2014	Analyst: PS
Acetone	ND	0.070	mg/Kg-dry	1	7/31/2014
Benzene	ND	0.0047	mg/Kg-dry	1	7/31/2014
Bromodichloromethane	ND	0.0047	mg/Kg-dry	1	7/31/2014
Bromoform	ND	0.0047	mg/Kg-dry	1	7/31/2014
Bromomethane	ND	0.0094	mg/Kg-dry	1	7/31/2014
2-Butanone	ND	0.070	mg/Kg-dry	1	7/31/2014
Carbon disulfide	ND	0.047	mg/Kg-dry	1	7/31/2014
Carbon tetrachloride	ND	0.0047	mg/Kg-dry	1	7/31/2014
Chlorobenzene	ND	0.0047	mg/Kg-dry	1	7/31/2014
Chloroethane	ND	0.0094	mg/Kg-dry	1	7/31/2014
Chloroform	ND	0.0047	mg/Kg-dry	1	7/31/2014
Chloromethane	ND	0.0094	mg/Kg-dry	1	7/31/2014
Dibromochloromethane	ND	0.0047	mg/Kg-dry	1	7/31/2014
1,1-Dichloroethane	ND	0.0047	mg/Kg-dry	1	7/31/2014
1,2-Dichloroethane	ND	0.0047	mg/Kg-dry	1	7/31/2014
1,1-Dichloroethene	ND	0.0047	mg/Kg-dry	1	7/31/2014
cis-1,2-Dichloroethene	ND	0.0047	mg/Kg-dry	1	7/31/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

ANALYTICAL RESULTS

Date Reported: August 05, 2014 **Date Printed:** August 05, 2014

Tetra Tech EM Inc. Client Sample ID: SF-SB-6-0104

Work Order: 14070878 Revision 0 **Collection Date**: 7/22/2014 8:43:00 AM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14070878-048

Client:

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW50	035/8260B	Prep	Date: 7/24/2014	Analyst: PS
trans-1,2-Dichloroethene	ND	0.0047	mg/Kg-dry	1	7/31/2014
1,2-Dichloropropane	ND	0.0047	mg/Kg-dry	1	7/31/2014
cis-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	7/31/2014
trans-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	7/31/2014
Ethylbenzene	ND	0.0047	mg/Kg-dry	1	7/31/2014
2-Hexanone	ND	0.019	mg/Kg-dry	1	7/31/2014
4-Methyl-2-pentanone	ND	0.019	mg/Kg-dry	1	7/31/2014
Methylene chloride	ND	0.0094	mg/Kg-dry	1	7/31/2014
Methyl tert-butyl ether	ND	0.0047	mg/Kg-dry	1	7/31/2014
Styrene	ND	0.0047	mg/Kg-dry	1	7/31/2014
1,1,2,2-Tetrachloroethane	ND	0.0047	mg/Kg-dry	1	7/31/2014
Tetrachloroethene	ND	0.0047	mg/Kg-dry	1	7/31/2014
Toluene	ND	0.0047	mg/Kg-dry	1	7/31/2014
1,1,1-Trichloroethane	ND	0.0047	mg/Kg-dry	1	7/31/2014
1,1,2-Trichloroethane	ND	0.0047	mg/Kg-dry	1	7/31/2014
Trichloroethene	ND	0.0047	mg/Kg-dry	1	7/31/2014
Vinyl chloride	ND	0.0047	mg/Kg-dry	1	7/31/2014
Xylenes, Total	ND	0.014	mg/Kg-dry	1	7/31/2014
Cyanide, Total	SW9012A		Prep	Date: 7/24/2014	Analyst: YZ
Cyanide	ND	0.29	mg/Kg-dry	1	7/25/2014
pH (25 °C)	SW90	045C	Prep	Date: 7/30/2014	Analyst: RW
рН	8.3		pH Units	1	7/30/2014
Percent Moisture	D297	4	Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	12.4	0.2	* wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: SF-SB-6-0104-D Work Order: 14070878 Revision 0

Collection Date: 7/22/2014 8:43:00 AM TPMHC, Tinley Park **Project:**

Matrix: Soil Lab ID: 14070878-049

Analyses	Result	RL (Qualifier	Units	DF	Date Analyzed
Mercury	SW7471A			Prep	Date: 7/28/2014	Analyst: LB
Mercury	0.030	0.024	m	ng/Kg-dry	1	7/28/2014
Metals by ICP/MS	SW6020) (SW305	0B)	Prep	Date: 7/25/2014	Analyst: JG
Aluminum	10000	260	•	ng/Kg-dry	100	7/25/2014
Antimony	ND	2.6	m	ng/Kg-dry	10	7/25/2014
Arsenic	6.5	1.3	m	ng/Kg-dry	10	7/25/2014
Barium	110	1.3	m	ng/Kg-dry	10	7/25/2014
Beryllium	ND	0.65	m	ng/Kg-dry	10	7/25/2014
Cadmium	ND	0.65	m	ng/Kg-dry	10	7/25/2014
Calcium	87000	780	m	ng/Kg-dry	100	7/25/2014
Chromium	16	1.3	m	ng/Kg-dry	10	7/25/2014
Cobalt	6.9	1.3	m	ng/Kg-dry	10	7/25/2014
Copper	19	3.2	m	ng/Kg-dry	10	7/25/2014
Iron	18000	390	m	ng/Kg-dry	100	7/25/2014
Lead	39	0.65	m	ng/Kg-dry	10	7/25/2014
Magnesium	44000	39	m	ng/Kg-dry	10	7/25/2014
Manganese	340	1.3	m	ng/Kg-dry	10	7/25/2014
Nickel	20	1.3	m	ng/Kg-dry	10	7/25/2014
Potassium	1400	39	m	ng/Kg-dry	10	7/25/2014
Selenium	ND	1.3	m	ng/Kg-dry	10	7/25/2014
Silver	ND	1.3	m	ng/Kg-dry	10	7/25/2014
Sodium	110	78	m	ng/Kg-dry	10	7/25/2014
Thallium	ND	1.3	m	ng/Kg-dry	10	7/25/2014
Vanadium	20	1.3	m	ng/Kg-dry	10	7/25/2014
Zinc	57	6.5	m	ng/Kg-dry	10	7/25/2014
Semivolatile Organic Compounds by GC/MS	SW8270	OC (SW35	550B)	Prep	Date: 7/28/2014	Analyst: MEP
Acenaphthene	ND	0.41	m	ng/Kg-dry	1	7/28/2014
Acenaphthylene	ND	0.41	m	ng/Kg-dry	1	7/28/2014
Aniline	ND	4.1	m	ng/Kg-dry	1	7/28/2014
Anthracene	ND	0.41	m	ng/Kg-dry	1	7/28/2014
Benz(a)anthracene	0.42	0.41	m	ng/Kg-dry	1	7/28/2014
Benzidine	ND	4.1	m	ng/Kg-dry	1	7/28/2014
Benzo(a)pyrene	0.42	0.41	m	ng/Kg-dry	1	7/28/2014
Benzo(b)fluoranthene	0.47	0.41	m	ng/Kg-dry	1	7/28/2014
Benzo(g,h,i)perylene	ND	0.41	m	ng/Kg-dry	1	7/28/2014
Benzo(k)fluoranthene	ND	0.41	m	ng/Kg-dry	1	7/28/2014
Benzoic acid	ND	10	m	ng/Kg-dry	1	7/28/2014
Benzyl alcohol	ND	2.1	m	ng/Kg-dry	1	7/28/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

ANALYTICAL RESULTS

Date Reported: August 05, 2014 **Date Printed:** August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: SF-SB-6-0104-D

Work Order: 14070878 Revision 0 **Collection Date**: 7/22/2014 8:43:00 AM

Project: TPMHC, Tinley Park
Lab ID: Matrix: Soil

Analyses	Result	RL Qualif	ier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW827	70C (SW3550B)	Prep	Date: 7/28/2014	Analyst: MEP
Bis(2-chloroethoxy)methane	ND	2.1	mg/Kg-dry	1	7/28/2014
Bis(2-chloroethyl)ether	ND	2.1	mg/Kg-dry	1	7/28/2014
Bis(2-ethylhexyl)phthalate	ND	10	mg/Kg-dry	1	7/28/2014
4-Bromophenyl phenyl ether	ND	2.1	mg/Kg-dry	1	7/28/2014
Butyl benzyl phthalate	ND	2.1	mg/Kg-dry	1	7/28/2014
Carbazole	ND	2.1	mg/Kg-dry	1	7/28/2014
4-Chloroaniline	ND	2.1	mg/Kg-dry	1	7/28/2014
4-Chloro-3-methylphenol	ND	4.1	mg/Kg-dry	1	7/28/2014
2-Chloronaphthalene	ND	2.1	mg/Kg-dry	1	7/28/2014
2-Chlorophenol	ND	2.1	mg/Kg-dry	1	7/28/2014
4-Chlorophenyl phenyl ether	ND	2.1	mg/Kg-dry	1	7/28/2014
Chrysene	0.56	0.41	mg/Kg-dry	1	7/28/2014
Dibenz(a,h)anthracene	ND	0.41	mg/Kg-dry	1	7/28/2014
Dibenzofuran	ND	2.1	mg/Kg-dry	1	7/28/2014
1,2-Dichlorobenzene	ND	2.1	mg/Kg-dry	1	7/28/2014
1,3-Dichlorobenzene	ND	2.1	mg/Kg-dry	1	7/28/2014
1,4-Dichlorobenzene	ND	2.1	mg/Kg-dry	1	7/28/2014
3,3´-Dichlorobenzidine	ND	2.1	mg/Kg-dry	1	7/28/2014
2,4-Dichlorophenol	ND	2.1	mg/Kg-dry	1	7/28/2014
Diethyl phthalate	ND	2.1	mg/Kg-dry	1	7/28/2014
2,4-Dimethylphenol	ND	2.1	mg/Kg-dry	1	7/28/2014
Dimethyl phthalate	ND	2.1	mg/Kg-dry	1	7/28/2014
4,6-Dinitro-2-methylphenol	ND	4.1	mg/Kg-dry	1	7/28/2014
2,4-Dinitrophenol	ND	10	mg/Kg-dry	1	7/28/2014
2,4-Dinitrotoluene	ND	0.41	mg/Kg-dry	1	7/28/2014
2,6-Dinitrotoluene	ND	0.41	mg/Kg-dry	1	7/28/2014
Di-n-butyl phthalate	ND	2.1	mg/Kg-dry	1	7/28/2014
Di-n-octyl phthalate	ND	2.1	mg/Kg-dry	1	7/28/2014
Fluoranthene	1.0	0.41	mg/Kg-dry	1	7/28/2014
Fluorene	ND	0.41	mg/Kg-dry	1	7/28/2014
Hexachlorobenzene	ND	2.1	mg/Kg-dry	1	7/28/2014
Hexachlorobutadiene	ND	2.1	mg/Kg-dry	1	7/28/2014
Hexachlorocyclopentadiene	ND	2.1	mg/Kg-dry	1	7/28/2014
Hexachloroethane	ND	2.1	mg/Kg-dry	1	7/28/2014
Indeno(1,2,3-cd)pyrene	ND	0.41	mg/Kg-dry	1	7/28/2014
Isophorone	ND	2.1	mg/Kg-dry	1	7/28/2014
2-Methylnaphthalene	ND	2.1	mg/Kg-dry	1	7/28/2014
2-Methylphenol	ND	2.1	mg/Kg-dry	1	7/28/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: SF-SB-6-0104-D Work Order: 14070878 Revision 0

Collection Date: 7/22/2014 8:43:00 AM TPMHC, Tinley Park **Project:**

Matrix: Soil Lab ID: 14070878-049

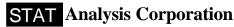
Analyses	Result	RL (Qualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	70C (SW35	50B) Prep	Date: 7/28/2014	Analyst: MEP
4-Methylphenol	ND	2.1	mg/Kg-dry	1	7/28/2014
Naphthalene	ND	0.41	mg/Kg-dry	1	7/28/2014
2-Nitroaniline	ND	2.1	mg/Kg-dry	1	7/28/2014
3-Nitroaniline	ND	2.1	mg/Kg-dry	1	7/28/2014
4-Nitroaniline	ND	2.1	mg/Kg-dry	1	7/28/2014
2-Nitrophenol	ND	2.1	mg/Kg-dry	1	7/28/2014
4-Nitrophenol	ND	4.1	mg/Kg-dry	1	7/28/2014
Nitrobenzene	ND	0.41	mg/Kg-dry	1	7/28/2014
N-Nitrosodi-n-propylamine	ND	0.41	mg/Kg-dry	1	7/28/2014
N-Nitrosodimethylamine	ND	2.1	mg/Kg-dry	1	7/28/2014
N-Nitrosodiphenylamine	ND	0.41	mg/Kg-dry	1	7/28/2014
2, 2'-oxybis(1-Chloropropane)	ND	2.1	mg/Kg-dry	1	7/28/2014
Pentachlorophenol	ND	0.83	mg/Kg-dry	1	7/28/2014
Phenanthrene	0.45	0.41	mg/Kg-dry	1	7/28/2014
Phenol	ND	2.1	mg/Kg-dry	1	7/28/2014
Pyrene	0.86	0.41	mg/Kg-dry	1	7/28/2014
Pyridine	ND	8.3	mg/Kg-dry	1	7/28/2014
1,2,4-Trichlorobenzene	ND	2.1	mg/Kg-dry	1	7/28/2014
2,4,5-Trichlorophenol	ND	2.1	mg/Kg-dry	1	7/28/2014
2,4,6-Trichlorophenol	ND	2.1	mg/Kg-dry	1	7/28/2014
Volatile Organic Compounds by GC/MS	SW50	35/8260B	Prep	Date: 7/24/2014	Analyst: PS
Acetone	ND	0.073	mg/Kg-dry	1	7/31/2014
Benzene	ND	0.0048	mg/Kg-dry	1	7/31/2014
Bromodichloromethane	ND	0.0048	mg/Kg-dry	1	7/31/2014
Bromoform	ND	0.0048	mg/Kg-dry	1	7/31/2014
Bromomethane	ND	0.0097	mg/Kg-dry	1	7/31/2014
2-Butanone	ND	0.073	mg/Kg-dry	1	7/31/2014
Carbon disulfide	ND	0.048	mg/Kg-dry	1	7/31/2014
Carbon tetrachloride	ND	0.0048	mg/Kg-dry	1	7/31/2014
Chlorobenzene	ND	0.0048	mg/Kg-dry	1	7/31/2014
Chloroethane	ND	0.0097	mg/Kg-dry	1	7/31/2014
Chloroform	ND	0.0048	mg/Kg-dry	1	7/31/2014
Chloromethane	ND	0.0097	mg/Kg-dry	1	7/31/2014
Dibromochloromethane	ND	0.0048	mg/Kg-dry	1	7/31/2014
1,1-Dichloroethane	ND	0.0048	mg/Kg-dry	1	7/31/2014
1,2-Dichloroethane	ND	0.0048	mg/Kg-dry	1	7/31/2014
1,1-Dichloroethene	ND	0.0048	mg/Kg-dry	1	7/31/2014
cis-1,2-Dichloroethene	ND	0.0048	mg/Kg-dry	1	7/31/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time


* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Client Sample ID: SF-SB-6-0104-D

Collection Date: 7/22/2014 8:43:00 AM

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Work Order: 14070878 Revision 0

> TPMHC, Tinley Park Matrix: Soil

Lab ID: 14070878-049

Project:

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW50	35/8260B	Prep	Date: 7/24/2014	Analyst: PS
trans-1,2-Dichloroethene	ND	0.0048	mg/Kg-dry	1	7/31/2014
1,2-Dichloropropane	ND	0.0048	mg/Kg-dry	1	7/31/2014
cis-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	7/31/2014
trans-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	7/31/2014
Ethylbenzene	ND	0.0048	mg/Kg-dry	1	7/31/2014
2-Hexanone	ND	0.019	mg/Kg-dry	1	7/31/2014
4-Methyl-2-pentanone	ND	0.019	mg/Kg-dry	1	7/31/2014
Methylene chloride	ND	0.0097	mg/Kg-dry	1	7/31/2014
Methyl tert-butyl ether	ND	0.0048	mg/Kg-dry	1	7/31/2014
Styrene	ND	0.0048	mg/Kg-dry	1	7/31/2014
1,1,2,2-Tetrachloroethane	ND	0.0048	mg/Kg-dry	1	7/31/2014
Tetrachloroethene	ND	0.0048	mg/Kg-dry	1	7/31/2014
Toluene	ND	0.0048	mg/Kg-dry	1	7/31/2014
1,1,1-Trichloroethane	ND	0.0048	mg/Kg-dry	1	7/31/2014
1,1,2-Trichloroethane	ND	0.0048	mg/Kg-dry	1	7/31/2014
Trichloroethene	ND	0.0048	mg/Kg-dry	1	7/31/2014
Vinyl chloride	ND	0.0048	mg/Kg-dry	1	7/31/2014
Xylenes, Total	ND	0.015	mg/Kg-dry	1	7/31/2014
Cyanide, Total	SW90	12A	Prep Date: 7/24/201 4		Analyst: YZ
Cyanide	ND	0.31	mg/Kg-dry	1	7/25/2014
pH (25 °C)	SW9045C		Prep	Date: 7/30/2014	Analyst: RW
рН	8.2		pH Units	1	7/30/2014
Percent Moisture	D297	4	Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	19.7	0.2	* wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Client Sample ID: SF-SB-5-0003

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0 **Collection Date**: 7/22/2014 9:14:00 AM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14070878-050

Analyses	Result	RL Quali	fier Units	DF	Date Analyzed
Mercury	SW	7471A	Prep	Date: 7/28/2014	Analyst: LB
Mercury	0.045	0.022	mg/Kg-dry	1	7/28/2014
Metals by ICP/MS	SW	(6020 (SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Aluminum	11000	250	mg/Kg-dry	100	7/25/2014
Antimony	ND	2.5	mg/Kg-dry	10	7/25/2014
Arsenic	8.9	1.3	mg/Kg-dry	10	7/25/2014
Barium	96	1.3	mg/Kg-dry	10	7/25/2014
Beryllium	ND	0.63	mg/Kg-dry	10	7/25/2014
Cadmium	ND	0.63	mg/Kg-dry	10	7/25/2014
Calcium	52000	750	mg/Kg-dry	100	7/25/2014
Chromium	23	1.3	mg/Kg-dry	10	7/25/2014
Cobalt	10	1.3	mg/Kg-dry	10	7/25/2014
Copper	27	3.1	mg/Kg-dry	10	7/25/2014
Iron	23000	380	mg/Kg-dry	100	7/25/2014
Lead	43	0.63	mg/Kg-dry	10	7/25/2014
Magnesium	27000	38	mg/Kg-dry	10	7/25/2014
Manganese	400	1.3	mg/Kg-dry	10	7/25/2014
Nickel	27	1.3	mg/Kg-dry	10	7/25/2014
Potassium	1800	38	mg/Kg-dry	10	7/25/2014
Selenium	ND	1.3	mg/Kg-dry	10	7/25/2014
Silver	ND	1.3	mg/Kg-dry	10	7/25/2014
Sodium	80	75	mg/Kg-dry	10	7/25/2014
Thallium	ND	1.3	mg/Kg-dry	10	7/25/2014
Vanadium	24	1.3	mg/Kg-dry	10	7/25/2014
Zinc	86	6.3	mg/Kg-dry	10	7/25/2014
Semivolatile Organic Compounds by GC/MS	SW	8270C (SW3550B)	Prep	Date: 7/28/2014	Analyst: MEP
Acenaphthene	ND	0.039	mg/Kg-dry	1	7/29/2014
Acenaphthylene	ND	0.039	mg/Kg-dry	1	7/29/2014
Aniline	ND	0.39	mg/Kg-dry	1	7/29/2014
Anthracene	0.088	0.039	mg/Kg-dry	1	7/29/2014
Benz(a)anthracene	0.31	0.039	mg/Kg-dry	1	7/29/2014
Benzidine	ND	0.39	mg/Kg-dry	1	7/29/2014
Benzo(a)pyrene	0.14	0.039	mg/Kg-dry	1	7/29/2014
Benzo(b)fluoranthene	0.17	0.039	mg/Kg-dry	1	7/29/2014
Benzo(g,h,i)perylene	0.074	0.039	mg/Kg-dry	1	7/29/2014
Benzo(k)fluoranthene	0.15	0.039	mg/Kg-dry	1	7/29/2014
Benzoic acid	ND	0.98	mg/Kg-dry	1	7/29/2014
Benzyl alcohol	ND	0.20	mg/Kg-dry	1	7/29/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: SF-SB-5-0003

Work Order: 14070878 Revision 0 Collection Date: 7/22/2014 9:14:00 AM

TPMHC, Tinley Park **Project:** Matrix: Soil

Lab ID: 14070878-050

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	70C (SW3	550B) Prep	Date: 7/28/2014	Analyst: MEP
Bis(2-chloroethoxy)methane	ND	0.20	mg/Kg-dry	1	7/29/2014
Bis(2-chloroethyl)ether	ND	0.20	mg/Kg-dry	1	7/29/2014
Bis(2-ethylhexyl)phthalate	ND	0.98	mg/Kg-dry	1	7/29/2014
4-Bromophenyl phenyl ether	ND	0.20	mg/Kg-dry	1	7/29/2014
Butyl benzyl phthalate	ND	0.20	mg/Kg-dry	1	7/29/2014
Carbazole	ND	0.20	mg/Kg-dry	1	7/29/2014
4-Chloroaniline	ND	0.20	mg/Kg-dry	1	7/29/2014
4-Chloro-3-methylphenol	ND	0.39	mg/Kg-dry	1	7/29/2014
2-Chloronaphthalene	ND	0.20	mg/Kg-dry	1	7/29/2014
2-Chlorophenol	ND	0.20	mg/Kg-dry	1	7/29/2014
4-Chlorophenyl phenyl ether	ND	0.20	mg/Kg-dry	1	7/29/2014
Chrysene	0.31	0.039	mg/Kg-dry	1	7/29/2014
Dibenz(a,h)anthracene	0.055	0.039	mg/Kg-dry	1	7/29/2014
Dibenzofuran	ND	0.20	mg/Kg-dry	1	7/29/2014
1,2-Dichlorobenzene	ND	0.20	mg/Kg-dry	1	7/29/2014
1,3-Dichlorobenzene	ND	0.20	mg/Kg-dry	1	7/29/2014
1,4-Dichlorobenzene	ND	0.20	mg/Kg-dry	1	7/29/2014
3,3´-Dichlorobenzidine	ND	0.20	mg/Kg-dry	1	7/29/2014
2,4-Dichlorophenol	ND	0.20	mg/Kg-dry	1	7/29/2014
Diethyl phthalate	ND	0.20	mg/Kg-dry	1	7/29/2014
2,4-Dimethylphenol	ND	0.20	mg/Kg-dry	1	7/29/2014
Dimethyl phthalate	ND	0.20	mg/Kg-dry	1	7/29/2014
4,6-Dinitro-2-methylphenol	ND	0.39	mg/Kg-dry	1	7/29/2014
2,4-Dinitrophenol	ND	0.98	mg/Kg-dry	1	7/29/2014
2,4-Dinitrotoluene	ND	0.039	mg/Kg-dry	1	7/29/2014
2,6-Dinitrotoluene	ND	0.039	mg/Kg-dry	1	7/29/2014
Di-n-butyl phthalate	ND	0.20	mg/Kg-dry	1	7/29/2014
Di-n-octyl phthalate	ND	0.20	mg/Kg-dry	1	7/29/2014
Fluoranthene	0.72	0.039	mg/Kg-dry	1	7/29/2014
Fluorene	ND	0.039	mg/Kg-dry	1	7/29/2014
Hexachlorobenzene	ND	0.20	mg/Kg-dry	1	7/29/2014
Hexachlorobutadiene	ND	0.20	mg/Kg-dry	1	7/29/2014
Hexachlorocyclopentadiene	ND	0.20	mg/Kg-dry	1	7/29/2014
Hexachloroethane	ND	0.20	mg/Kg-dry	1	7/29/2014
Indeno(1,2,3-cd)pyrene	0.072	0.039	mg/Kg-dry	1	7/29/2014
Isophorone	ND	0.20	mg/Kg-dry	1	7/29/2014
2-Methylnaphthalene	ND	0.20	mg/Kg-dry	1	7/29/2014
2-Methylphenol	ND	0.20	mg/Kg-dry	1	7/29/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: SF-SB-5-0003

Work Order: 14070878 Revision 0 Collection Date: 7/22/2014 9:14:00 AM

TPMHC, Tinley Park Project: Matrix: Soil

Lab ID: 14070878-050

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW	3550B) Prep	Date: 7/28/2014	4 Analyst: MEP
4-Methylphenol	ND	0.20	mg/Kg-dry	1	7/29/2014
Naphthalene	ND	0.039	mg/Kg-dry	1	7/29/2014
2-Nitroaniline	ND	0.20	mg/Kg-dry	1	7/29/2014
3-Nitroaniline	ND	0.20	mg/Kg-dry	1	7/29/2014
4-Nitroaniline	ND	0.20	mg/Kg-dry	1	7/29/2014
2-Nitrophenol	ND	0.20	mg/Kg-dry	1	7/29/2014
4-Nitrophenol	ND	0.39	mg/Kg-dry	1	7/29/2014
Nitrobenzene	ND	0.039	mg/Kg-dry	1	7/29/2014
N-Nitrosodi-n-propylamine	ND	0.039	mg/Kg-dry	1	7/29/2014
N-Nitrosodimethylamine	ND	0.20	mg/Kg-dry	1	7/29/2014
N-Nitrosodiphenylamine	ND	0.039	mg/Kg-dry	1	7/29/2014
2, 2'-oxybis(1-Chloropropane)	ND	0.20	mg/Kg-dry	1	7/29/2014
Pentachlorophenol	ND	0.079	mg/Kg-dry	1	7/29/2014
Phenanthrene	0.31	0.039	mg/Kg-dry	1	7/29/2014
Phenol	ND	0.20	mg/Kg-dry	1	7/29/2014
Pyrene	0.56	0.039	mg/Kg-dry	1	7/29/2014
Pyridine	ND	0.79	mg/Kg-dry	1	7/29/2014
1,2,4-Trichlorobenzene	ND	0.20	mg/Kg-dry	1	7/29/2014
2,4,5-Trichlorophenol	ND	0.20	mg/Kg-dry	1	7/29/2014
2,4,6-Trichlorophenol	ND	0.20	mg/Kg-dry	1	7/29/2014
olatile Organic Compounds by GC/MS	SW50	035/8260B	Prep	Date: 7/24/2014	4 Analyst: PS
Acetone	ND	0.075	mg/Kg-dry	1	7/31/2014
Benzene	ND	0.0050	mg/Kg-dry	1	7/31/2014
Bromodichloromethane	ND	0.0050	mg/Kg-dry	1	7/31/2014
Bromoform	ND	0.0050	mg/Kg-dry	1	7/31/2014
Bromomethane	ND	0.010	mg/Kg-dry	1	7/31/2014
2-Butanone	ND	0.075	mg/Kg-dry	1	7/31/2014
Carbon disulfide	ND	0.050	mg/Kg-dry	1	7/31/2014
Carbon tetrachloride	ND	0.0050	mg/Kg-dry	1	7/31/2014
Chlorobenzene	ND	0.0050	mg/Kg-dry	1	7/31/2014
Chloroethane	ND	0.010	mg/Kg-dry	1	7/31/2014
Chloroform	ND	0.0050	mg/Kg-dry	1	7/31/2014
Chloromethane	ND	0.010	mg/Kg-dry	1	7/31/2014
Dibromochloromethane	ND	0.0050	mg/Kg-dry	1	7/31/2014
1,1-Dichloroethane	ND	0.0050	mg/Kg-dry	1	7/31/2014
1,2-Dichloroethane	ND	0.0050	mg/Kg-dry	1	7/31/2014
1,1-Dichloroethene	ND	0.0050	mg/Kg-dry	1	7/31/2014
cis-1,2-Dichloroethene	ND	0.0050	mg/Kg-dry	1	7/31/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14070878-050

Client Sample ID: SF-SB-5-0003

Collection Date: 7/22/2014 9:14:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW50)35/8260B	Pre	o Date: 7/24/2014	Analyst: PS
trans-1,2-Dichloroethene	ND	0.0050	mg/Kg-dry	1	7/31/2014
1,2-Dichloropropane	ND	0.0050	mg/Kg-dry	1	7/31/2014
cis-1,3-Dichloropropene	ND	0.0020	mg/Kg-dry	1	7/31/2014
trans-1,3-Dichloropropene	ND	0.0020	mg/Kg-dry	1	7/31/2014
Ethylbenzene	ND	0.0050	mg/Kg-dry	1	7/31/2014
2-Hexanone	ND	0.020	mg/Kg-dry	1	7/31/2014
4-Methyl-2-pentanone	ND	0.020	mg/Kg-dry	1	7/31/2014
Methylene chloride	ND	0.010	mg/Kg-dry	1	7/31/2014
Methyl tert-butyl ether	ND	0.0050	mg/Kg-dry	1	7/31/2014
Styrene	ND	0.0050	mg/Kg-dry	1	7/31/2014
1,1,2,2-Tetrachloroethane	ND	0.0050	mg/Kg-dry	1	7/31/2014
Tetrachloroethene	ND	0.0050	mg/Kg-dry	1	7/31/2014
Toluene	ND	0.0050	mg/Kg-dry	1	7/31/2014
1,1,1-Trichloroethane	ND	0.0050	mg/Kg-dry	1	7/31/2014
1,1,2-Trichloroethane	ND	0.0050	mg/Kg-dry	1	7/31/2014
Trichloroethene	ND	0.0050	mg/Kg-dry	1	7/31/2014
Vinyl chloride	ND	0.0050	mg/Kg-dry	1	7/31/2014
Xylenes, Total	ND	0.015	mg/Kg-dry	1	7/31/2014
Cyanide, Total	SW90)12A	Pre	Prep Date: 7/24/2014	
Cyanide	ND	0.30	mg/Kg-dry	1	7/25/2014
pH (25 °C)	SW90	045C	Pre	Date: 7/30/2014	Analyst: RW
рН	8.1		pH Units	1	7/30/2014
Percent Moisture	D297	4	Pre	Date: 7/24/2014	Analyst: RW
Percent Moisture	15.4	0.2	* wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

Date Printed:

ANALYTICAL RESULTS

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

August 05, 2014

Project: TPMHC, Tinley Park

Lab ID: 14070878-051

Client Sample ID: SF-SB-2-0003

Collection Date: 7/22/2014 9:42:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF	Date Analyzed
Mercury	SW7	′471A	Prep	Date: 7/28/2014	Analyst: LB
Mercury	0.052	0.027	mg/Kg-dry	1	7/28/2014
Metals by ICP/MS	SW6	6020 (SW3050	B) Prep	Date: 7/25/2014	Analyst: JG
Aluminum	21000	280	mg/Kg-dry	100	7/25/2014
Antimony	ND	2.8	mg/Kg-dry	10	7/28/2014
Arsenic	22	1.4	mg/Kg-dry	10	7/28/2014
Barium	410	1.4	mg/Kg-dry	10	7/28/2014
Beryllium	2.0	0.69	mg/Kg-dry	10	7/28/2014
Cadmium	0.81	0.69	mg/Kg-dry	10	7/28/2014
Calcium	39000	830	mg/Kg-dry	100	7/25/2014
Chromium	25	1.4	mg/Kg-dry	10	7/28/2014
Cobalt	9.1	1.4	mg/Kg-dry	10	7/28/2014
Copper	47	3.5	mg/Kg-dry	10	7/28/2014
Iron	30000	420	mg/Kg-dry	100	7/25/2014
Lead	74	6.9	mg/Kg-dry	100	7/25/2014
Magnesium	12000	420	mg/Kg-dry	100	7/25/2014
Manganese	1200	14	mg/Kg-dry	100	7/25/2014
Nickel	28	1.4	mg/Kg-dry	10	7/28/2014
Potassium	2500	42	mg/Kg-dry	10	7/28/2014
Selenium	ND	1.4	mg/Kg-dry	10	7/28/2014
Silver	ND	1.4	mg/Kg-dry	10	7/28/2014
Sodium	180	83	mg/Kg-dry	10	7/28/2014
Thallium	ND	1.4	mg/Kg-dry	10	7/28/2014
Vanadium	36	1.4	mg/Kg-dry	10	7/28/2014
Zinc	130	6.9	mg/Kg-dry	10	7/28/2014
Semivolatile Organic Compounds by GC/MS	SW8	3270C (SW355	iOB) Prep	Date: 7/28/2014	Analyst: MEP
Acenaphthene	ND ND	0.044	mg/Kg-dry	1	7/29/2014
Acenaphthylene	0.053	0.044	mg/Kg-dry	1	7/29/2014
Aniline	ND	0.45	mg/Kg-dry	1	7/29/2014
Anthracene	0.57	0.044	mg/Kg-dry	1	7/29/2014
Benz(a)anthracene	2.5	0.044	mg/Kg-dry	1	7/29/2014
Benzidine	ND	0.44	mg/Kg-dry	1	7/29/2014
Benzo(a)pyrene	1.4	0.044	mg/Kg-dry	1	7/29/2014
Benzo(b)fluoranthene	1.8	0.044	mg/Kg-dry	1	7/29/2014
Benzo(g,h,i)perylene	0.72	0.044	mg/Kg-dry	1	7/29/2014
Benzo(k)fluoranthene	1.4	0.044	mg/Kg-dry	1	7/29/2014
Benzoic acid	ND	1.1	mg/Kg-dry	1	7/29/2014
Benzyl alcohol	ND	0.23	mg/Kg-dry	1	7/29/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: SF-SB-2-0003

Work Order: 14070878 Revision 0 Collection Date: 7/22/2014 9:42:00 AM

TPMHC, Tinley Park **Project:** Matrix: Soil

Lab ID: 14070878-051

Analyses	Result	RL (Qualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	70C (SW35	5 50B) Prep	Date: 7/28/2014	Analyst: MEP
Bis(2-chloroethoxy)methane	ND	0.23	mg/Kg-dry	1	7/29/2014
Bis(2-chloroethyl)ether	ND	0.23	mg/Kg-dry	1	7/29/2014
Bis(2-ethylhexyl)phthalate	ND	1.1	mg/Kg-dry	1	7/29/2014
4-Bromophenyl phenyl ether	ND	0.23	mg/Kg-dry	1	7/29/2014
Butyl benzyl phthalate	ND	0.23	mg/Kg-dry	1	7/29/2014
Carbazole	ND	0.23	mg/Kg-dry	1	7/29/2014
4-Chloroaniline	ND	0.23	mg/Kg-dry	1	7/29/2014
4-Chloro-3-methylphenol	ND	0.44	mg/Kg-dry	1	7/29/2014
2-Chloronaphthalene	ND	0.23	mg/Kg-dry	1	7/29/2014
2-Chlorophenol	ND	0.23	mg/Kg-dry	1	7/29/2014
4-Chlorophenyl phenyl ether	ND	0.23	mg/Kg-dry	1	7/29/2014
Chrysene	2.4	0.044	mg/Kg-dry	1	7/29/2014
Dibenz(a,h)anthracene	0.44	0.044	mg/Kg-dry	1	7/29/2014
Dibenzofuran	ND	0.23	mg/Kg-dry	1	7/29/2014
1,2-Dichlorobenzene	ND	0.23	mg/Kg-dry	1	7/29/2014
1,3-Dichlorobenzene	ND	0.23	mg/Kg-dry	1	7/29/2014
1,4-Dichlorobenzene	ND	0.23	mg/Kg-dry	1	7/29/2014
3,3´-Dichlorobenzidine	ND	0.23	mg/Kg-dry	1	7/29/2014
2,4-Dichlorophenol	ND	0.23	mg/Kg-dry	1	7/29/2014
Diethyl phthalate	ND	0.23	mg/Kg-dry	1	7/29/2014
2,4-Dimethylphenol	ND	0.23	mg/Kg-dry	1	7/29/2014
Dimethyl phthalate	ND	0.23	mg/Kg-dry	1	7/29/2014
4,6-Dinitro-2-methylphenol	ND	0.44	mg/Kg-dry	1	7/29/2014
2,4-Dinitrophenol	ND	1.1	mg/Kg-dry	1	7/29/2014
2,4-Dinitrotoluene	ND	0.044	mg/Kg-dry	1	7/29/2014
2,6-Dinitrotoluene	ND	0.044	mg/Kg-dry	1	7/29/2014
Di-n-butyl phthalate	ND	0.23	mg/Kg-dry	1	7/29/2014
Di-n-octyl phthalate	ND	0.23	mg/Kg-dry	1	7/29/2014
Fluoranthene	4.7	0.044	mg/Kg-dry	1	7/29/2014
Fluorene	0.062	0.044	mg/Kg-dry	1	7/29/2014
Hexachlorobenzene	ND	0.23	mg/Kg-dry	1	7/29/2014
Hexachlorobutadiene	ND	0.23	mg/Kg-dry	1	7/29/2014
Hexachlorocyclopentadiene	ND	0.23	mg/Kg-dry	1	7/29/2014
Hexachloroethane	ND	0.23	mg/Kg-dry	1	7/29/2014
Indeno(1,2,3-cd)pyrene	0.74	0.044	mg/Kg-dry	1	7/29/2014
Isophorone	ND	0.23	mg/Kg-dry	1	7/29/2014
2-Methylnaphthalene	ND	0.23	mg/Kg-dry	1	7/29/2014
2-Methylphenol	ND	0.23	mg/Kg-dry	1	7/29/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: SF-SB-2-0003

Work Order: 14070878 Revision 0 Collection Date: 7/22/2014 9:42:00 AM

TPMHC, Tinley Park **Project:** Matrix: Soil

Lab ID: 14070878-051

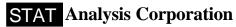
Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW3	3550B) Prep	Date: 7/28/2014	Analyst: MEP
4-Methylphenol	ND	0.23	mg/Kg-dry	1	7/29/2014
Naphthalene	ND	0.044	mg/Kg-dry	1	7/29/2014
2-Nitroaniline	ND	0.23	mg/Kg-dry	1	7/29/2014
3-Nitroaniline	ND	0.23	mg/Kg-dry	1	7/29/2014
4-Nitroaniline	ND	0.23	mg/Kg-dry	1	7/29/2014
2-Nitrophenol	ND	0.23	mg/Kg-dry	1	7/29/2014
4-Nitrophenol	ND	0.44	mg/Kg-dry	1	7/29/2014
Nitrobenzene	ND	0.044	mg/Kg-dry	1	7/29/2014
N-Nitrosodi-n-propylamine	ND	0.044	mg/Kg-dry	1	7/29/2014
N-Nitrosodimethylamine	ND	0.23	mg/Kg-dry	1	7/29/2014
N-Nitrosodiphenylamine	ND	0.044	mg/Kg-dry	1	7/29/2014
2, 2'-oxybis(1-Chloropropane)	ND	0.23	mg/Kg-dry	1	7/29/2014
Pentachlorophenol	ND	0.090	mg/Kg-dry	1	7/29/2014
Phenanthrene	1.6	0.044	mg/Kg-dry	1	7/29/2014
Phenol	ND	0.23	mg/Kg-dry	1	7/29/2014
Pyrene	3.9	0.044	mg/Kg-dry	1	7/29/2014
Pyridine	ND	0.90	mg/Kg-dry	1	7/29/2014
1,2,4-Trichlorobenzene	ND	0.23	mg/Kg-dry	1	7/29/2014
2,4,5-Trichlorophenol	ND	0.23	mg/Kg-dry	1	7/29/2014
2,4,6-Trichlorophenol	ND	0.23	mg/Kg-dry	1	7/29/2014
/olatile Organic Compounds by GC/MS	SW50	35/8260B	Prep	Date: 7/24/2014	Analyst: PS
Acetone	ND	0.085	mg/Kg-dry	1	7/30/2014
Benzene	ND	0.0056	mg/Kg-dry	1	7/30/2014
Bromodichloromethane	ND	0.0056	mg/Kg-dry	1	7/30/2014
Bromoform	ND	0.0056	mg/Kg-dry	1	7/30/2014
Bromomethane	ND	0.011	mg/Kg-dry	1	7/30/2014
2-Butanone	ND	0.085	mg/Kg-dry	1	7/30/2014
Carbon disulfide	ND	0.056	mg/Kg-dry	1	7/30/2014
Carbon tetrachloride	ND	0.0056	mg/Kg-dry	1	7/30/2014
Chlorobenzene	ND	0.0056	mg/Kg-dry	1	7/30/2014
Chloroethane	ND	0.011	mg/Kg-dry	1	7/30/2014
Chloroform	ND	0.0056	mg/Kg-dry	1	7/30/2014
Chloromethane	ND	0.011	mg/Kg-dry	1	7/30/2014
Dibromochloromethane	ND	0.0056	mg/Kg-dry	1	7/30/2014
1,1-Dichloroethane	ND	0.0056	mg/Kg-dry	1	7/30/2014
1,2-Dichloroethane	ND	0.0056	mg/Kg-dry	1	7/30/2014
1,1-Dichloroethene	ND	0.0056	mg/Kg-dry	1	7/30/2014
cis-1,2-Dichloroethene	ND	0.0056	mg/Kg-dry	1	7/30/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time


* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: SF-SB-2-0003

Work Order: 14070878 Revision 0 **Collection Date**: 7/22/2014 9:42:00 AM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14070878-051

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW50	035/8260B	Prep	Date: 7/24/2014	Analyst: PS
trans-1,2-Dichloroethene	ND	0.0056	mg/Kg-dry	1	7/30/2014
1,2-Dichloropropane	ND	0.0056	mg/Kg-dry	1	7/30/2014
cis-1,3-Dichloropropene	ND	0.0023	mg/Kg-dry	1	7/30/2014
trans-1,3-Dichloropropene	ND	0.0023	mg/Kg-dry	1	7/30/2014
Ethylbenzene	ND	0.0056	mg/Kg-dry	1	7/30/2014
2-Hexanone	ND	0.023	mg/Kg-dry	1	7/30/2014
4-Methyl-2-pentanone	ND	0.023	mg/Kg-dry	1	7/30/2014
Methylene chloride	ND	0.011	mg/Kg-dry	1	7/30/2014
Methyl tert-butyl ether	ND	0.0056	mg/Kg-dry	1	7/30/2014
Styrene	ND	0.0056	mg/Kg-dry	1	7/30/2014
1,1,2,2-Tetrachloroethane	ND	0.0056	mg/Kg-dry	1	7/30/2014
Tetrachloroethene	ND	0.0056	mg/Kg-dry	1	7/30/2014
Toluene	ND	0.0056	mg/Kg-dry	1	7/30/2014
1,1,1-Trichloroethane	ND	0.0056	mg/Kg-dry	1	7/30/2014
1,1,2-Trichloroethane	ND	0.0056	mg/Kg-dry	1	7/30/2014
Trichloroethene	ND	0.0056	mg/Kg-dry	1	7/30/2014
Vinyl chloride	ND	0.0056	mg/Kg-dry	1	7/30/2014
Xylenes, Total	ND	0.017	mg/Kg-dry	1	7/30/2014
Cyanide, Total	SW90)12A	Prep	Date: 7/24/2014	Analyst: YZ
Cyanide	ND	0.34	mg/Kg-dry	1	7/25/2014
pH (25 °C)	SW90	045C	Prep	Date: 7/28/2014	Analyst: RW
рН	7.7		pH Units	1	7/28/2014
Percent Moisture	D297	4	Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	25.7	0.2	* wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

Date Printed:

ANALYTICAL RESULTS

August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: SF-SB-3-0104

Work Order: 14070878 Revision 0 Collection Date: 7/22/2014 10:07:00 AM

TPMHC, Tinley Park Project: Matrix: Soil

Lab ID: 14070878-052

Analyses	Result	RL	Qualifier Unit	s DF	Date Analyzed
Mercury	SW7	7471A	Р	rep Date: 7/28	/2014 Analyst: LB
Mercury	0.031	0.024	mg/Kg-c		7/28/2014
Metals by ICP/MS	SWe	6020 (SW30	50B) P	rep Date: 7/25	i/2014 Analyst: JG
Aluminum	15000	240	mg/Kg-c	•	7/25/2014
Antimony	ND	2.4	mg/Kg-c	dry 10	7/25/2014
Arsenic	6.1	1.2	mg/Kg-c	dry 10	7/25/2014
Barium	68	1.2	mg/Kg-c	dry 10	7/25/2014
Beryllium	ND	0.60	mg/Kg-c	dry 10	7/25/2014
Cadmium	ND	0.60	mg/Kg-c	dry 10	7/25/2014
Calcium	31000	720	mg/Kg-c	dry 100	7/25/2014
Chromium	22	1.2	mg/Kg-c	dry 10	7/25/2014
Cobalt	14	1.2	mg/Kg-c	dry 10	7/25/2014
Copper	22	3.0	mg/Kg-c	dry 10	7/25/2014
Iron	25000	360	mg/Kg-c	dry 100	7/25/2014
Lead	28	0.60	mg/Kg-c	dry 10	7/25/2014
Magnesium	15000	36	mg/Kg-c	dry 10	7/25/2014
Manganese	550	1.2	mg/Kg-c	dry 10	7/25/2014
Nickel	34	1.2	mg/Kg-c	dry 10	7/25/2014
Potassium	2000	36	mg/Kg-c	dry 10	7/25/2014
Selenium	ND	1.2	mg/Kg-c	dry 10	7/25/2014
Silver	ND	1.2	mg/Kg-c	dry 10	7/25/2014
Sodium	250	72	mg/Kg-c	dry 10	7/25/2014
Thallium	ND	1.2	mg/Kg-c	dry 10	7/25/2014
Vanadium	23	1.2	mg/Kg-c	dry 10	7/25/2014
Zinc	64	6.0	mg/Kg-c	dry 10	7/25/2014
Semivolatile Organic Compounds by GC/MS	SW8	8270C (SW3	550B) P	rep Date: 7/28	/2014 Analyst: MEP
Acenaphthene	ND	0.039	mg/Kg-c	dry 1	7/29/2014
Acenaphthylene	ND	0.039	mg/Kg-c	dry 1	7/29/2014
Aniline	ND	0.39	mg/Kg-c	dry 1	7/29/2014
Anthracene	ND	0.039	mg/Kg-c	dry 1	7/29/2014
Benz(a)anthracene	ND	0.039	mg/Kg-c	dry 1	7/29/2014
Benzidine	ND	0.39	mg/Kg-c	dry 1	7/29/2014
Benzo(a)pyrene	ND	0.039	mg/Kg-c	dry 1	7/29/2014
Benzo(b)fluoranthene	ND	0.039	mg/Kg-c	dry 1	7/29/2014
Benzo(g,h,i)perylene	ND	0.039	mg/Kg-c	dry 1	7/29/2014
Benzo(k)fluoranthene	ND	0.039	mg/Kg-c	dry 1	7/29/2014
Benzoic acid	ND	0.98	mg/Kg-c	dry 1	7/29/2014
Benzyl alcohol	ND	0.20	mg/Kg-c	dry 1	7/29/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: SF-SB-3-0104

Work Order: 14070878 Revision 0 **Collection Date**: 7/22/2014 10:07:00 AM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14070878-052

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	70C (SW3		Date: 7/28/201	4 Analyst: MEP
Bis(2-chloroethoxy)methane	ND	0.20	mg/Kg-dry	1	7/29/2014
Bis(2-chloroethyl)ether	ND	0.20	mg/Kg-dry	1	7/29/2014
Bis(2-ethylhexyl)phthalate	ND	0.98	mg/Kg-dry	1	7/29/2014
4-Bromophenyl phenyl ether	ND	0.20	mg/Kg-dry	1	7/29/2014
Butyl benzyl phthalate	ND	0.20	mg/Kg-dry	1	7/29/2014
Carbazole	ND	0.20	mg/Kg-dry	1	7/29/2014
4-Chloroaniline	ND	0.20	mg/Kg-dry	1	7/29/2014
4-Chloro-3-methylphenol	ND	0.39	mg/Kg-dry	1	7/29/2014
2-Chloronaphthalene	ND	0.20	mg/Kg-dry	1	7/29/2014
2-Chlorophenol	ND	0.20	mg/Kg-dry	1	7/29/2014
4-Chlorophenyl phenyl ether	ND	0.20	mg/Kg-dry	1	7/29/2014
Chrysene	ND	0.039	mg/Kg-dry	1	7/29/2014
Dibenz(a,h)anthracene	ND	0.039	mg/Kg-dry	1	7/29/2014
Dibenzofuran	ND	0.20	mg/Kg-dry	1	7/29/2014
1,2-Dichlorobenzene	ND	0.20	mg/Kg-dry	1	7/29/2014
1,3-Dichlorobenzene	ND	0.20	mg/Kg-dry	1	7/29/2014
1,4-Dichlorobenzene	ND	0.20	mg/Kg-dry	1	7/29/2014
3,3´-Dichlorobenzidine	ND	0.20	mg/Kg-dry	1	7/29/2014
2,4-Dichlorophenol	ND	0.20	mg/Kg-dry	1	7/29/2014
Diethyl phthalate	ND	0.20	mg/Kg-dry	1	7/29/2014
2,4-Dimethylphenol	ND	0.20	mg/Kg-dry	1	7/29/2014
Dimethyl phthalate	ND	0.20	mg/Kg-dry	1	7/29/2014
4,6-Dinitro-2-methylphenol	ND	0.39	mg/Kg-dry	1	7/29/2014
2,4-Dinitrophenol	ND	0.98	mg/Kg-dry	1	7/29/2014
2,4-Dinitrotoluene	ND	0.039	mg/Kg-dry	1	7/29/2014
2,6-Dinitrotoluene	ND	0.039	mg/Kg-dry	1	7/29/2014
Di-n-butyl phthalate	ND	0.20	mg/Kg-dry	1	7/29/2014
Di-n-octyl phthalate	ND	0.20	mg/Kg-dry	1	7/29/2014
Fluoranthene	0.057	0.039	mg/Kg-dry	1	7/29/2014
Fluorene	ND	0.039	mg/Kg-dry	1	7/29/2014
Hexachlorobenzene	ND	0.20	mg/Kg-dry	1	7/29/2014
Hexachlorobutadiene	ND	0.20	mg/Kg-dry	1	7/29/2014
Hexachlorocyclopentadiene	ND	0.20	mg/Kg-dry	1	7/29/2014
Hexachloroethane	ND	0.20	mg/Kg-dry	1	7/29/2014
Indeno(1,2,3-cd)pyrene	ND	0.039	mg/Kg-dry	1	7/29/2014
Isophorone	ND	0.20	mg/Kg-dry	1	7/29/2014
2-Methylnaphthalene	ND	0.20	mg/Kg-dry	1	7/29/2014
2-Methylphenol	ND	0.20	mg/Kg-dry	1	7/29/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014 **Date Printed:**

August 05, 2014

ANALYTICAL RESULTS

Client: Tetra Tech EM Inc. Client Sample ID: SF-SB-3-0104

Work Order: 14070878 Revision 0 Collection Date: 7/22/2014 10:07:00 AM

TPMHC, Tinley Park Project: Matrix: Soil

Lab ID: 14070878-052

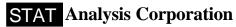
Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW	3550B) Prep	Date: 7/28/2014	Analyst: MEP
4-Methylphenol	ND	0.20	mg/Kg-dry	1	7/29/2014
Naphthalene	ND	0.039	mg/Kg-dry	1	7/29/2014
2-Nitroaniline	ND	0.20	mg/Kg-dry	1	7/29/2014
3-Nitroaniline	ND	0.20	mg/Kg-dry	1	7/29/2014
4-Nitroaniline	ND	0.20	mg/Kg-dry	1	7/29/2014
2-Nitrophenol	ND	0.20	mg/Kg-dry	1	7/29/2014
4-Nitrophenol	ND	0.39	mg/Kg-dry	1	7/29/2014
Nitrobenzene	ND	0.039	mg/Kg-dry	1	7/29/2014
N-Nitrosodi-n-propylamine	ND	0.039	mg/Kg-dry	1	7/29/2014
N-Nitrosodimethylamine	ND	0.20	mg/Kg-dry	1	7/29/2014
N-Nitrosodiphenylamine	ND	0.039	mg/Kg-dry	1	7/29/2014
2, 2'-oxybis(1-Chloropropane)	ND	0.20	mg/Kg-dry	1	7/29/2014
Pentachlorophenol	ND	0.079	mg/Kg-dry	1	7/29/2014
Phenanthrene	ND	0.039	mg/Kg-dry	1	7/29/2014
Phenol	ND	0.20	mg/Kg-dry	1	7/29/2014
Pyrene	0.049	0.039	mg/Kg-dry	1	7/29/2014
Pyridine	ND	0.79	mg/Kg-dry	1	7/29/2014
1,2,4-Trichlorobenzene	ND	0.20	mg/Kg-dry	1	7/29/2014
2,4,5-Trichlorophenol	ND	0.20	mg/Kg-dry	1	7/29/2014
2,4,6-Trichlorophenol	ND	0.20	mg/Kg-dry	1	7/29/2014
olatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 7/24/2014	Analyst: PS
Acetone	ND	0.071	mg/Kg-dry	1	7/31/2014
Benzene	ND	0.0047	mg/Kg-dry	1	7/31/2014
Bromodichloromethane	ND	0.0047	mg/Kg-dry	1	7/31/2014
Bromoform	ND	0.0047	mg/Kg-dry	1	7/31/2014
Bromomethane	ND	0.0095	mg/Kg-dry	1	7/31/2014
2-Butanone	ND	0.071	mg/Kg-dry	1	7/31/2014
Carbon disulfide	ND	0.047	mg/Kg-dry	1	7/31/2014
Carbon tetrachloride	ND	0.0047	mg/Kg-dry	1	7/31/2014
Chlorobenzene	ND	0.0047	mg/Kg-dry	1	7/31/2014
Chloroethane	ND	0.0095	mg/Kg-dry	1	7/31/2014
Chloroform	ND	0.0047	mg/Kg-dry	1	7/31/2014
Chloromethane	ND	0.0095	mg/Kg-dry	1	7/31/2014
Dibromochloromethane	ND	0.0047	mg/Kg-dry	1	7/31/2014
1,1-Dichloroethane	ND	0.0047	mg/Kg-dry	1	7/31/2014
1,2-Dichloroethane	ND	0.0047	mg/Kg-dry	1	7/31/2014
1,1-Dichloroethene	ND	0.0047	mg/Kg-dry	1	7/31/2014
cis-1,2-Dichloroethene	ND	0.0047	mg/Kg-dry	1	7/31/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time


* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

ANALYTICAL RESULTS

Date Reported: August 05, 2014 **Date Printed:** August 05, 2014

Tetra Tech EM Inc. Client Sample ID: SF-SB-3-0104

Work Order: 14070878 Revision 0 **Collection Date**: 7/22/2014 10:07:00 AM

Project: TPMHC, Tinley Park

Matrix: Soil

Lab ID: 14070878-052

Client:

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW50	35/8260B	Prep	Date: 7/24/2014	Analyst: PS
trans-1,2-Dichloroethene	ND	0.0047	mg/Kg-dry	1	7/31/2014
1,2-Dichloropropane	ND	0.0047	mg/Kg-dry	1	7/31/2014
cis-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	7/31/2014
trans-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	7/31/2014
Ethylbenzene	ND	0.0047	mg/Kg-dry	1	7/31/2014
2-Hexanone	ND	0.019	mg/Kg-dry	1	7/31/2014
4-Methyl-2-pentanone	ND	0.019	mg/Kg-dry	1	7/31/2014
Methylene chloride	ND	0.0095	mg/Kg-dry	1	7/31/2014
Methyl tert-butyl ether	ND	0.0047	mg/Kg-dry	1	7/31/2014
Styrene	ND	0.0047	mg/Kg-dry	1	7/31/2014
1,1,2,2-Tetrachloroethane	ND	0.0047	mg/Kg-dry	1	7/31/2014
Tetrachloroethene	ND	0.0047	mg/Kg-dry	1	7/31/2014
Toluene	ND	0.0047	mg/Kg-dry	1	7/31/2014
1,1,1-Trichloroethane	ND	0.0047	mg/Kg-dry	1	7/31/2014
1,1,2-Trichloroethane	ND	0.0047	mg/Kg-dry	1	7/31/2014
Trichloroethene	ND	0.0047	mg/Kg-dry	1	7/31/2014
Vinyl chloride	ND	0.0047	mg/Kg-dry	1	7/31/2014
Xylenes, Total	ND	0.014	mg/Kg-dry	1	7/31/2014
Cyanide, Total	SW90	12A	Prep	Date: 7/24/2014	Analyst: YZ
Cyanide	ND	0.30	mg/Kg-dry	1	7/25/2014
pH (25 °C)	SW90	145C	Prep	Date: 7/30/2014	Analyst: RW
рН	8.3		pH Units	1	7/30/2014
Percent Moisture	D297	4	Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	16.0	0.2	* wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014 **Date Printed:**

August 05, 2014

ANALYTICAL RESULTS

Client: Tetra Tech EM Inc. Client Sample ID: SF-SB-1-0104

Work Order: 14070878 Revision 0 Collection Date: 7/22/2014 10:28:00 AM

TPMHC, Tinley Park Project: Matrix: Soil

Lab ID: 14070878-053

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Mercury	SW	7471A		Prep	Date: 7/28/201 4	Analyst: LB
Mercury	0.035	0.020	n	ng/Kg-dry	1	7/28/2014
Metals by ICP/MS	SW	/6020 (SW30	50B)	Pren	Date: 7/25/201 4	Analyst: JG
Aluminum	12000	240	-	ng/Kg-dry	100	7/25/2014
Antimony	ND	2.4	n	ng/Kg-dry	10	7/25/2014
Arsenic	8.2	1.2		ng/Kg-dry	10	7/25/2014
Barium	75	1.2	n	ng/Kg-dry	10	7/25/2014
Beryllium	ND	0.60	n	ng/Kg-dry	10	7/25/2014
Cadmium	ND	0.60		ng/Kg-dry	10	7/25/2014
Calcium	45000	720	n	ng/Kg-dry	100	7/25/2014
Chromium	19	1.2	n	ng/Kg-dry	10	7/25/2014
Cobalt	9.6	1.2	n	ng/Kg-dry	10	7/25/2014
Copper	21	3.0	n	ng/Kg-dry	10	7/25/2014
Iron	25000	360	n	ng/Kg-dry	100	7/25/2014
Lead	28	0.60	n	ng/Kg-dry	10	7/25/2014
Magnesium	19000	36	n	ng/Kg-dry	10	7/25/2014
Manganese	330	1.2	n	ng/Kg-dry	10	7/25/2014
Nickel	24	1.2	n	ng/Kg-dry	10	7/25/2014
Potassium	1300	36	n	ng/Kg-dry	10	7/25/2014
Selenium	ND	1.2	n	ng/Kg-dry	10	7/25/2014
Silver	ND	1.2	n	ng/Kg-dry	10	7/25/2014
Sodium	340	72	n	ng/Kg-dry	10	7/25/2014
Thallium	ND	1.2	n	ng/Kg-dry	10	7/25/2014
Vanadium	22	1.2	n	ng/Kg-dry	10	7/25/2014
Zinc	54	6.0	n	ng/Kg-dry	10	7/25/2014
Semivolatile Organic Compounds by GC/MS	SW	8270C (SW	3550B)	Prep	Date: 7/28/201 4	Analyst: MEP
Acenaphthene	ND	0.038	n	ng/Kg-dry	1	7/29/2014
Acenaphthylene	ND	0.038	n	ng/Kg-dry	1	7/29/2014
Aniline	ND	0.38	n	ng/Kg-dry	1	7/29/2014
Anthracene	ND	0.038	n	ng/Kg-dry	1	7/29/2014
Benz(a)anthracene	0.12	0.038	n	ng/Kg-dry	1	7/29/2014
Benzidine	ND	0.38	n	ng/Kg-dry	1	7/29/2014
Benzo(a)pyrene	0.088	0.038	n	ng/Kg-dry	1	7/29/2014
Benzo(b)fluoranthene	0.096	0.038	n	ng/Kg-dry	1	7/29/2014
Benzo(g,h,i)perylene	0.060	0.038	n	ng/Kg-dry	1	7/29/2014
Benzo(k)fluoranthene	0.082	0.038	n	ng/Kg-dry	1	7/29/2014
Benzoic acid	ND	0.95	n	ng/Kg-dry	1	7/29/2014
Benzyl alcohol	ND	0.20	n	ng/Kg-dry	1	7/29/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

TPMHC, Tinley Park **Project:**

Lab ID: 14070878-053 Client Sample ID: SF-SB-1-0104

Collection Date: 7/22/2014 10:28:00 AM

Matrix: Soil

Analyses	Result	RL Qı	nalifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW355	0B) Prep l	Date: 7/28/2014	Analyst: MEP
Bis(2-chloroethoxy)methane	ND	0.20	mg/Kg-dry	1	7/29/2014
Bis(2-chloroethyl)ether	ND	0.20	mg/Kg-dry	1	7/29/2014
Bis(2-ethylhexyl)phthalate	32	9.5	mg/Kg-dry	10	8/4/2014
4-Bromophenyl phenyl ether	ND	0.20	mg/Kg-dry	1	7/29/2014
Butyl benzyl phthalate	41	2.0	mg/Kg-dry	10	8/4/2014
Carbazole	ND	0.20	mg/Kg-dry	1	7/29/2014
4-Chloroaniline	ND	0.20	mg/Kg-dry	1	7/29/2014
4-Chloro-3-methylphenol	ND	0.38	mg/Kg-dry	1	7/29/2014
2-Chloronaphthalene	ND	0.20	mg/Kg-dry	1	7/29/2014
2-Chlorophenol	ND	0.20	mg/Kg-dry	1	7/29/2014
4-Chlorophenyl phenyl ether	ND	0.20	mg/Kg-dry	1	7/29/2014
Chrysene	0.15	0.038	mg/Kg-dry	1	7/29/2014
Dibenz(a,h)anthracene	0.039	0.038	mg/Kg-dry	1	7/29/2014
Dibenzofuran	ND	0.20	mg/Kg-dry	1	7/29/2014
1,2-Dichlorobenzene	ND	0.20	mg/Kg-dry	1	7/29/2014
1,3-Dichlorobenzene	ND	0.20	mg/Kg-dry	1	7/29/2014
1,4-Dichlorobenzene	ND	0.20	mg/Kg-dry	1	7/29/2014
3,3'-Dichlorobenzidine	ND	0.20	mg/Kg-dry	1	7/29/2014
2,4-Dichlorophenol	ND	0.20	mg/Kg-dry	1	7/29/2014
Diethyl phthalate	ND	0.20	mg/Kg-dry	1	7/29/2014
2,4-Dimethylphenol	ND	0.20	mg/Kg-dry	1	7/29/2014
Dimethyl phthalate	ND	0.20	mg/Kg-dry	1	7/29/2014
4,6-Dinitro-2-methylphenol	ND	0.38	mg/Kg-dry	1	7/29/2014
2,4-Dinitrophenol	ND	0.95	mg/Kg-dry	1	7/29/2014
2,4-Dinitrotoluene	ND	0.038	mg/Kg-dry	1	7/29/2014
2,6-Dinitrotoluene	ND	0.038	mg/Kg-dry	1	7/29/2014
Di-n-butyl phthalate	0.49	0.20	mg/Kg-dry	1	7/29/2014
Di-n-octyl phthalate	ND	0.20	mg/Kg-dry	1	7/29/2014
Fluoranthene	0.31	0.038	mg/Kg-dry	1	7/29/2014
Fluorene	ND	0.038	mg/Kg-dry	1	7/29/2014
Hexachlorobenzene	ND	0.20	mg/Kg-dry	1	7/29/2014
Hexachlorobutadiene	ND	0.20	mg/Kg-dry	1	7/29/2014
Hexachlorocyclopentadiene	ND	0.20	mg/Kg-dry	1	7/29/2014
Hexachloroethane	ND	0.20	mg/Kg-dry	1	7/29/2014
Indeno(1,2,3-cd)pyrene	0.058	0.038	mg/Kg-dry	1	7/29/2014
Isophorone	ND	0.20	mg/Kg-dry	1	7/29/2014
2-Methylnaphthalene	ND	0.20	mg/Kg-dry	1	7/29/2014
2-Methylphenol	ND	0.20	mg/Kg-dry	1	7/29/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Client Sample ID: SF-SB-1-0104 Work Order: 14070878 Revision 0

Collection Date: 7/22/2014 10:28:00 AM TPMHC, Tinley Park **Project:**

Matrix: Soil Lab ID: 14070878-053

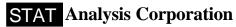
Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW	3550B) Prep	Date: 7/28/2014	Analyst: MEP
4-Methylphenol	ND	0.20	mg/Kg-dry	1	7/29/2014
Naphthalene	ND	0.038	mg/Kg-dry	1	7/29/2014
2-Nitroaniline	ND	0.20	mg/Kg-dry	1	7/29/2014
3-Nitroaniline	ND	0.20	mg/Kg-dry	1	7/29/2014
4-Nitroaniline	ND	0.20	mg/Kg-dry	1	7/29/2014
2-Nitrophenol	ND	0.20	mg/Kg-dry	1	7/29/2014
4-Nitrophenol	ND	0.38	mg/Kg-dry	1	7/29/2014
Nitrobenzene	ND	0.038	mg/Kg-dry	1	7/29/2014
N-Nitrosodi-n-propylamine	ND	0.038	mg/Kg-dry	1	7/29/2014
N-Nitrosodimethylamine	ND	0.20	mg/Kg-dry	1	7/29/2014
N-Nitrosodiphenylamine	ND	0.038	mg/Kg-dry	1	7/29/2014
2, 2'-oxybis(1-Chloropropane)	ND	0.20	mg/Kg-dry	1	7/29/2014
Pentachlorophenol	ND	0.077	mg/Kg-dry	1	7/29/2014
Phenanthrene	0.18	0.038	mg/Kg-dry	1	7/29/2014
Phenol	ND	0.20	mg/Kg-dry	1	7/29/2014
Pyrene	0.25	0.038	mg/Kg-dry	1	7/29/2014
Pyridine	ND	0.77	mg/Kg-dry	1	7/29/2014
1,2,4-Trichlorobenzene	ND	0.20	mg/Kg-dry	1	7/29/2014
2,4,5-Trichlorophenol	ND	0.20	mg/Kg-dry	1	7/29/2014
2,4,6-Trichlorophenol	ND	0.20	mg/Kg-dry	1	7/29/2014
Volatile Organic Compounds by GC/MS	SW50	035/8260B	Prep	Date: 7/24/2014	Analyst: PS
Acetone	ND	0.062	mg/Kg-dry	1	7/31/2014
Benzene	ND	0.0041	mg/Kg-dry	1	7/31/2014
Bromodichloromethane	ND	0.0041	mg/Kg-dry	1	7/31/2014
Bromoform	ND	0.0041	mg/Kg-dry	1	7/31/2014
Bromomethane	ND	0.0083	mg/Kg-dry	1	7/31/2014
2-Butanone	ND	0.062	mg/Kg-dry	1	7/31/2014
Carbon disulfide	ND	0.041	mg/Kg-dry	1	7/31/2014
Carbon tetrachloride	ND	0.0041	mg/Kg-dry	1	7/31/2014
Chlorobenzene	ND	0.0041	mg/Kg-dry	1	7/31/2014
Chloroethane	ND	0.0083	mg/Kg-dry	1	7/31/2014
Chloroform	ND	0.0041	mg/Kg-dry	1	7/31/2014
Chloromethane	ND	0.0083	mg/Kg-dry	1	7/31/2014
Dibromochloromethane	ND	0.0041	mg/Kg-dry	1	7/31/2014
1,1-Dichloroethane	ND	0.0041	mg/Kg-dry	1	7/31/2014
1,2-Dichloroethane	ND	0.0041	mg/Kg-dry	1	7/31/2014
1,1-Dichloroethene	ND	0.0041	mg/Kg-dry	1	7/31/2014
cis-1,2-Dichloroethene	ND	0.0041	mg/Kg-dry	1	7/31/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time


* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Client Sample ID: SF-SB-1-0104

Date Printed:

Client: Tetra Tech EM Inc.

August 05, 2014

Work Order: 14070878 Revision 0 **Collection Date**: 7/22/2014 10:28:00 AM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14070878-053

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW50	035/8260B	Prep	Date: 7/24/2014	Analyst: PS
trans-1,2-Dichloroethene	ND	0.0041	mg/Kg-dry	1	7/31/2014
1,2-Dichloropropane	ND	0.0041	mg/Kg-dry	1	7/31/2014
cis-1,3-Dichloropropene	ND	0.0017	mg/Kg-dry	1	7/31/2014
trans-1,3-Dichloropropene	ND	0.0017	mg/Kg-dry	1	7/31/2014
Ethylbenzene	ND	0.0041	mg/Kg-dry	1	7/31/2014
2-Hexanone	ND	0.017	mg/Kg-dry	1	7/31/2014
4-Methyl-2-pentanone	ND	0.017	mg/Kg-dry	1	7/31/2014
Methylene chloride	ND	0.0083	mg/Kg-dry	1	7/31/2014
Methyl tert-butyl ether	ND	0.0041	mg/Kg-dry	1	7/31/2014
Styrene	ND	0.0041	mg/Kg-dry	1	7/31/2014
1,1,2,2-Tetrachloroethane	ND	0.0041	mg/Kg-dry	1	7/31/2014
Tetrachloroethene	ND	0.0041	mg/Kg-dry	1	7/31/2014
Toluene	ND	0.0041	mg/Kg-dry	1	7/31/2014
1,1,1-Trichloroethane	ND	0.0041	mg/Kg-dry	1	7/31/2014
1,1,2-Trichloroethane	ND	0.0041	mg/Kg-dry	1	7/31/2014
Trichloroethene	ND	0.0041	mg/Kg-dry	1	7/31/2014
Vinyl chloride	ND	0.0041	mg/Kg-dry	1	7/31/2014
Xylenes, Total	ND	0.012	mg/Kg-dry	1	7/31/2014
Cyanide, Total	SW90)12A	Prep	Date: 7/24/2014	Analyst: YZ
Cyanide	ND	0.29	mg/Kg-dry	1	7/25/2014
pH (25 °C)	SW90	045C	Prep	Date: 7/30/2014	Analyst: RW
рН	8.2		pH Units	1	7/30/2014
Percent Moisture	D297	4	Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	13.1	0.2	* wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

ANALYTICAL RESULTS

Date Reported: August 05, 2014

August 05, 2014

Date Printed:

Client: Tetra Tech EM Inc.

Client Sample ID: SF-SB-4-0003 Work Order: 14070878 Revision 0 Collection Date: 7/22/2014 11:26:00 AM

TPMHC, Tinley Park **Project:** Matrix: Soil

Lab ID: 14070878-054

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Mercury	SW	7471A		Prep	Date: 7/28/201	4 Analyst: LB
Mercury	0.024	0.019	m	ng/Kg-dry	1	7/28/2014
Metals by ICP/MS	sw	6020 (SW30)50B)	Pren	Date: 7/25/201	4 Analyst: JG
Aluminum	7900	230	•	ng/Kg-dry	100	7/25/2014
Antimony	ND	2.3	m	ng/Kg-dry	10	7/25/2014
Arsenic	6.5	1.2	m	ng/Kg-dry	10	7/25/2014
Barium	160	1.2	m	ng/Kg-dry	10	7/25/2014
Beryllium	ND	0.59		ng/Kg-dry	10	7/25/2014
Cadmium	ND	0.59		ng/Kg-dry	10	7/25/2014
Calcium	94000	700	m	ng/Kg-dry	100	7/25/2014
Chromium	16	1.2	m	g/Kg-dry	10	7/25/2014
Cobalt	8.3	1.2	m	g/Kg-dry	10	7/25/2014
Copper	200	2.9	m	g/Kg-dry	10	7/25/2014
Iron	18000	350	m	g/Kg-dry	100	7/25/2014
Lead	56	0.59	m	g/Kg-dry	10	7/25/2014
Magnesium	47000	35	m	g/Kg-dry	10	7/25/2014
Manganese	380	1.2	m	ng/Kg-dry	10	7/25/2014
Nickel	19	1.2	m	g/Kg-dry	10	7/25/2014
Potassium	1100	35	m	ng/Kg-dry	10	7/25/2014
Selenium	ND	1.2	m	ng/Kg-dry	10	7/25/2014
Silver	ND	1.2	m	ng/Kg-dry	10	7/25/2014
Sodium	210	70	m	ng/Kg-dry	10	7/25/2014
Thallium	ND	1.2	m	ng/Kg-dry	10	7/25/2014
Vanadium	17	1.2	m	ng/Kg-dry	10	7/25/2014
Zinc	77	5.9	m	ng/Kg-dry	10	7/25/2014
Semivolatile Organic Compounds by GC/MS	sw	8270C (SW:	3550B)	Prep	Date: 7/29/201	4 Analyst: DM
Acenaphthene	ND	0.040	m	ng/Kg-dry	1	7/30/2014
Acenaphthylene	ND	0.040	m	ng/Kg-dry	1	7/30/2014
Aniline	ND	0.40	m	ng/Kg-dry	1	7/30/2014
Anthracene	ND	0.040	m	ng/Kg-dry	1	7/30/2014
Benz(a)anthracene	0.20	0.040	m	ng/Kg-dry	1	7/30/2014
Benzidine	ND	0.40	m	ng/Kg-dry	1	7/30/2014
Benzo(a)pyrene	0.24	0.040	m	ng/Kg-dry	1	7/30/2014
Benzo(b)fluoranthene	0.27	0.040	m	ng/Kg-dry	1	7/30/2014
Benzo(g,h,i)perylene	0.18	0.040	m	ng/Kg-dry	1	7/30/2014
Benzo(k)fluoranthene	0.20	0.040	m	ng/Kg-dry	1	7/30/2014
Benzoic acid	ND	1.0	m	ng/Kg-dry	1	7/30/2014
Benzyl alcohol	ND	0.21	m	ng/Kg-dry	1	7/30/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: SF-SB-4-0003

Work Order: 14070878 Revision 0 **Collection Date**: 7/22/2014 11:26:00 AM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14070878-054

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW8270	C (SW3			Date: 7/29/2014	Analyst: DM
Bis(2-chloroethoxy)methane	ND	0.21	mç	g/Kg-dry	1	7/30/2014
Bis(2-chloroethyl)ether	ND	0.21	mç	g/Kg-dry	1	7/30/2014
Bis(2-ethylhexyl)phthalate	ND	1.0	mç	g/Kg-dry	1	7/30/2014
4-Bromophenyl phenyl ether	ND	0.21	m	g/Kg-dry	1	7/30/2014
Butyl benzyl phthalate	ND	0.21	mç	g/Kg-dry	1	7/30/2014
Carbazole	ND	0.21	mç	g/Kg-dry	1	7/30/2014
4-Chloroaniline	ND	0.21	m	g/Kg-dry	1	7/30/2014
4-Chloro-3-methylphenol	ND	0.40	m	g/Kg-dry	1	7/30/2014
2-Chloronaphthalene	ND	0.21	m	g/Kg-dry	1	7/30/2014
2-Chlorophenol	ND	0.21	m	g/Kg-dry	1	7/30/2014
4-Chlorophenyl phenyl ether	ND	0.21	mg	g/Kg-dry	1	7/30/2014
Chrysene	0.25	0.040	mg	g/Kg-dry	1	7/30/2014
Dibenz(a,h)anthracene	0.078	0.040	mg	g/Kg-dry	1	7/30/2014
Dibenzofuran	ND	0.21	mg	g/Kg-dry	1	7/30/2014
1,2-Dichlorobenzene	ND	0.21	mg	g/Kg-dry	1	7/30/2014
1,3-Dichlorobenzene	ND	0.21	mg	g/Kg-dry	1	7/30/2014
1,4-Dichlorobenzene	ND	0.21	mg	g/Kg-dry	1	7/30/2014
3,3´-Dichlorobenzidine	ND	0.21	mg	g/Kg-dry	1	7/30/2014
2,4-Dichlorophenol	ND	0.21	mg	g/Kg-dry	1	7/30/2014
Diethyl phthalate	ND	0.21	m	g/Kg-dry	1	7/30/2014
2,4-Dimethylphenol	ND	0.21	mg	g/Kg-dry	1	7/30/2014
Dimethyl phthalate	ND	0.21	mg	g/Kg-dry	1	7/30/2014
4,6-Dinitro-2-methylphenol	ND	0.40	m	g/Kg-dry	1	7/30/2014
2,4-Dinitrophenol	ND	1.0	m	g/Kg-dry	1	7/30/2014
2,4-Dinitrotoluene	ND	0.040	mg	g/Kg-dry	1	7/30/2014
2,6-Dinitrotoluene	ND	0.040	m	g/Kg-dry	1	7/30/2014
Di-n-butyl phthalate	ND	0.21	m	g/Kg-dry	1	7/30/2014
Di-n-octyl phthalate	ND	0.21	m	g/Kg-dry	1	7/30/2014
Fluoranthene	0.42	0.040	m	g/Kg-dry	1	7/30/2014
Fluorene	ND	0.040	m	g/Kg-dry	1	7/30/2014
Hexachlorobenzene	ND	0.21	m	g/Kg-dry	1	7/30/2014
Hexachlorobutadiene	ND	0.21	mg	g/Kg-dry	1	7/30/2014
Hexachlorocyclopentadiene	ND	0.21	mę	g/Kg-dry	1	7/30/2014
Hexachloroethane	ND	0.21	mę	g/Kg-dry	1	7/30/2014
Indeno(1,2,3-cd)pyrene	0.16	0.040	mę	g/Kg-dry	1	7/30/2014
Isophorone	ND	0.21	mę	g/Kg-dry	1	7/30/2014
2-Methylnaphthalene	ND	0.21	mę	g/Kg-dry	1	7/30/2014
2-Methylphenol	ND	0.21	m	g/Kg-dry	1	7/30/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Client Sample ID: SF-SB-4-0003

Matrix: Soil

Collection Date: 7/22/2014 11:26:00 AM

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14070878-054

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW:	3550B) Prep	Date: 7/2	9/2014 Analyst: DM
4-Methylphenol	ND	0.21	mg/Kg-dry	1	7/30/2014
Naphthalene	ND	0.040	mg/Kg-dry	1	7/30/2014
2-Nitroaniline	ND	0.21	mg/Kg-dry	1	7/30/2014
3-Nitroaniline	ND	0.21	mg/Kg-dry	1	7/30/2014
4-Nitroaniline	ND	0.21	mg/Kg-dry	1	7/30/2014
2-Nitrophenol	ND	0.21	mg/Kg-dry	1	7/30/2014
4-Nitrophenol	ND	0.40	mg/Kg-dry	1	7/30/2014
Nitrobenzene	ND	0.040	mg/Kg-dry	1	7/30/2014
N-Nitrosodi-n-propylamine	ND	0.040	mg/Kg-dry	1	7/30/2014
N-Nitrosodimethylamine	ND	0.21	mg/Kg-dry	1	7/30/2014
N-Nitrosodiphenylamine	ND	0.040	mg/Kg-dry	1	7/30/2014
2, 2'-oxybis(1-Chloropropane)	ND	0.21	mg/Kg-dry	1	7/30/2014
Pentachlorophenol	ND	0.081	mg/Kg-dry	1	7/30/2014
Phenanthrene	0.14	0.040	mg/Kg-dry	1	7/30/2014
Phenol	ND	0.21	mg/Kg-dry	1	7/30/2014
Pyrene	0.36	0.040	mg/Kg-dry	1	7/30/2014
Pyridine	ND	0.81	mg/Kg-dry	1	7/30/2014
1,2,4-Trichlorobenzene	ND	0.21	mg/Kg-dry	1	7/30/2014
2,4,5-Trichlorophenol	ND	0.21	mg/Kg-dry	1	7/30/2014
2,4,6-Trichlorophenol	ND	0.21	mg/Kg-dry	1	7/30/2014
Volatile Organic Compounds by GC/MS	SW50	35/8260B	Prep	Date: 7/2	4/2014 Analyst: PS
Acetone	ND	0.070	mg/Kg-dry	1	7/31/2014
Benzene	ND	0.0047	mg/Kg-dry	1	7/31/2014
Bromodichloromethane	ND	0.0047	mg/Kg-dry	1	7/31/2014
Bromoform	ND	0.0047	mg/Kg-dry	1	7/31/2014
Bromomethane	ND	0.0094	mg/Kg-dry	1	7/31/2014
2-Butanone	ND	0.070	mg/Kg-dry	1	7/31/2014
Carbon disulfide	ND	0.047	mg/Kg-dry	1	7/31/2014
Carbon tetrachloride	ND	0.0047	mg/Kg-dry	1	7/31/2014
Chlorobenzene	ND	0.0047	mg/Kg-dry	1	7/31/2014
Chloroethane	ND	0.0094	mg/Kg-dry	1	7/31/2014
Chloroform	ND	0.0047	mg/Kg-dry	1	7/31/2014
Chloromethane	ND	0.0094	mg/Kg-dry	1	7/31/2014
Dibromochloromethane	ND	0.0047	mg/Kg-dry	1	7/31/2014
1,1-Dichloroethane	ND	0.0047	mg/Kg-dry	1	7/31/2014
1,2-Dichloroethane	ND	0.0047	mg/Kg-dry	1	7/31/2014
1,1-Dichloroethene	ND	0.0047	mg/Kg-dry	1	7/31/2014
cis-1,2-Dichloroethene	ND	0.0047	mg/Kg-dry	1	7/31/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14070878-054

Client Sample ID: SF-SB-4-0003

Collection Date: 7/22/2014 11:26:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW50)35/8260B	Prep	Date: 7/24/2014	Analyst: PS
trans-1,2-Dichloroethene	ND	0.0047	mg/Kg-dry	1	7/31/2014
1,2-Dichloropropane	ND	0.0047	mg/Kg-dry	1	7/31/2014
cis-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	7/31/2014
trans-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	7/31/2014
Ethylbenzene	ND	0.0047	mg/Kg-dry	1	7/31/2014
2-Hexanone	ND	0.019	mg/Kg-dry	1	7/31/2014
4-Methyl-2-pentanone	ND	0.019	mg/Kg-dry	1	7/31/2014
Methylene chloride	ND	0.0094	mg/Kg-dry	1	7/31/2014
Methyl tert-butyl ether	ND	0.0047	mg/Kg-dry	1	7/31/2014
Styrene	ND	0.0047	mg/Kg-dry	1	7/31/2014
1,1,2,2-Tetrachloroethane	ND	0.0047	mg/Kg-dry	1	7/31/2014
Tetrachloroethene	ND	0.0047	mg/Kg-dry	1	7/31/2014
Toluene	ND	0.0047	mg/Kg-dry	1	7/31/2014
1,1,1-Trichloroethane	ND	0.0047	mg/Kg-dry	1	7/31/2014
1,1,2-Trichloroethane	ND	0.0047	mg/Kg-dry	1	7/31/2014
Trichloroethene	ND	0.0047	mg/Kg-dry	1	7/31/2014
Vinyl chloride	ND	0.0047	mg/Kg-dry	1	7/31/2014
Xylenes, Total	ND	0.014	mg/Kg-dry	1	7/31/2014
Cyanide, Total	SW90	12A	Prep	Date: 7/24/2014	Analyst: YZ
Cyanide	ND	0.30	mg/Kg-dry	1	7/25/2014
pH (25 °C)	SW90	045C	Prep	Date: 7/30/2014	Analyst: RW
pH	8.0		pH Units	1	7/30/2014
Percent Moisture	D297	4	Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	17.6	0.2	* wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: Lime-SB-1-0002

Work Order: 14070878 Revision 0 **Collection Date**: 7/22/2014 12:30:00 PM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14070878-055

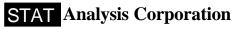
Analyses	Result	RL Quali	fier Units	DF	Date Analyzed
Mercury	SW747	71A	Prep	Date: 7/28/2014	Analyst: LB
Mercury	0.21	0.027	mg/Kg-dry	1	7/28/2014
Metals by ICP/MS	SW602	20 (SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Aluminum	4900	270	mg/Kg-dry	100	7/25/2014
Antimony	ND	2.7	mg/Kg-dry	10	7/28/2014
Arsenic	1.4	1.4	mg/Kg-dry	10	7/28/2014
Barium	58	1.4	mg/Kg-dry	10	7/28/2014
Beryllium	ND	0.68	mg/Kg-dry	10	7/28/2014
Cadmium	ND	0.68	mg/Kg-dry	10	7/28/2014
Calcium	300000	820	mg/Kg-dry	100	7/25/2014
Chromium	19	1.4	mg/Kg-dry	10	7/28/2014
Cobalt	ND	1.4	mg/Kg-dry	10	7/28/2014
Copper	5.9	3.4	mg/Kg-dry	10	7/28/2014
Iron	5600	410	mg/Kg-dry	100	7/25/2014
Lead	8.8	0.68	mg/Kg-dry	10	7/28/2014
Magnesium	27000	410	mg/Kg-dry	100	7/25/2014
Manganese	330	1.4	mg/Kg-dry	10	7/28/2014
Nickel	5.3	1.4	mg/Kg-dry	10	7/28/2014
Potassium	220	41	mg/Kg-dry	10	7/28/2014
Selenium	ND	1.4	mg/Kg-dry	10	7/28/2014
Silver	ND	1.4	mg/Kg-dry	10	7/28/2014
Sodium	ND	820	mg/Kg-dry	100	7/25/2014
Thallium	ND	1.4	mg/Kg-dry	10	7/28/2014
Vanadium	12	1.4	mg/Kg-dry	10	7/28/2014
Zinc	30	6.8	mg/Kg-dry	10	7/28/2014
Cyanide, Total	SW901	12A	Prep	Date: 7/24/2014	Analyst: YZ
Cyanide	ND	0.40	mg/Kg-dry	1	7/25/2014
pH (25 °C)	SW904	45C	Prep	Date: 7/28/2014	Analyst: RW
рН	9.2		pH Units	1	7/28/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	37.5	0.2	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time


* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14070878-056

Client Sample ID: Power-LP-SS-5

Collection Date: 7/21/2014 2:40:00 PM

Matrix: Soil

Analyses	Result	RL Qualif	ier Units	DF	Date Analyzed
Metals by ICP/MS	SW6020	(SW3050B)	•	Date: 7/25/2014	•
Lead	22	0.55	mg/Kg-dry	10	7/29/2014
pH (25 °C)	SW9045	С	Prep	Date: 7/28/2014	Analyst: RW
рН	7.8		pH Units	1	7/28/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	13.8	0.2 *	wt%	1	7/25/2014

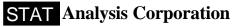
ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter


Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: Power-LP-SS-6

Work Order: 14070878 Revision 0 **Collection Date**: 7/21/2014 2:45:00 PM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14070878-057

Analyses	Result	RL Qu	ıalifier	Units	DF	Date Analyzed
Metals by ICP/MS	SW6020 ((SW3050E	3)	Prep	Date: 7/25/2014	Analyst: JG
Lead	72	0.52	r	mg/Kg-dry	10	7/29/2014
pH (25 °C)	SW9045C			Prep	Date: 7/28/2014	Analyst: RW
pH	7.4			pH Units	1	7/28/2014
Percent Moisture	D2974			Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	19.6	0.2	*	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Matrix: Soil

Client Sample ID: Power-LP-SS-6-D

Collection Date: 7/21/2014 2:45:00 PM

Lab ID: 14070878-058

Analyses	Result	RL Qua	lifier Units	DF	Date Analyzed
Metals by ICP/MS	·	SW3050B)		Date: 7/25/2014	,
Lead	75	0.57	mg/Kg-dry	10	7/29/2014
pH (25 °C)	SW9045C		Prep	Date: 7/28/2014	Analyst: RW
рН	7.4		pH Units	1	7/28/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	19.8	0.2	* wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: Power-LP-SS-7

Work Order: 14070878 Revision 0 **Collection Date**: 7/21/2014 2:51:00 PM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14070878-059

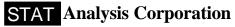
Analyses	Result	RL Qu	alifier	Units	DF	Date Analyzed
Metals by ICP/MS	SW6020 (\$	SW3050B	3)	Prep	Date: 7/25/201	4 Analyst: JG
Lead	87	0.55	ı	mg/Kg-dry	10	7/29/2014
pH (25 °C)	SW9045C			Prep	Date: 7/29/201	4 Analyst: RW
рН	7.2			pH Units	1	7/29/2014
Percent Moisture	D2974			Prep	Date: 7/24/201	4 Analyst: RW
Percent Moisture	20.8	0.2	*	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time


* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14070878-060

Client Sample ID: Power-LP-SS-8

Collection Date: 7/21/2014 2:56:00 PM

Matrix: Soil

Analyses	Result	RL Qualif	ier Units	DF	Date Analyzed
Metals by ICP/MS	SW6020	(SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Lead	36	0.53	mg/Kg-dry	10	7/29/2014
pH (25 °C)	SW90450	С	Prep	Date: 7/29/2014	Analyst: RW
рН	7.8		pH Units	1	7/29/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	16.9	0.2 *	wt%	1	7/25/2014

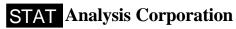
ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter


Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accorditations: IEPA ELAP 100445-OPELAP II 300001-AIHA LAP II C 101160-NVI AP

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: Power-LP-SS-9

Work Order: 14070878 Revision 0
Project: TPMHC, Tinley Park

Collection Date: 7/21/2014 3:02:00 PM

Matrix: Soil

Project: TPMHC, Tinley Park
Lab ID: Matrix: Soil

Analyses	Result	RL Qua	lifier Units	DF	Date Analyzed
Metals by ICP/MS		(SW3050B)		Date: 7/25/2014	,
Lead	62	0.53	mg/Kg-dry	10	7/29/2014
pH (25 °C)	SW9045C		Prep	Date: 7/29/2014	Analyst: RW
рН	7.4		pH Units	1	7/29/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	8.4	0.2	* wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14070878-062

Client Sample ID: Power-LP-SS-13

Collection Date: 7/21/2014 3:55:00 PM

Matrix: Soil

Analyses	Result	RL Qualif	ier Units	DF	Date Analyzed
Metals by ICP/MS	SW6020	(SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Lead	190	0.60	mg/Kg-dry	10	7/29/2014
pH (25 °C)	SW90450		Prep	Date: 7/29/2014	Analyst: RW
рН	8.2		pH Units	1	7/29/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	15.4	0.2 *	wt%	1	7/25/2014

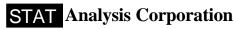
ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter


Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14070878-063

Client Sample ID: Power-LP-SS-14

Collection Date: 7/21/2014 3:49:00 PM

Matrix: Soil

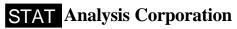
Analyses	Result	RL Qual	ifier Units	DF	Date Analyzed
Metals by ICP/MS	SW6020 (SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Lead	190	0.64	mg/Kg-dry	10	7/29/2014
pH (25 °C)	SW9045C		Prep	Date: 7/29/2014	Analyst: RW
рН	7.8		pH Units	1	7/29/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	22.2	0.2	* wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time


* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14070878-064

Client Sample ID: Power-LP-SS-15

Collection Date: 7/21/2014 3:44:00 PM

Matrix: Soil

Analyses	Result	RL Qualif	ier Units	DF	Date Analyzed
Metals by ICP/MS	SW6020	(SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Lead	220	0.61	mg/Kg-dry	10	7/28/2014
pH (25 °C)	SW9045	С	Prep	Date: 7/29/2014	Analyst: RW
pH	7.8		pH Units	1	7/29/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	18.3	0.2 *	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

ANALYTICAL RESULTS

Date Reported: August 05, 2014 **Date Printed:** August 05, 2014

Client: Tetra Tech EM Inc.

Client Sample ID: Power-LP-SS-16

Work Order: 14070878 Revision 0 **Collection Date**: 7/21/2014 3:40:00 PM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14070878-065

Analyses	Result	RL Quali	fier Units	DF	Date Analyzed
Metals by ICP/MS	SW6020 (SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Lead	270	0.59	mg/Kg-dry	10	7/28/2014
pH (25 °C)	SW9045C	SW9045C			Analyst: RW
рН	7.6		pH Units	1	7/29/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	19.0	0.2 *	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accorditations: IEPA ELAP 100445-OPELAP II 300001-AIHA LAP LLC 101160:NVI AI

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

ANALYTICAL RESULTS

Date Reported: August 05, 2014 **Date Printed:** August 05, 2014

Client:

Tetra Tech EM Inc.

Client Sample ID: Power-LP-SS-17

Work Order: 14070878 Revision 0 **Collection Date**: 7/21/2014 3:12:00 PM

Project: TPMHC, Tinley Park
Lab ID: 14070878-066

Matrix: Soil

Analyses Result **RL Qualifier Units** DF **Date Analyzed** SW6020 (SW3050B) Metals by ICP/MS Prep Date: 7/25/2014 Analyst: JG Lead 230 0.74 7/28/2014 mg/Kg-dry 10 SW9045C pH (25 °C) Prep Date: 7/29/2014 Analyst: RW 7.2 7/29/2014 **Percent Moisture** D2974 Prep Date: 7/24/2014 Analyst: RW Percent Moisture 30.0 0.2 wt% 7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14070878-067 Client Sample ID: Power-LP-SS-18

Collection Date: 7/21/2014 3:35:00 PM

Matrix: Soil

Analyses	Result	RL Quali	fier Units	DF	Date Analyzed
Metals by ICP/MS	SW6020 ((SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Lead	510	0.59	mg/Kg-dry	10	7/28/2014
pH (25 °C)	SW9045C	SW9045C			Analyst: RW
рН	7.3		pH Units	1	7/29/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	20.4	0.2 *	wt%	1	7/25/2014

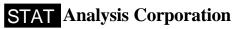
ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter


Qualifiers:

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Client Sample ID: Power-LP-SS-19

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Collection Date: 7/21/2014 3:20:00 PM

Motrice Soil

Lab ID: 14070878-068 Matrix: Soil

Analyses	Result	RL Quali	fier Units	DF	Date Analyzed
Metals by ICP/MS Lead	SW6020 (SW3050B)	Prep mg/Kg-dry	Date: 7/25/2014 10	Analyst: JG 7/28/2014
pH (25 °C)	SW9045C		0 0 ,	Date: 7/29/2014	
pH	7.3		pH Units	1	7/29/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	20.3	0.2 *	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

 \boldsymbol{J} - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Client Sample ID: Power-LP-SS-20

Project: TPMHC, Tinley Park

Collection Date: 7/21/2014 3:24:00 PM

Matrix: Soil

Lab ID: 14070878-069 Matrix: Soil

Analyses	Result	RL Qual	ifier Units	DF	Date Analyzed
Metals by ICP/MS	SW6020	(SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Lead	180	0.63	mg/Kg-dry	10	7/28/2014
pH (25 °C)	SW9045C	SW9045C		Date: 7/29/2014	Analyst: RW
рН	7.2		pH Units	1	7/29/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	23.2	0.2	* wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

August 05, 2014

Date Printed:

ANALYTICAL RESULTS

Client: Tetra Tech EM Inc. Client Sample ID: Cedar-SB-3-0003

Work Order: 14070878 Revision 0 **Collection Date**: 7/23/2014 12:50:00 PM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14070878-070

Analyses	Result	RL Q	ualifier Units	DF	Date Analyzed
Mercury	SW	7471A	Prep	Date: 7/28/2014	Analyst: LB
Mercury	0.034	0.024	mg/Kg-dry	1	7/28/2014
Metals by ICP/MS	SW	6020 (SW3050)B) Prep	Date: 7/25/2014	Analyst: JG
Aluminum	18000	220	mg/Kg-dry	100	7/25/2014
Antimony	ND	2.2	mg/Kg-dry	10	7/28/2014
Arsenic	9.4	1.1	mg/Kg-dry	10	7/28/2014
Barium	130	1.1	mg/Kg-dry	10	7/28/2014
Beryllium	0.93	0.55	mg/Kg-dry	10	7/28/2014
Cadmium	ND	0.55	mg/Kg-dry	10	7/28/2014
Calcium	3000	670	mg/Kg-dry	100	7/25/2014
Chromium	21	1.1	mg/Kg-dry	10	7/28/2014
Cobalt	9.9	1.1	mg/Kg-dry	10	7/28/2014
Copper	18	2.8	mg/Kg-dry	10	7/28/2014
Iron	24000	330	mg/Kg-dry	100	7/25/2014
Lead	21	0.55	mg/Kg-dry	10	7/28/2014
Magnesium	4400	330	mg/Kg-dry	100	7/25/2014
Manganese	520	1.1	mg/Kg-dry	10	7/28/2014
Nickel	19	1.1	mg/Kg-dry	10	7/28/2014
Potassium	1100	33	mg/Kg-dry	10	7/28/2014
Selenium	ND	1.1	mg/Kg-dry	10	7/28/2014
Silver	ND	1.1	mg/Kg-dry	10	7/28/2014
Sodium	ND	670	mg/Kg-dry	100	7/25/2014
Thallium	ND	1.1	mg/Kg-dry	10	7/28/2014
Vanadium	36	1.1	mg/Kg-dry	10	7/28/2014
Zinc	53	5.5	mg/Kg-dry	10	7/28/2014
Semivolatile Organic Compounds by GC/MS	SW	8270C (SW35	50B) Prep	Date: 7/28/2014	Analyst: MEP
Acenaphthene	ND	0.041	mg/Kg-dry	1	7/29/2014
Acenaphthylene	ND	0.041	mg/Kg-dry	1	7/29/2014
Aniline	ND	0.41	mg/Kg-dry	1	7/29/2014
Anthracene	ND	0.041	mg/Kg-dry	1	7/29/2014
Benz(a)anthracene	ND	0.041	mg/Kg-dry	1	7/29/2014
Benzidine	ND	0.41	mg/Kg-dry	1	7/29/2014
Benzo(a)pyrene	ND	0.041	mg/Kg-dry	1	7/29/2014
Benzo(b)fluoranthene	ND	0.041	mg/Kg-dry	1	7/29/2014
Benzo(g,h,i)perylene	ND	0.041	mg/Kg-dry	1	7/29/2014
Benzo(k)fluoranthene	ND	0.041	mg/Kg-dry	1	7/29/2014
Benzoic acid	ND	1.0	mg/Kg-dry	1	7/29/2014
Benzyl alcohol	ND	0.21	mg/Kg-dry	1	7/29/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

ANALYTICAL RESULTS

Date Reported: August 05, 2014 **Date Printed:** August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: Cedar-SB-3-0003

Work Order: 14070878 Revision 0 **Collection Date:** 7/23/2014 12:50:00 PM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14070878-070

Analyses	Result	RL (Qualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW827	70C (SW3	5 50B) Pre	o Date: 7/2	28/2014 Analyst: MEP
Bis(2-chloroethoxy)methane	ND	0.21	mg/Kg-dry	1	7/29/2014
Bis(2-chloroethyl)ether	ND	0.21	mg/Kg-dry	1	7/29/2014
Bis(2-ethylhexyl)phthalate	ND	1.0	mg/Kg-dry	1	7/29/2014
4-Bromophenyl phenyl ether	ND	0.21	mg/Kg-dry	1	7/29/2014
Butyl benzyl phthalate	ND	0.21	mg/Kg-dry	1	7/29/2014
Carbazole	ND	0.21	mg/Kg-dry	1	7/29/2014
4-Chloroaniline	ND	0.21	mg/Kg-dry	1	7/29/2014
4-Chloro-3-methylphenol	ND	0.41	mg/Kg-dry	1	7/29/2014
2-Chloronaphthalene	ND	0.21	mg/Kg-dry	1	7/29/2014
2-Chlorophenol	ND	0.21	mg/Kg-dry	1	7/29/2014
4-Chlorophenyl phenyl ether	ND	0.21	mg/Kg-dry	1	7/29/2014
Chrysene	ND	0.041	mg/Kg-dry	1	7/29/2014
Dibenz(a,h)anthracene	ND	0.041	mg/Kg-dry	1	7/29/2014
Dibenzofuran	ND	0.21	mg/Kg-dry	1	7/29/2014
1,2-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	7/29/2014
1,3-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	7/29/2014
1,4-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	7/29/2014
3,3´-Dichlorobenzidine	ND	0.21	mg/Kg-dry	1	7/29/2014
2,4-Dichlorophenol	ND	0.21	mg/Kg-dry	1	7/29/2014
Diethyl phthalate	ND	0.21	mg/Kg-dry	1	7/29/2014
2,4-Dimethylphenol	ND	0.21	mg/Kg-dry	1	7/29/2014
Dimethyl phthalate	ND	0.21	mg/Kg-dry	1	7/29/2014
4,6-Dinitro-2-methylphenol	ND	0.41	mg/Kg-dry	1	7/29/2014
2,4-Dinitrophenol	ND	1.0	mg/Kg-dry	1	7/29/2014
2,4-Dinitrotoluene	ND	0.041	mg/Kg-dry	1	7/29/2014
2,6-Dinitrotoluene	ND	0.041	mg/Kg-dry	1	7/29/2014
Di-n-butyl phthalate	ND	0.21	mg/Kg-dry	1	7/29/2014
Di-n-octyl phthalate	ND	0.21	mg/Kg-dry	1	7/29/2014
Fluoranthene	ND	0.041	mg/Kg-dry	1	7/29/2014
Fluorene	ND	0.041	mg/Kg-dry	1	7/29/2014
Hexachlorobenzene	ND	0.21	mg/Kg-dry	1	7/29/2014
Hexachlorobutadiene	ND	0.21	mg/Kg-dry	1	7/29/2014
Hexachlorocyclopentadiene	ND	0.21	mg/Kg-dry	1	7/29/2014
Hexachloroethane	ND	0.21	mg/Kg-dry	1	7/29/2014
Indeno(1,2,3-cd)pyrene	ND	0.041	mg/Kg-dry	1	7/29/2014
Isophorone	ND	0.21	mg/Kg-dry	1	7/29/2014
2-Methylnaphthalene	ND	0.21	mg/Kg-dry	1	7/29/2014
2-Methylphenol	ND	0.21	mg/Kg-dry	1	7/29/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014 **Date Printed:** August 05, 2014 **ANALYTICAL RESULTS**

Client: Tetra Tech EM Inc. Client Sample ID: Cedar-SB-3-0003

Work Order: 14070878 Revision 0 **Collection Date:** 7/23/2014 12:50:00 PM

TPMHC, Tinley Park **Project:** Matrix: Soil

Lab ID: 14070878-070

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW3		Prep Date: 7/28/2014	
4-Methylphenol	ND	0.21	mg/Kg-dry	1	Analyst: MEP 7/29/2014
Naphthalene	ND	0.041	mg/Kg-dry	1	7/29/2014
2-Nitroaniline	ND	0.21	mg/Kg-dry	1	7/29/2014
3-Nitroaniline	ND	0.21	mg/Kg-dry	1	7/29/2014
4-Nitroaniline	ND	0.21	mg/Kg-dry	1	7/29/2014
2-Nitrophenol	ND	0.21	mg/Kg-dry	1	7/29/2014
4-Nitrophenol	ND	0.41	mg/Kg-dry	1	7/29/2014
Nitrobenzene	ND	0.041	mg/Kg-dry	1	7/29/2014
N-Nitrosodi-n-propylamine	ND	0.041	mg/Kg-dry	1	7/29/2014
N-Nitrosodimethylamine	ND	0.21	mg/Kg-dry	1	7/29/2014
N-Nitrosodiphenylamine	ND	0.041	mg/Kg-dry	1	7/29/2014
2, 2'-oxybis(1-Chloropropane)	ND	0.21	mg/Kg-dry	1	7/29/2014
Pentachlorophenol	ND	0.041	mg/Kg-dry	1	7/29/2014
Phenanthrene	ND	0.041	mg/Kg-dry	1	7/29/2014
Phenol	ND	0.21	mg/Kg-dry	1	7/29/2014
Pyrene	ND	0.041	mg/Kg-dry	1	7/29/2014
Pyridine	ND	0.83	mg/Kg-dry	1	7/29/2014
1,2,4-Trichlorobenzene	ND	0.21	mg/Kg-dry	1	7/29/2014
2,4,5-Trichlorophenol	ND	0.21	mg/Kg-dry	1	7/29/2014
2,4,6-Trichlorophenol	ND	0.21	mg/Kg-dry	1	7/29/2014
Volatile Organic Compounds by GC/MS	SW50	035/8260B	Prep	Date: 7/24/2014	Analyst: PS
Acetone	0.17	0.095	mg/Kg-dry	1	7/31/2014
Benzene	ND	0.0063	mg/Kg-dry	1	7/31/2014
Bromodichloromethane	ND	0.0063	mg/Kg-dry	1	7/31/2014
Bromoform	ND	0.0063	mg/Kg-dry	1	7/31/2014
Bromomethane	ND	0.013	mg/Kg-dry	1	7/31/2014
2-Butanone	ND	0.095	mg/Kg-dry	1	7/31/2014
Carbon disulfide	ND	0.063	mg/Kg-dry	1	7/31/2014
Carbon tetrachloride	ND	0.0063	mg/Kg-dry	1	7/31/2014
Chlorobenzene	ND	0.0063	mg/Kg-dry	1	7/31/2014
Chloroethane	ND	0.013	mg/Kg-dry	1	7/31/2014
Chloroform	ND	0.0063	mg/Kg-dry	1	7/31/2014
Chloromethane	ND	0.013	mg/Kg-dry	1	7/31/2014
Dibromochloromethane	ND	0.0063	mg/Kg-dry	1	7/31/2014
1,1-Dichloroethane	ND	0.0063	mg/Kg-dry	1	7/31/2014
1,2-Dichloroethane	ND	0.0063	mg/Kg-dry	1	7/31/2014
1,1-Dichloroethene	ND	0.0063	mg/Kg-dry	1	7/31/2014
cis-1,2-Dichloroethene	ND	0.0063	mg/Kg-dry	1	7/31/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

ANALYTICAL RESULTS

Date Reported: August 05, 2014 **Date Printed:** August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: Cedar-SB-3-0003

Work Order: 14070878 Revision 0 **Collection Date**: 7/23/2014 12:50:00 PM

Project: TPMHC, Tinley Park
Lab ID: 14070878-070

Matrix: Soil

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW50	35/8260B	Prep	Date: 7/24/2014	Analyst: PS
trans-1,2-Dichloroethene	ND	0.0063	mg/Kg-dry	1	7/31/2014
1,2-Dichloropropane	ND	0.0063	mg/Kg-dry	1	7/31/2014
cis-1,3-Dichloropropene	ND	0.0025	mg/Kg-dry	1	7/31/2014
trans-1,3-Dichloropropene	ND	0.0025	mg/Kg-dry	1	7/31/2014
Ethylbenzene	ND	0.0063	mg/Kg-dry	1	7/31/2014
2-Hexanone	ND	0.025	mg/Kg-dry	1	7/31/2014
4-Methyl-2-pentanone	ND	0.025	mg/Kg-dry	1	7/31/2014
Methylene chloride	ND	0.013	mg/Kg-dry	1	7/31/2014
Methyl tert-butyl ether	ND	0.0063	mg/Kg-dry	1	7/31/2014
Styrene	ND	0.0063	mg/Kg-dry	1	7/31/2014
1,1,2,2-Tetrachloroethane	ND	0.0063	mg/Kg-dry	1	7/31/2014
Tetrachloroethene	ND	0.0063	mg/Kg-dry	1	7/31/2014
Toluene	ND	0.0063	mg/Kg-dry	1	7/31/2014
1,1,1-Trichloroethane	ND	0.0063	mg/Kg-dry	1	7/31/2014
1,1,2-Trichloroethane	ND	0.0063	mg/Kg-dry	1	7/31/2014
Trichloroethene	ND	0.0063	mg/Kg-dry	1	7/31/2014
Vinyl chloride	ND	0.0063	mg/Kg-dry	1	7/31/2014
Xylenes, Total	ND	0.019	mg/Kg-dry	1	7/31/2014
Cyanide, Total	SW90	12A	Prep	Date: 7/24/2014	Analyst: YZ
Cyanide	ND	0.31	mg/Kg-dry	1	7/25/2014
pH (25 °C)	SW90	145C	Prep	Date: 7/29/2014	Analyst: RW
pH	7.1		pH Units	1	7/29/2014
Percent Moisture	D297	4	Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	19.7	0.2	* wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Client Sample ID: Power-OD-SB-1-0003

Collection Date: 7/23/2014 1:30:00 PM

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14070878-071

Analyses	Result	RL Qual	ifier Units	DF	Date Analyzed
Mercury	SW7	471A	Prep [Date: 7/28/2014	Analyst: LB
Mercury	0.031	0.021	mg/Kg-dry	1	7/28/2014
Metals by ICP/MS	SW6	020 (SW3050B)	Prep [Date: 7/25/2014	Analyst: JG
Aluminum	15000	210	mg/Kg-dry	100	7/25/2014
Antimony	ND	2.1	mg/Kg-dry	10	7/28/2014
Arsenic	8.5	1.0	mg/Kg-dry	10	7/28/2014
Barium	110	1.0	mg/Kg-dry	10	7/28/2014
Beryllium	0.96	0.51	mg/Kg-dry	10	7/28/2014
Cadmium	ND	0.51	mg/Kg-dry	10	7/28/2014
Calcium	26000	620	mg/Kg-dry	100	7/25/2014
Chromium	20	1.0	mg/Kg-dry	10	7/28/2014
Cobalt	12	1.0	mg/Kg-dry	10	7/28/2014
Copper	25	2.6	mg/Kg-dry	10	7/28/2014
Iron	28000	310	mg/Kg-dry	100	7/25/2014
Lead	53	0.51	mg/Kg-dry	10	7/28/2014
Magnesium	15000	310	mg/Kg-dry	100	7/25/2014
Manganese	450	1.0	mg/Kg-dry	10	7/28/2014
Nickel	30	1.0	mg/Kg-dry	10	7/28/2014
Potassium	1500	31	mg/Kg-dry	10	7/28/2014
Selenium	ND	1.0	mg/Kg-dry	10	7/28/2014
Silver	ND	1.0	mg/Kg-dry	10	7/28/2014
Sodium	ND	620	mg/Kg-dry	100	7/25/2014
Thallium	ND	1.0	mg/Kg-dry	10	7/28/2014
Vanadium	27	1.0	mg/Kg-dry	10	7/28/2014
Zinc	73	5.1	mg/Kg-dry	10	7/28/2014
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW3550B) Prep [Date: 7/28/2014	Analyst: MEP
Acenaphthene	0.18	0.039	mg/Kg-dry	1	7/29/2014
Acenaphthylene	ND	0.039	mg/Kg-dry	1	7/29/2014
Aniline	ND	0.40	mg/Kg-dry	1	7/29/2014
Anthracene	0.35	0.039	mg/Kg-dry	1	7/29/2014
Benz(a)anthracene	0.75	0.039	mg/Kg-dry	1	7/29/2014
Benzidine	ND	0.39	mg/Kg-dry	1	7/29/2014
Benzo(a)pyrene	0.44	0.039	mg/Kg-dry	1	7/29/2014
Benzo(b)fluoranthene	0.48	0.039	mg/Kg-dry	1	7/29/2014
Benzo(g,h,i)perylene	0.27	0.039	mg/Kg-dry	1	7/29/2014
Benzo(k)fluoranthene	0.43	0.039	mg/Kg-dry	1	7/29/2014
Benzoic acid	ND	0.99	mg/Kg-dry	1	7/29/2014
Benzyl alcohol	ND	0.20	mg/Kg-dry	1	7/29/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Client Sample ID: Power-OD-SB-1-0003

Collection Date: 7/23/2014 1:30:00 PM

Lab ID: 14070878-071 Matrix: Soil

Analyses	Result	RL (Qualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW35	50B) Prep	Date: 7/28/2014	Analyst: MEP
Bis(2-chloroethoxy)methane	ND	0.20	mg/Kg-dry	1	7/29/2014
Bis(2-chloroethyl)ether	ND	0.20	mg/Kg-dry	1	7/29/2014
Bis(2-ethylhexyl)phthalate	ND	0.99	mg/Kg-dry	1	7/29/2014
4-Bromophenyl phenyl ether	ND	0.20	mg/Kg-dry	1	7/29/2014
Butyl benzyl phthalate	ND	0.20	mg/Kg-dry	1	7/29/2014
Carbazole	0.21	0.20	mg/Kg-dry	1	7/29/2014
4-Chloroaniline	ND	0.20	mg/Kg-dry	1	7/29/2014
4-Chloro-3-methylphenol	ND	0.39	mg/Kg-dry	1	7/29/2014
2-Chloronaphthalene	ND	0.20	mg/Kg-dry	1	7/29/2014
2-Chlorophenol	ND	0.20	mg/Kg-dry	1	7/29/2014
4-Chlorophenyl phenyl ether	ND	0.20	mg/Kg-dry	1	7/29/2014
Chrysene	0.79	0.039	mg/Kg-dry	1	7/29/2014
Dibenz(a,h)anthracene	0.15	0.039	mg/Kg-dry	1	7/29/2014
Dibenzofuran	ND	0.20	mg/Kg-dry	1	7/29/2014
1,2-Dichlorobenzene	ND	0.20	mg/Kg-dry	1	7/29/2014
1,3-Dichlorobenzene	ND	0.20	mg/Kg-dry	1	7/29/2014
1,4-Dichlorobenzene	ND	0.20	mg/Kg-dry	1	7/29/2014
3,3´-Dichlorobenzidine	ND	0.20	mg/Kg-dry	1	7/29/2014
2,4-Dichlorophenol	ND	0.20	mg/Kg-dry	1	7/29/2014
Diethyl phthalate	ND	0.20	mg/Kg-dry	1	7/29/2014
2,4-Dimethylphenol	ND	0.20	mg/Kg-dry	1	7/29/2014
Dimethyl phthalate	ND	0.20	mg/Kg-dry	1	7/29/2014
4,6-Dinitro-2-methylphenol	ND	0.39	mg/Kg-dry	1	7/29/2014
2,4-Dinitrophenol	ND	0.99	mg/Kg-dry	1	7/29/2014
2,4-Dinitrotoluene	ND	0.039	mg/Kg-dry	1	7/29/2014
2,6-Dinitrotoluene	ND	0.039	mg/Kg-dry	1	7/29/2014
Di-n-butyl phthalate	ND	0.20	mg/Kg-dry	1	7/29/2014
Di-n-octyl phthalate	ND	0.20	mg/Kg-dry	1	7/29/2014
Fluoranthene	1.9	0.039	mg/Kg-dry	1	7/29/2014
Fluorene	0.17	0.039	mg/Kg-dry	1	7/29/2014
Hexachlorobenzene	ND	0.20	mg/Kg-dry	1	7/29/2014
Hexachlorobutadiene	ND	0.20	mg/Kg-dry	1	7/29/2014
Hexachlorocyclopentadiene	ND	0.20	mg/Kg-dry	1	7/29/2014
Hexachloroethane	ND	0.20	mg/Kg-dry	1	7/29/2014
Indeno(1,2,3-cd)pyrene	0.27	0.039	mg/Kg-dry	1	7/29/2014
Isophorone	ND	0.20	mg/Kg-dry	1	7/29/2014
2-Methylnaphthalene	ND	0.20	mg/Kg-dry	1	7/29/2014
2-Methylphenol	ND	0.20	mg/Kg-dry	1	7/29/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Client Sample ID: Power-OD-SB-1-0003

Collection Date: 7/23/2014 1:30:00 PM

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Work Order: 14070878 Revision 0

TPMHC, Tinley Park **Project:** Matrix: Soil

Lab ID: 14070878-071

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW3		Date: 7/28/2014	Analyst: MEP
4-Methylphenol	ND	0.20	mg/Kg-dry	1	7/29/2014
Naphthalene	ND	0.039	mg/Kg-dry	1	7/29/2014
2-Nitroaniline	ND	0.20	mg/Kg-dry	1	7/29/2014
3-Nitroaniline	ND	0.20	mg/Kg-dry	1	7/29/2014
4-Nitroaniline	ND	0.20	mg/Kg-dry	1	7/29/2014
2-Nitrophenol	ND	0.20	mg/Kg-dry	1	7/29/2014
4-Nitrophenol	ND	0.39	mg/Kg-dry	1	7/29/2014
Nitrobenzene	ND	0.039	mg/Kg-dry	1	7/29/2014
N-Nitrosodi-n-propylamine	ND	0.039	mg/Kg-dry	1	7/29/2014
N-Nitrosodimethylamine	ND	0.20	mg/Kg-dry	1	7/29/2014
N-Nitrosodiphenylamine	ND	0.039	mg/Kg-dry	1	7/29/2014
2, 2'-oxybis(1-Chloropropane)	ND	0.20	mg/Kg-dry	1	7/29/2014
Pentachlorophenol	ND	0.039	mg/Kg-dry	1	7/29/2014
Phenanthrene	1.5	0.039	mg/Kg-dry	1	7/29/2014
Phenol	ND	0.20	mg/Kg-dry	1	7/29/2014
Pyrene	1.5	0.039	mg/Kg-dry	1	7/29/2014
Pyridine	ND	0.80	mg/Kg-dry	1	7/29/2014
1,2,4-Trichlorobenzene	ND	0.20	mg/Kg-dry	1	7/29/2014
2,4,5-Trichlorophenol	ND	0.20	mg/Kg-dry	1	7/29/2014
2,4,6-Trichlorophenol	ND	0.20	mg/Kg-dry	1	7/29/2014
Volatile Organic Compounds by GC/MS	SW50)35/8260B	Prep	Date: 7/24/2014	Analyst: PS
Acetone	ND	0.071	mg/Kg-dry	1	7/31/2014
Benzene	ND	0.0047	mg/Kg-dry	1	7/31/2014
Bromodichloromethane	ND	0.0047	mg/Kg-dry	1	7/31/2014
Bromoform	ND	0.0047	mg/Kg-dry	1	7/31/2014
Bromomethane	ND	0.0094	mg/Kg-dry	1	7/31/2014
2-Butanone	ND	0.071	mg/Kg-dry	1	7/31/2014
Carbon disulfide	ND	0.047	mg/Kg-dry	1	7/31/2014
Carbon tetrachloride	ND	0.0047	mg/Kg-dry	1	7/31/2014
Chlorobenzene	ND	0.0047	mg/Kg-dry	1	7/31/2014
Chloroethane	ND	0.0094	mg/Kg-dry	1	7/31/2014
Chloroform	ND	0.0047	mg/Kg-dry	1	7/31/2014
Chloromethane	ND	0.0094	mg/Kg-dry	1	7/31/2014
Dibromochloromethane	ND	0.0047	mg/Kg-dry	1	7/31/2014
1,1-Dichloroethane	ND	0.0047	mg/Kg-dry	1	7/31/2014
1,2-Dichloroethane	ND	0.0047	mg/Kg-dry	1	7/31/2014
1,1-Dichloroethene	ND	0.0047	mg/Kg-dry	1	7/31/2014
cis-1,2-Dichloroethene	ND	0.0047	mg/Kg-dry	1	7/31/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Collection Date: 7/23/2014 1:30:00 PM

Client Sample ID: Power-OD-SB-1-0003

Matrix: Soil

Lab ID: 14070878-071

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW50)35/8260B	Prep	Date: 7/24/2014	Analyst: PS
trans-1,2-Dichloroethene	ND	0.0047	mg/Kg-dry	1	7/31/2014
1,2-Dichloropropane	ND	0.0047	mg/Kg-dry	1	7/31/2014
cis-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	7/31/2014
trans-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	7/31/2014
Ethylbenzene	ND	0.0047	mg/Kg-dry	1	7/31/2014
2-Hexanone	ND	0.019	mg/Kg-dry	1	7/31/2014
4-Methyl-2-pentanone	ND	0.019	mg/Kg-dry	1	7/31/2014
Methylene chloride	ND	0.0094	mg/Kg-dry	1	7/31/2014
Methyl tert-butyl ether	ND	0.0047	mg/Kg-dry	1	7/31/2014
Styrene	ND	0.0047	mg/Kg-dry	1	7/31/2014
1,1,2,2-Tetrachloroethane	ND	0.0047	mg/Kg-dry	1	7/31/2014
Tetrachloroethene	ND	0.0047	mg/Kg-dry	1	7/31/2014
Toluene	ND	0.0047	mg/Kg-dry	1	7/31/2014
1,1,1-Trichloroethane	ND	0.0047	mg/Kg-dry	1	7/31/2014
1,1,2-Trichloroethane	ND	0.0047	mg/Kg-dry	1	7/31/2014
Trichloroethene	ND	0.0047	mg/Kg-dry	1	7/31/2014
Vinyl chloride	ND	0.0047	mg/Kg-dry	1	7/31/2014
Xylenes, Total	ND	0.014	mg/Kg-dry	1	7/31/2014
Cyanide, Total	SW90	12A	Prep	Date: 7/24/2014	Analyst: YZ
Cyanide	ND	0.30	mg/Kg-dry	1	7/25/2014
pH (25 °C)	SW90	045C	Prep	Date: 7/29/2014	Analyst: RW
pH	7.9		pH Units	1	7/29/2014
Percent Moisture	D297	4	Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	16.7	0.2	* wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: Power-OD-SB-1-0608 Work Order: 14070878 Revision 0 **Collection Date**: 7/23/2014 1:40:00 PM

TPMHC, Tinley Park **Project:** Matrix: Soil

Lab ID: 14070878-072

Analyses	Result	RL Qua	lifier Units	DF	Date Analyzed
Mercury	SW7	7471A	Prep	Date: 7/28/2014	Analyst: LB
Mercury	0.022	0.020	mg/Kg-dry	1	7/28/2014
Metals by ICP/MS	SWe	6020 (SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Aluminum	13000	220	mg/Kg-dry	100	7/25/2014
Antimony	ND	2.2	mg/Kg-dry	10	7/28/2014
Arsenic	7.9	1.1	mg/Kg-dry	10	7/28/2014
Barium	80	1.1	mg/Kg-dry	10	7/28/2014
Beryllium	0.88	0.55	mg/Kg-dry	10	7/28/2014
Cadmium	ND	0.55	mg/Kg-dry	10	7/28/2014
Calcium	29000	660	mg/Kg-dry	100	7/25/2014
Chromium	20	1.1	mg/Kg-dry	10	7/28/2014
Cobalt	12	1.1	mg/Kg-dry	10	7/28/2014
Copper	24	2.7	mg/Kg-dry	10	7/28/2014
Iron	24000	330	mg/Kg-dry	100	7/25/2014
Lead	32	0.55	mg/Kg-dry	10	7/28/2014
Magnesium	17000	330	mg/Kg-dry	100	7/25/2014
Manganese	470	1.1	mg/Kg-dry	10	7/28/2014
Nickel	31	1.1	mg/Kg-dry	10	7/28/2014
Potassium	1500	33	mg/Kg-dry	10	7/28/2014
Selenium	ND	1.1	mg/Kg-dry	10	7/28/2014
Silver	ND	1.1	mg/Kg-dry	10	7/28/2014
Sodium	ND	660	mg/Kg-dry	100	7/25/2014
Thallium	ND	1.1	mg/Kg-dry	10	7/28/2014
Vanadium	25	1.1	mg/Kg-dry	10	7/28/2014
Zinc	120	5.5	mg/Kg-dry	10	7/28/2014
Semivolatile Organic Compounds by GC/MS	SW8	3270C (SW3550E	B) Prep	Date: 7/28/2014	Analyst: MEP
Acenaphthene	ND	0.039	mg/Kg-dry	1	7/29/2014
Acenaphthylene	ND	0.039	mg/Kg-dry	1	7/29/2014
Aniline	ND	0.40	mg/Kg-dry	1	7/29/2014
Anthracene	0.24	0.039	mg/Kg-dry	1	7/29/2014
Benz(a)anthracene	ND	0.039	mg/Kg-dry	1	7/29/2014
Benzidine	ND	0.39	mg/Kg-dry	1	7/29/2014
Benzo(a)pyrene	ND	0.039	mg/Kg-dry	1	7/29/2014
Benzo(b)fluoranthene	ND	0.039	mg/Kg-dry	1	7/29/2014
Benzo(g,h,i)perylene	ND	0.039	mg/Kg-dry	1	7/29/2014
Benzo(k)fluoranthene	ND	0.039	mg/Kg-dry	1	7/29/2014
Benzoic acid	ND	0.99	mg/Kg-dry	1	7/29/2014
Benzyl alcohol	ND	0.20	mg/Kg-dry	1	7/29/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Collection Date: 7/23/2014 1:40:00 PM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14070878-072

Analyses	Result	RL (Qualifier Un	its Dl	F Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW8270	0C (SW3	550B)	Prep Date	: 7/28/2014 Analyst: MEP
Bis(2-chloroethoxy)methane	ND	0.20	mg/Kg	-dry 1	7/29/2014
Bis(2-chloroethyl)ether	ND	0.20	mg/Kg	-dry 1	7/29/2014
Bis(2-ethylhexyl)phthalate	ND	0.99	mg/Kg	-dry 1	7/29/2014
4-Bromophenyl phenyl ether	ND	0.20	mg/Kg	-dry 1	7/29/2014
Butyl benzyl phthalate	ND	0.20	mg/Kg	-dry 1	7/29/2014
Carbazole	ND	0.20	mg/Kg	-dry 1	7/29/2014
4-Chloroaniline	ND	0.20	mg/Kg	-dry 1	7/29/2014
4-Chloro-3-methylphenol	ND	0.39	mg/Kg	-dry 1	7/29/2014
2-Chloronaphthalene	ND	0.20	mg/Kg	-dry 1	7/29/2014
2-Chlorophenol	ND	0.20	mg/Kg	-dry 1	7/29/2014
4-Chlorophenyl phenyl ether	ND	0.20	mg/Kg	-dry 1	7/29/2014
Chrysene	ND	0.039	mg/Kg	-dry 1	7/29/2014
Dibenz(a,h)anthracene	ND	0.039	mg/Kg	-dry 1	7/29/2014
Dibenzofuran	ND	0.20	mg/Kg	-dry 1	7/29/2014
1,2-Dichlorobenzene	ND	0.20	mg/Kg	-dry 1	7/29/2014
1,3-Dichlorobenzene	ND	0.20	mg/Kg	-dry 1	7/29/2014
1,4-Dichlorobenzene	ND	0.20	mg/Kg	-dry 1	7/29/2014
3,3´-Dichlorobenzidine	ND	0.20	mg/Kg	-dry 1	7/29/2014
2,4-Dichlorophenol	ND	0.20	mg/Kg	-dry 1	7/29/2014
Diethyl phthalate	ND	0.20	mg/Kg	-dry 1	7/29/2014
2,4-Dimethylphenol	ND	0.20	mg/Kg	-dry 1	7/29/2014
Dimethyl phthalate	ND	0.20	mg/Kg	-dry 1	7/29/2014
4,6-Dinitro-2-methylphenol	ND	0.39	mg/Kg	-dry 1	7/29/2014
2,4-Dinitrophenol	ND	0.99	mg/Kg	-dry 1	7/29/2014
2,4-Dinitrotoluene	ND	0.039	mg/Kg	-dry 1	7/29/2014
2,6-Dinitrotoluene	ND	0.039	mg/Kg	-dry 1	7/29/2014
Di-n-butyl phthalate	ND	0.20	mg/Kg	-dry 1	7/29/2014
Di-n-octyl phthalate	ND	0.20	mg/Kg	-dry 1	7/29/2014
Fluoranthene	0.081	0.039	mg/Kg	-dry 1	7/29/2014
Fluorene	ND	0.039	mg/Kg	-dry 1	7/29/2014
Hexachlorobenzene	ND	0.20	mg/Kg	-dry 1	7/29/2014
Hexachlorobutadiene	ND	0.20	mg/Kg	-dry 1	7/29/2014
Hexachlorocyclopentadiene	ND	0.20	mg/Kg	-dry 1	7/29/2014
Hexachloroethane	ND	0.20	mg/Kg	-dry 1	7/29/2014
Indeno(1,2,3-cd)pyrene	ND	0.039	mg/Kg	-dry 1	7/29/2014
Isophorone	ND	0.20	mg/Kg	-dry 1	7/29/2014
2-Methylnaphthalene	ND	0.20	mg/Kg	-dry 1	7/29/2014
2-Methylphenol	ND	0.20	mg/Kg	J-dry 1	7/29/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: Power-OD-SB-1-0608 Work Order: 14070878 Revision 0 **Collection Date**: 7/23/2014 1:40:00 PM

TPMHC, Tinley Park **Project:** Matrix: Soil

Lab ID: 14070878-072

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW:	3550B) Prep	Date: 7/28/2014	Analyst: MEP
4-Methylphenol	ND	0.20	mg/Kg-dry	1	7/29/2014
Naphthalene	ND	0.039	mg/Kg-dry	1	7/29/2014
2-Nitroaniline	ND	0.20	mg/Kg-dry	1	7/29/2014
3-Nitroaniline	ND	0.20	mg/Kg-dry	1	7/29/2014
4-Nitroaniline	ND	0.20	mg/Kg-dry	1	7/29/2014
2-Nitrophenol	ND	0.20	mg/Kg-dry	1	7/29/2014
4-Nitrophenol	ND	0.39	mg/Kg-dry	1	7/29/2014
Nitrobenzene	ND	0.039	mg/Kg-dry	1	7/29/2014
N-Nitrosodi-n-propylamine	ND	0.039	mg/Kg-dry	1	7/29/2014
N-Nitrosodimethylamine	ND	0.20	mg/Kg-dry	1	7/29/2014
N-Nitrosodiphenylamine	ND	0.039	mg/Kg-dry	1	7/29/2014
2, 2'-oxybis(1-Chloropropane)	ND	0.20	mg/Kg-dry	1	7/29/2014
Pentachlorophenol	ND	0.039	mg/Kg-dry	1	7/29/2014
Phenanthrene	0.71	0.039	mg/Kg-dry	1	7/29/2014
Phenol	ND	0.20	mg/Kg-dry	1	7/29/2014
Pyrene	ND	0.039	mg/Kg-dry	1	7/29/2014
Pyridine	ND	0.80	mg/Kg-dry	1	7/29/2014
1,2,4-Trichlorobenzene	ND	0.20	mg/Kg-dry	1	7/29/2014
2,4,5-Trichlorophenol	ND	0.20	mg/Kg-dry	1	7/29/2014
2,4,6-Trichlorophenol	ND	0.20	mg/Kg-dry	1	7/29/2014
/olatile Organic Compounds by GC/MS	SW50	035/8260B	Prep	Date: 7/24/2014	Analyst: PS
Acetone	0.16	0.067	mg/Kg-dry	1	7/31/2014
Benzene	0.0053	0.0045	mg/Kg-dry	1	7/31/2014
Bromodichloromethane	ND	0.0045	mg/Kg-dry	1	7/31/2014
Bromoform	ND	0.0045	mg/Kg-dry	1	7/31/2014
Bromomethane	ND	0.0090	mg/Kg-dry	1	7/31/2014
2-Butanone	ND	0.067	mg/Kg-dry	1	7/31/2014
Carbon disulfide	ND	0.045	mg/Kg-dry	1	7/31/2014
Carbon tetrachloride	ND	0.0045	mg/Kg-dry	1	7/31/2014
Chlorobenzene	ND	0.0045	mg/Kg-dry	1	7/31/2014
Chloroethane	ND	0.0090	mg/Kg-dry	1	7/31/2014
Chloroform	ND	0.0045	mg/Kg-dry	1	7/31/2014
Chloromethane	ND	0.0090	mg/Kg-dry	1	7/31/2014
Dibromochloromethane	ND	0.0045	mg/Kg-dry	1	7/31/2014
1,1-Dichloroethane	ND	0.0045	mg/Kg-dry	1	7/31/2014
1,2-Dichloroethane	ND	0.0045	mg/Kg-dry	1	7/31/2014
1,1-Dichloroethene	ND	0.0045	mg/Kg-dry	1	7/31/2014
cis-1,2-Dichloroethene	ND	0.0045	mg/Kg-dry	1	7/31/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Lab ID:

Percent Moisture

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

14070878-072

Collection Date: 7/23/2014 1:40:00 PM

Client Sample ID: Power-OD-SB-1-0608

Matrix: Soil

Analyses Result RLQualifier Units DF **Date Analyzed Volatile Organic Compounds by GC/MS** SW5035/8260B Prep Date: 7/24/2014 Analyst: PS trans-1,2-Dichloroethene ND mg/Kg-dry 7/31/2014 0.0045 1 1,2-Dichloropropane ND 0.0045 mg/Kg-dry 1 7/31/2014 ND 1 7/31/2014 cis-1,3-Dichloropropene 0.0018 mg/Kg-dry trans-1,3-Dichloropropene ND 0.0018 mg/Kg-dry 1 7/31/2014 Ethylbenzene 0.023 0.0045 mg/Kg-dry 1 7/31/2014 2-Hexanone ND 0.018 mg/Kg-dry 1 7/31/2014 4-Methyl-2-pentanone ND 0.018 mg/Kg-dry 1 7/31/2014 Methylene chloride ND 1 0.0090 mg/Kg-dry 7/31/2014 Methyl tert-butyl ether ND 7/31/2014 0.0045 mg/Kg-dry ND Styrene 0.0045 mg/Kg-dry 1 7/31/2014 1,1,2,2-Tetrachloroethane ND 0.0045 mg/Kg-dry 1 7/31/2014 Tetrachloroethene ND 0.0045 mg/Kg-dry 1 7/31/2014 mg/Kg-dry Toluene 0.019 0.0045 1 7/31/2014 1,1,1-Trichloroethane ND 0.0045 mg/Kg-dry 1 7/31/2014 1,1,2-Trichloroethane ND 0.0045 1 7/31/2014 mg/Kg-dry Trichloroethene ND 0.0045 mg/Kg-dry 1 7/31/2014 Vinyl chloride ND 7/31/2014 0.0045 mg/Kg-dry 1 Xylenes, Total 0.050 0.013 mg/Kg-dry 7/31/2014 Cyanide, Total SW9012A Prep Date: 7/24/2014 Analyst: YZ Cyanide ND 0.30 mg/Kg-dry 7/25/2014 pH (25 °C) SW9045C Prep Date: 7/29/2014 Analyst: RW 7/29/2014 8.0 pH Units рΗ **Percent Moisture** D2974 Prep Date: 7/24/2014 Analyst: RW

16.4

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

7/25/2014

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

H - Holding time exceeded

wt%

0.2

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accorditations: IEPA ELAP 100445-OPELAP II 300001-AIHA-LAP II C 101160:

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

ANALYTICAL RESULTS

Date Reported: August 05, 2014 **Date Printed:** August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Client Sample ID: Power-OD-SB-2-0507

Collection Date: 7/23/2014 2:25:00 PM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14070878-073

Analyses	Result	RL Qua	lifier Units	DF	Date Analyzed
Mercury	SW7471A		Prep [Prep Date: 7/28/2014	
Mercury	ND	0.019	mg/Kg-dry	1	7/28/2014
Metals by ICP/MS	SW60	20 (SW3050B)	Prep [Date: 7/25/2014	Analyst: JG
Aluminum	1800	220	mg/Kg-dry	100	7/25/2014
Antimony	ND	2.2	mg/Kg-dry	10	7/28/2014
Arsenic	4.3	1.1	mg/Kg-dry	10	7/28/2014
Barium	8.4	1.1	mg/Kg-dry	10	7/28/2014
Beryllium	ND	0.55	mg/Kg-dry	10	7/28/2014
Cadmium	ND	0.55	mg/Kg-dry	10	7/28/2014
Calcium	28000	660	mg/Kg-dry	100	7/25/2014
Chromium	3.3	1.1	mg/Kg-dry	10	7/28/2014
Cobalt	3.6	1.1	mg/Kg-dry	10	7/28/2014
Copper	9.0	2.7	mg/Kg-dry	10	7/28/2014
Iron	6900	330	mg/Kg-dry	100	7/25/2014
Lead	5.8	0.55	mg/Kg-dry	10	7/28/2014
Magnesium	9600	330	mg/Kg-dry	100	7/25/2014
Manganese	150	1.1	mg/Kg-dry	10	7/28/2014
Nickel	8.9	1.1	mg/Kg-dry	10	7/28/2014
Potassium	410	33	mg/Kg-dry	10	7/28/2014
Selenium	ND	1.1	mg/Kg-dry	10	7/28/2014
Silver	ND	1.1	mg/Kg-dry	10	7/28/2014
Sodium	ND	660	mg/Kg-dry	100	7/25/2014
Thallium	ND	1.1	mg/Kg-dry	10	7/28/2014
Vanadium	5.3	1.1	mg/Kg-dry	10	7/28/2014
Zinc	35	5.5	mg/Kg-dry	10	7/28/2014
Semivolatile Organic Compounds by GC/MS	SW82	70C (SW3550E	B) Prep [Date: 7/28/2014	Analyst: MEP
Acenaphthene	ND	0.037	mg/Kg-dry	1	7/29/2014
Acenaphthylene	ND	0.037	mg/Kg-dry	1	7/29/2014
Aniline	ND	0.37	mg/Kg-dry	1	7/29/2014
Anthracene	ND	0.037	mg/Kg-dry	1	7/29/2014
Benz(a)anthracene	ND	0.037	mg/Kg-dry	1	7/29/2014
Benzidine	ND	0.37	mg/Kg-dry	1	7/29/2014
Benzo(a)pyrene	ND	0.037	mg/Kg-dry	1	7/29/2014
Benzo(b)fluoranthene	ND	0.037	mg/Kg-dry	1	7/29/2014
Benzo(g,h,i)perylene	ND	0.037	mg/Kg-dry	1	7/29/2014
Benzo(k)fluoranthene	ND	0.037	mg/Kg-dry	1	7/29/2014
Benzoic acid	ND	0.93	mg/Kg-dry	1	7/29/2014
Benzyl alcohol	ND	0.19	mg/Kg-dry	1	7/29/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: Power-OD-SB-2-0507 Work Order: 14070878 Revision 0 Collection Date: 7/23/2014 2:25:00 PM TPMHC, Tinley Park **Project:**

Matrix: Soil Lab ID: 14070878-073

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW827	OC (SW:	3550B) Prep	Date: 7/28/2014	Analyst: MEP
Bis(2-chloroethoxy)methane	ND	0.19	mg/Kg-dry	1	7/29/2014
Bis(2-chloroethyl)ether	ND	0.19	mg/Kg-dry	1	7/29/2014
Bis(2-ethylhexyl)phthalate	ND	0.93	mg/Kg-dry	1	7/29/2014
4-Bromophenyl phenyl ether	ND	0.19	mg/Kg-dry	1	7/29/2014
Butyl benzyl phthalate	ND	0.19	mg/Kg-dry	1	7/29/2014
Carbazole	ND	0.19	mg/Kg-dry	1	7/29/2014
4-Chloroaniline	ND	0.19	mg/Kg-dry	1	7/29/2014
4-Chloro-3-methylphenol	ND	0.37	mg/Kg-dry	1	7/29/2014
2-Chloronaphthalene	ND	0.19	mg/Kg-dry	1	7/29/2014
2-Chlorophenol	ND	0.19	mg/Kg-dry	1	7/29/2014
4-Chlorophenyl phenyl ether	ND	0.19	mg/Kg-dry	1	7/29/2014
Chrysene	0.038	0.037	mg/Kg-dry	1	7/29/2014
Dibenz(a,h)anthracene	ND	0.037	mg/Kg-dry	1	7/29/2014
Dibenzofuran	ND	0.19	mg/Kg-dry	1	7/29/2014
1,2-Dichlorobenzene	ND	0.19	mg/Kg-dry	1	7/29/2014
1,3-Dichlorobenzene	ND	0.19	mg/Kg-dry	1	7/29/2014
1,4-Dichlorobenzene	ND	0.19	mg/Kg-dry	1	7/29/2014
3,3´-Dichlorobenzidine	ND	0.19	mg/Kg-dry	1	7/29/2014
2,4-Dichlorophenol	ND	0.19	mg/Kg-dry	1	7/29/2014
Diethyl phthalate	ND	0.19	mg/Kg-dry	1	7/29/2014
2,4-Dimethylphenol	ND	0.19	mg/Kg-dry	1	7/29/2014
Dimethyl phthalate	ND	0.19	mg/Kg-dry	1	7/29/2014
4,6-Dinitro-2-methylphenol	ND	0.37	mg/Kg-dry	1	7/29/2014
2,4-Dinitrophenol	ND	0.93	mg/Kg-dry	1	7/29/2014
2,4-Dinitrotoluene	ND	0.037	mg/Kg-dry	1	7/29/2014
2,6-Dinitrotoluene	ND	0.037	mg/Kg-dry	1	7/29/2014
Di-n-butyl phthalate	ND	0.19	mg/Kg-dry	1	7/29/2014
Di-n-octyl phthalate	ND	0.19	mg/Kg-dry	1	7/29/2014
Fluoranthene	ND	0.037	mg/Kg-dry	1	7/29/2014
Fluorene	ND	0.037	mg/Kg-dry	1	7/29/2014
Hexachlorobenzene	ND	0.19	mg/Kg-dry	1	7/29/2014
Hexachlorobutadiene	ND	0.19	mg/Kg-dry	1	7/29/2014
Hexachlorocyclopentadiene	ND	0.19	mg/Kg-dry	1	7/29/2014
Hexachloroethane	ND	0.19	mg/Kg-dry	1	7/29/2014
Indeno(1,2,3-cd)pyrene	ND	0.037	mg/Kg-dry	1	7/29/2014
Isophorone	ND	0.19	mg/Kg-dry	1	7/29/2014
2-Methylnaphthalene	ND	0.19	mg/Kg-dry	1	7/29/2014
2-Methylphenol	ND	0.19	mg/Kg-dry	1	7/29/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accorditations: IEPA FLAP 100445-OPFLAP II 300001-AIHA-LAP II C 101160-

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014 **Date Printed:** August 05, 2014 ANALYTICAL RESULTS

Client: Tetra Tech EM Inc.
Work Order: 14070878 Revision 0

TPMHC, Tinley Park

Collection Date: 7/23/2014 2:25:00 PM

Client Sample ID: Power-OD-SB-2-0507

Matrix: Soil

Lab ID: 14070878-073

Project:

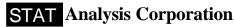
Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW	3550B) Prep	Date: 7/28/201	4 Analyst: MEP
4-Methylphenol	ND	0.19	mg/Kg-dry	1	7/29/2014
Naphthalene	ND	0.037	mg/Kg-dry	1	7/29/2014
2-Nitroaniline	ND	0.19	mg/Kg-dry	1	7/29/2014
3-Nitroaniline	ND	0.19	mg/Kg-dry	1	7/29/2014
4-Nitroaniline	ND	0.19	mg/Kg-dry	1	7/29/2014
2-Nitrophenol	ND	0.19	mg/Kg-dry	1	7/29/2014
4-Nitrophenol	ND	0.37	mg/Kg-dry	1	7/29/2014
Nitrobenzene	ND	0.037	mg/Kg-dry	1	7/29/2014
N-Nitrosodi-n-propylamine	ND	0.037	mg/Kg-dry	1	7/29/2014
N-Nitrosodimethylamine	ND	0.19	mg/Kg-dry	1	7/29/2014
N-Nitrosodiphenylamine	ND	0.037	mg/Kg-dry	1	7/29/2014
2, 2'-oxybis(1-Chloropropane)	ND	0.19	mg/Kg-dry	1	7/29/2014
Pentachlorophenol	ND	0.037	mg/Kg-dry	1	7/29/2014
Phenanthrene	0.93	0.037	mg/Kg-dry	1	7/29/2014
Phenol	ND	0.19	mg/Kg-dry	1	7/29/2014
Pyrene	ND	0.037	mg/Kg-dry	1	7/29/2014
Pyridine	ND	0.75	mg/Kg-dry	1	7/29/2014
1,2,4-Trichlorobenzene	ND	0.19	mg/Kg-dry	1	7/29/2014
2,4,5-Trichlorophenol	ND	0.19	mg/Kg-dry	1	7/29/2014
2,4,6-Trichlorophenol	ND	0.19	mg/Kg-dry	1	7/29/2014
Volatile Organic Compounds by GC/MS	SW50	035/8260B	Prep	Date: 7/24/201	4 Analyst: PS
Acetone	ND	0.079	mg/Kg-dry	1	7/31/2014
Benzene	ND	0.0053	mg/Kg-dry	1	7/31/2014
Bromodichloromethane	ND	0.0053	mg/Kg-dry	1	7/31/2014
Bromoform	ND	0.0053	mg/Kg-dry	1	7/31/2014
Bromomethane	ND	0.011	mg/Kg-dry	1	7/31/2014
2-Butanone	ND	0.079	mg/Kg-dry	1	7/31/2014
Carbon disulfide	ND	0.053	mg/Kg-dry	1	7/31/2014
Carbon tetrachloride	ND	0.0053	mg/Kg-dry	1	7/31/2014
Chlorobenzene	ND	0.0053	mg/Kg-dry	1	7/31/2014
Chloroethane	ND	0.011	mg/Kg-dry	1	7/31/2014
Chloroform	ND	0.0053	mg/Kg-dry	1	7/31/2014
Chloromethane	ND	0.011	mg/Kg-dry	1	7/31/2014
Dibromochloromethane	ND	0.0053	mg/Kg-dry	1	7/31/2014
1,1-Dichloroethane	ND	0.0053	mg/Kg-dry	1	7/31/2014
1,2-Dichloroethane	ND	0.0053	mg/Kg-dry	1	7/31/2014
1,1-Dichloroethene	ND	0.0053	mg/Kg-dry	1	7/31/2014
cis-1,2-Dichloroethene	ND	0.0053	mg/Kg-dry	1	7/31/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time


* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Collection Date: 7/23/2014 2:25:00 PM
Matrix: Soil

Client Sample ID: Power-OD-SB-2-0507

Lab ID: 14070878-073

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW50)35/8260B	Prep	Date: 7/24/2014	Analyst: PS
trans-1,2-Dichloroethene	ND	0.0053	mg/Kg-dry	1	7/31/2014
1,2-Dichloropropane	ND	0.0053	mg/Kg-dry	1	7/31/2014
cis-1,3-Dichloropropene	ND	0.0021	mg/Kg-dry	1	7/31/2014
trans-1,3-Dichloropropene	ND	0.0021	mg/Kg-dry	1	7/31/2014
Ethylbenzene	ND	0.0053	mg/Kg-dry	1	7/31/2014
2-Hexanone	ND	0.021	mg/Kg-dry	1	7/31/2014
4-Methyl-2-pentanone	ND	0.021	mg/Kg-dry	1	7/31/2014
Methylene chloride	ND	0.011	mg/Kg-dry	1	7/31/2014
Methyl tert-butyl ether	ND	0.0053	mg/Kg-dry	1	7/31/2014
Styrene	ND	0.0053	mg/Kg-dry	1	7/31/2014
1,1,2,2-Tetrachloroethane	ND	0.0053	mg/Kg-dry	1	7/31/2014
Tetrachloroethene	ND	0.0053	mg/Kg-dry	1	7/31/2014
Toluene	ND	0.0053	mg/Kg-dry	1	7/31/2014
1,1,1-Trichloroethane	ND	0.0053	mg/Kg-dry	1	7/31/2014
1,1,2-Trichloroethane	ND	0.0053	mg/Kg-dry	1	7/31/2014
Trichloroethene	ND	0.0053	mg/Kg-dry	1	7/31/2014
Vinyl chloride	ND	0.0053	mg/Kg-dry	1	7/31/2014
Xylenes, Total	ND	0.016	mg/Kg-dry	1	7/31/2014
Cyanide, Total	SW90	12A	Prep	Date: 7/24/2014	Analyst: YZ
Cyanide	ND	0.28	mg/Kg-dry	1	7/25/2014
pH (25 °C)	SW90	045C	Prep	Date: 7/29/2014	Analyst: RW
pH	8.4		pH Units	1	7/29/2014
Percent Moisture	D297	4	Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	11.5	0.2	* wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: Power-OD-SB-2-0507-D Work Order: 14070878 Revision 0 **Collection Date**: 7/23/2014 2:25:00 PM TPMHC, Tinley Park **Project:**

Matrix: Soil Lab ID: 14070878-074

Analyses	Result	RL Q	Qualifier Units	DF	Date Analyzed
Mercury	SW7	′471A	Prep	Date: 7/28/2014	Analyst: LB
Mercury	ND	0.021	mg/Kg-dry	1	7/28/2014
Metals by ICP/MS	SW6	6020 (SW3050)B) Prep	Date: 7/25/2014	Analyst: JG
Aluminum	5300	220	mg/Kg-dry	100	7/25/2014
Antimony	ND	2.2	mg/Kg-dry	10	7/28/2014
Arsenic	11	1.1	mg/Kg-dry	10	7/28/2014
Barium	27	1.1	mg/Kg-dry	10	7/28/2014
Beryllium	ND	0.56	mg/Kg-dry	10	7/28/2014
Cadmium	ND	0.56	mg/Kg-dry	10	7/28/2014
Calcium	39000	670	mg/Kg-dry	100	7/25/2014
Chromium	12	1.1	mg/Kg-dry	10	7/28/2014
Cobalt	9.9	1.1	mg/Kg-dry	10	7/28/2014
Copper	19	2.8	mg/Kg-dry	10	7/28/2014
Iron	19000	340	mg/Kg-dry	100	7/25/2014
Lead	15	0.56	mg/Kg-dry	10	7/28/2014
Magnesium	18000	340	mg/Kg-dry	100	7/25/2014
Manganese	370	1.1	mg/Kg-dry	10	7/28/2014
Nickel	22	1.1	mg/Kg-dry	10	7/28/2014
Potassium	950	34	mg/Kg-dry	10	7/28/2014
Selenium	ND	1.1	mg/Kg-dry	10	7/28/2014
Silver	ND	1.1	mg/Kg-dry	10	7/28/2014
Sodium	ND	670	mg/Kg-dry	100	7/25/2014
Thallium	ND	1.1	mg/Kg-dry	10	7/28/2014
Vanadium	15	1.1	mg/Kg-dry	10	7/28/2014
Zinc	120	5.6	mg/Kg-dry	10	7/28/2014
Semivolatile Organic Compounds by GC/MS	SW8	3270C (SW35	50B) Prep	Date: 7/28/2014	Analyst: MEP
Acenaphthene	ND	0.038	mg/Kg-dry	1	7/29/2014
Acenaphthylene	ND	0.038	mg/Kg-dry	1	7/29/2014
Aniline	ND	0.38	mg/Kg-dry	1	7/29/2014
Anthracene	ND	0.038	mg/Kg-dry	1	7/29/2014
Benz(a)anthracene	ND	0.038	mg/Kg-dry	1	7/29/2014
Benzidine	ND	0.38	mg/Kg-dry	1	7/29/2014
Benzo(a)pyrene	ND	0.038	mg/Kg-dry	1	7/29/2014
Benzo(b)fluoranthene	ND	0.038	mg/Kg-dry	1	7/29/2014
Benzo(g,h,i)perylene	ND	0.038	mg/Kg-dry	1	7/29/2014
Benzo(k)fluoranthene	ND	0.038	mg/Kg-dry	1	7/29/2014
Benzoic acid	ND	0.95	mg/Kg-dry	1	7/29/2014
Benzyl alcohol	ND	0.19	mg/Kg-dry	1	7/29/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Client Sample ID: Power-OD-SB-2-0507-D

Collection Date: 7/23/2014 2:25:00 PM

Matrix: Soil

Lab ID: 14070878-074

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW8270	C (SW3			Date: 7/28/2014	Analyst: MEP
Bis(2-chloroethoxy)methane	ND	0.19	m	g/Kg-dry	1	7/29/2014
Bis(2-chloroethyl)ether	ND	0.19	m	g/Kg-dry	1	7/29/2014
Bis(2-ethylhexyl)phthalate	ND	0.95	m	g/Kg-dry	1	7/29/2014
4-Bromophenyl phenyl ether	ND	0.19	m	g/Kg-dry	1	7/29/2014
Butyl benzyl phthalate	ND	0.19	m	g/Kg-dry	1	7/29/2014
Carbazole	ND	0.19	m	g/Kg-dry	1	7/29/2014
4-Chloroaniline	ND	0.19	m	g/Kg-dry	1	7/29/2014
4-Chloro-3-methylphenol	ND	0.38	m	g/Kg-dry	1	7/29/2014
2-Chloronaphthalene	ND	0.19	m	g/Kg-dry	1	7/29/2014
2-Chlorophenol	ND	0.19	m	g/Kg-dry	1	7/29/2014
4-Chlorophenyl phenyl ether	ND	0.19	m	g/Kg-dry	1	7/29/2014
Chrysene	0.049	0.038	m	g/Kg-dry	1	7/29/2014
Dibenz(a,h)anthracene	ND	0.038	m	g/Kg-dry	1	7/29/2014
Dibenzofuran	ND	0.19	m	g/Kg-dry	1	7/29/2014
1,2-Dichlorobenzene	ND	0.19	m	g/Kg-dry	1	7/29/2014
1,3-Dichlorobenzene	ND	0.19	m	g/Kg-dry	1	7/29/2014
1,4-Dichlorobenzene	ND	0.19	m	g/Kg-dry	1	7/29/2014
3,3´-Dichlorobenzidine	ND	0.19	m	g/Kg-dry	1	7/29/2014
2,4-Dichlorophenol	ND	0.19	m	g/Kg-dry	1	7/29/2014
Diethyl phthalate	ND	0.19	m	g/Kg-dry	1	7/29/2014
2,4-Dimethylphenol	ND	0.19	m	g/Kg-dry	1	7/29/2014
Dimethyl phthalate	ND	0.19	m	g/Kg-dry	1	7/29/2014
4,6-Dinitro-2-methylphenol	ND	0.38	m	g/Kg-dry	1	7/29/2014
2,4-Dinitrophenol	ND	0.95	m	g/Kg-dry	1	7/29/2014
2,4-Dinitrotoluene	ND	0.038	m	g/Kg-dry	1	7/29/2014
2,6-Dinitrotoluene	ND	0.038	m	g/Kg-dry	1	7/29/2014
Di-n-butyl phthalate	ND	0.19	m	g/Kg-dry	1	7/29/2014
Di-n-octyl phthalate	ND	0.19	m	g/Kg-dry	1	7/29/2014
Fluoranthene	ND	0.038	m	g/Kg-dry	1	7/29/2014
Fluorene	ND	0.038	m	g/Kg-dry	1	7/29/2014
Hexachlorobenzene	ND	0.19	m	g/Kg-dry	1	7/29/2014
Hexachlorobutadiene	ND	0.19	m	g/Kg-dry	1	7/29/2014
Hexachlorocyclopentadiene	ND	0.19	m	g/Kg-dry	1	7/29/2014
Hexachloroethane	ND	0.19	m	g/Kg-dry	1	7/29/2014
Indeno(1,2,3-cd)pyrene	ND	0.038	m	g/Kg-dry	1	7/29/2014
Isophorone	ND	0.19	m	g/Kg-dry	1	7/29/2014
2-Methylnaphthalene	ND	0.19	m	g/Kg-dry	1	7/29/2014
2-Methylphenol	ND	0.19	m	g/Kg-dry	1	7/29/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014 **Date Printed:** August 05, 2014 **ANALYTICAL RESULTS**

Client: Tetra Tech EM Inc. Work Order: 14070878 Revision 0 TPMHC, Tinley Park **Project:**

Client Sample ID: Power-OD-SB-2-0507-D **Collection Date**: 7/23/2014 2:25:00 PM

Matrix: Soil Lab ID: 14070878-074

Analyses	Result	RL (Qualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW35	550B) Prep I	Date: 7/28/2014	Analyst: MEP
4-Methylphenol	ND	0.19	mg/Kg-dry	1	7/29/2014
Naphthalene	ND	0.038	mg/Kg-dry	1	7/29/2014
2-Nitroaniline	ND	0.19	mg/Kg-dry	1	7/29/2014
3-Nitroaniline	ND	0.19	mg/Kg-dry	1	7/29/2014
4-Nitroaniline	ND	0.19	mg/Kg-dry	1	7/29/2014
2-Nitrophenol	ND	0.19	mg/Kg-dry	1	7/29/2014
4-Nitrophenol	ND	0.38	mg/Kg-dry	1	7/29/2014
Nitrobenzene	ND	0.038	mg/Kg-dry	1	7/29/2014
N-Nitrosodi-n-propylamine	ND	0.038	mg/Kg-dry	1	7/29/2014
N-Nitrosodimethylamine	ND	0.19	mg/Kg-dry	1	7/29/2014
N-Nitrosodiphenylamine	ND	0.038	mg/Kg-dry	1	7/29/2014
2, 2'-oxybis(1-Chloropropane)	ND	0.19	mg/Kg-dry	1	7/29/2014
Pentachlorophenol	ND	0.038	mg/Kg-dry	1	7/29/2014
Phenanthrene	1.2	0.038	mg/Kg-dry	1	7/29/2014
Phenol	ND	0.19	mg/Kg-dry	1	7/29/2014
Pyrene	ND	0.038	mg/Kg-dry	1	7/29/2014
Pyridine	ND	0.77	mg/Kg-dry	1	7/29/2014
1,2,4-Trichlorobenzene	ND	0.19	mg/Kg-dry	1	7/29/2014
2,4,5-Trichlorophenol	ND	0.19	mg/Kg-dry	1	7/29/2014
2,4,6-Trichlorophenol	ND	0.19	mg/Kg-dry	1	7/29/2014
Volatile Organic Compounds by GC/MS	SW50	35/8260B	Prep I	Date: 7/24/2014	Analyst: PS
Acetone	ND	0.070	mg/Kg-dry	1	7/31/2014
Benzene	ND	0.0047	mg/Kg-dry	1	7/31/2014
Bromodichloromethane	ND	0.0047	mg/Kg-dry	1	7/31/2014
Bromoform	ND	0.0047	mg/Kg-dry	1	7/31/2014
Bromomethane	ND	0.0094	mg/Kg-dry	1	7/31/2014
2-Butanone	ND	0.070	mg/Kg-dry	1	7/31/2014
Carbon disulfide	ND	0.047	mg/Kg-dry	1	7/31/2014
Carbon tetrachloride	ND	0.0047	mg/Kg-dry	1	7/31/2014
Chlorobenzene	ND	0.0047	mg/Kg-dry	1	7/31/2014
Chloroethane	ND	0.0094	mg/Kg-dry	1	7/31/2014
Chloroform	ND	0.0047	mg/Kg-dry	1	7/31/2014
Chloromethane	ND	0.0094	mg/Kg-dry	1	7/31/2014
Dibromochloromethane	ND	0.0047	mg/Kg-dry	1	7/31/2014
1,1-Dichloroethane	ND	0.0047	mg/Kg-dry	1	7/31/2014
1,2-Dichloroethane	ND	0.0047	mg/Kg-dry	1	7/31/2014
1,1-Dichloroethene	ND	0.0047	mg/Kg-dry	1	7/31/2014
cis-1,2-Dichloroethene	ND	0.0047	mg/Kg-dry	1	7/31/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Collection Date: 7/23/2014 2:25:00 PM
Matrix: Soil

Client Sample ID: Power-OD-SB-2-0507-D

Lab ID: 14070878-074

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW50	35/8260B	Prep	Date: 7/24/2014	Analyst: PS
trans-1,2-Dichloroethene	ND	0.0047	mg/Kg-dry	1	7/31/2014
1,2-Dichloropropane	ND	0.0047	mg/Kg-dry	1	7/31/2014
cis-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	7/31/2014
trans-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	7/31/2014
Ethylbenzene	ND	0.0047	mg/Kg-dry	1	7/31/2014
2-Hexanone	ND	0.019	mg/Kg-dry	1	7/31/2014
4-Methyl-2-pentanone	ND	0.019	mg/Kg-dry	1	7/31/2014
Methylene chloride	ND	0.0094	mg/Kg-dry	1	7/31/2014
Methyl tert-butyl ether	ND	0.0047	mg/Kg-dry	1	7/31/2014
Styrene	ND	0.0047	mg/Kg-dry	1	7/31/2014
1,1,2,2-Tetrachloroethane	ND	0.0047	mg/Kg-dry	1	7/31/2014
Tetrachloroethene	ND	0.0047	mg/Kg-dry	1	7/31/2014
Toluene	ND	0.0047	mg/Kg-dry	1	7/31/2014
1,1,1-Trichloroethane	ND	0.0047	mg/Kg-dry	1	7/31/2014
1,1,2-Trichloroethane	ND	0.0047	mg/Kg-dry	1	7/31/2014
Trichloroethene	ND	0.0047	mg/Kg-dry	1	7/31/2014
Vinyl chloride	ND	0.0047	mg/Kg-dry	1	7/31/2014
Xylenes, Total	ND	0.014	mg/Kg-dry	1	7/31/2014
Cyanide, Total	SW90	12A	Prep	Date: 7/24/2014	Analyst: YZ
Cyanide	ND	0.29	mg/Kg-dry	1	7/25/2014
pH (25 °C)	SW90	145C	Prep	Date: 7/29/2014	Analyst: RW
рН	8.4		pH Units	1	7/29/2014
Percent Moisture	D297	4	Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	13.7	0.2	* wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14070878-075

Client Sample ID: T-SS-7-S8-D

Collection Date: 7/21/2014 10:37:00 AM

Matrix: Soil

Analyses	Result	RL Quali	fier Units	DF	Date Analyzed
PCBs	SW8082	(SW3550B)	Prep	Date: 7/25/2014	Analyst: GVC
Aroclor 1016	ND	0.093	mg/Kg-dry	1	7/26/2014
Aroclor 1221	ND	0.093	mg/Kg-dry	1	7/26/2014
Aroclor 1232	ND	0.093	mg/Kg-dry	1	7/26/2014
Aroclor 1242	ND	0.093	mg/Kg-dry	1	7/26/2014
Aroclor 1248	ND	0.093	mg/Kg-dry	1	7/26/2014
Aroclor 1254	ND	0.093	mg/Kg-dry	1	7/26/2014
Aroclor 1260	ND	0.093	mg/Kg-dry	1	7/26/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	14.4	0.2 *	wt%	1	7/25/2014

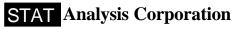
ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter


Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14070878-076

Client Sample ID: T-SS-5-S9

Collection Date: 7/21/2014 10:17:00 AM

Matrix: Soil

Analyses	Result	RL Quali	fier Units	DF	Date Analyzed
PCBs	SW8082	(SW3550B)	Prep	Date: 7/25/2014	Analyst: GVC
Aroclor 1016	ND	0.094	mg/Kg-dry	1	7/26/2014
Aroclor 1221	ND	0.094	mg/Kg-dry	1	7/26/2014
Aroclor 1232	ND	0.094	mg/Kg-dry	1	7/26/2014
Aroclor 1242	ND	0.094	mg/Kg-dry	1	7/26/2014
Aroclor 1248	ND	0.094	mg/Kg-dry	1	7/26/2014
Aroclor 1254	ND	0.094	mg/Kg-dry	1	7/26/2014
Aroclor 1260	ND	0.094	mg/Kg-dry	1	7/26/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	15.7	0.2 *	wt%	1	7/25/2014

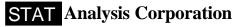
ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter


Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

August 05, 2014

Date Printed:

ANALYTICAL RESULTS

Client: Tetra Tech EM Inc. Client Sample ID: T-SS-8-T1

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Collection Date: 7/21/2014 10:50:00 AM

Motoring Soil

Lab ID: 14070878-077 Matrix: Soil

Analyses	Result	RL (Qualifier	Units	DF	Date Analyzed
PCBs	SW8082	(SW355	50B)	Prep	Date: 7/25/	2014 Analyst: GVC
Aroclor 1016	ND	0.093	'n	ng/Kg-dry	1	7/26/2014
Aroclor 1221	ND	0.093	m	ng/Kg-dry	1	7/26/2014
Aroclor 1232	ND	0.093	m	ng/Kg-dry	1	7/26/2014
Aroclor 1242	ND	0.093	m	ng/Kg-dry	1	7/26/2014
Aroclor 1248	ND	0.093	m	ng/Kg-dry	1	7/26/2014
Aroclor 1254	ND	0.093	m	ng/Kg-dry	1	7/26/2014
Aroclor 1260	ND	0.093	m	ng/Kg-dry	1	7/26/2014
Percent Moisture	D2974			Prep	Date: 7/24/	2014 Analyst: RW
Percent Moisture	14.6	0.2	*	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14070878-078

Client Sample ID: T-SS-14-U5

Collection Date: 7/21/2014 12:06:00 PM

Matrix: Soil

Analyses	Result	RL Qua	llifier Units	DF	Date Analyzed
PCBs	SW8082	(SW3550B)	Prep	Date: 7/25/2014	Analyst: GVC
Aroclor 1016	ND	0.095	mg/Kg-dry	1	7/26/2014
Aroclor 1221	ND	0.095	mg/Kg-dry	1	7/26/2014
Aroclor 1232	ND	0.095	mg/Kg-dry	1	7/26/2014
Aroclor 1242	ND	0.095	mg/Kg-dry	1	7/26/2014
Aroclor 1248	ND	0.095	mg/Kg-dry	1	7/26/2014
Aroclor 1254	ND	0.095	mg/Kg-dry	1	7/26/2014
Aroclor 1260	ND	0.095	mg/Kg-dry	1	7/26/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	16.4	0.2	* wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations:IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14070878-079

Client Sample ID: T-SS-16-U6

Collection Date: 7/21/2014 1:30:00 PM

Matrix: Soil

Analyses	Result	RL Quali	fier Units	DF	Date Analyzed
PCBs	SW8082	(SW3550B)	Prep	Date: 7/25/2014	Analyst: GVC
Aroclor 1016	ND	0.092	mg/Kg-dry	1	7/26/2014
Aroclor 1221	ND	0.092	mg/Kg-dry	1	7/26/2014
Aroclor 1232	ND	0.092	mg/Kg-dry	1	7/26/2014
Aroclor 1242	ND	0.092	mg/Kg-dry	1	7/26/2014
Aroclor 1248	ND	0.092	mg/Kg-dry	1	7/26/2014
Aroclor 1254	ND	0.092	mg/Kg-dry	1	7/26/2014
Aroclor 1260	ND	0.092	mg/Kg-dry	1	7/26/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	13.5	0.2 *	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14070878-080

Client Sample ID: T-SS-20-U7

Collection Date: 7/21/2014 1:15:00 PM

Matrix: Soil

Analyses	Result	RL Quali	fier Units	DF	Date Analyzed
PCBs	SW8082	(SW3550B)	Prep	Date: 7/25/2014	Analyst: GVC
Aroclor 1016	ND	0.093	mg/Kg-dry	1	7/26/2014
Aroclor 1221	ND	0.093	mg/Kg-dry	1	7/26/2014
Aroclor 1232	ND	0.093	mg/Kg-dry	1	7/26/2014
Aroclor 1242	ND	0.093	mg/Kg-dry	1	7/26/2014
Aroclor 1248	ND	0.093	mg/Kg-dry	1	7/26/2014
Aroclor 1254	ND	0.093	mg/Kg-dry	1	7/26/2014
Aroclor 1260	ND	0.093	mg/Kg-dry	1	7/26/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	14.0	0.2	wt%	1	7/25/2014

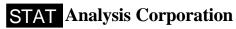
ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter


Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14070878-081

Client Sample ID: T-SS-17-U8

Collection Date: 7/21/2014 1:36:00 PM

Matrix: Soil

Analyses	Result	RL Quali	fier Units	DF	Date Analyzed
PCBs	SW8082	(SW3550B)	Prep	Date: 7/25/2014	Analyst: GVC
Aroclor 1016	ND	0.092	mg/Kg-dry	1	7/26/2014
Aroclor 1221	ND	0.092	mg/Kg-dry	1	7/26/2014
Aroclor 1232	ND	0.092	mg/Kg-dry	1	7/26/2014
Aroclor 1242	ND	0.092	mg/Kg-dry	1	7/26/2014
Aroclor 1248	ND	0.092	mg/Kg-dry	1	7/26/2014
Aroclor 1254	ND	0.092	mg/Kg-dry	1	7/26/2014
Aroclor 1260	ND	0.092	mg/Kg-dry	1	7/26/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	14.3	0.2 *	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14070878-082

Client Sample ID: T-SS-1-U9

Collection Date: 7/21/2014 9:20:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier	Units	DF	Date Analyzed
PCBs	SW8082	(SW3550	В)	Prep	Date: 7/25/20 1	4 Analyst: GVC
Aroclor 1016	ND	0.097	'n	ng/Kg-dry	1	7/26/2014
Aroclor 1221	ND	0.097	m	ng/Kg-dry	1	7/26/2014
Aroclor 1232	ND	0.097	m	ng/Kg-dry	1	7/26/2014
Aroclor 1242	ND	0.097	m	ng/Kg-dry	1	7/26/2014
Aroclor 1248	ND	0.097	m	ng/Kg-dry	1	7/26/2014
Aroclor 1254	ND	0.097	m	ng/Kg-dry	1	7/26/2014
Aroclor 1260	ND	0.097	m	ng/Kg-dry	1	7/26/2014
Percent Moisture	D2974			Prep	Date: 7/24/201	4 Analyst: RW
Percent Moisture	17.2	0.2	*	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14070878-083

Client Sample ID: T-SS-2-V1

Collection Date: 7/21/2014 9:29:00 AM

Matrix: Soil

Analyses	Result	RL Quali	fier Units	DF	Date Analyzed
PCBs	SW8082	(SW3550B)	Prep	Date: 7/25/2014	Analyst: GVC
Aroclor 1016	ND	0.094	mg/Kg-dry	1	7/26/2014
Aroclor 1221	ND	0.094	mg/Kg-dry	1	7/26/2014
Aroclor 1232	ND	0.094	mg/Kg-dry	1	7/26/2014
Aroclor 1242	ND	0.094	mg/Kg-dry	1	7/26/2014
Aroclor 1248	ND	0.094	mg/Kg-dry	1	7/26/2014
Aroclor 1254	ND	0.094	mg/Kg-dry	1	7/26/2014
Aroclor 1260	ND	0.094	mg/Kg-dry	1	7/26/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	15.4	0.2 *	wt%	1	7/25/2014

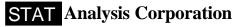
ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter


Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14070878-084

Client Sample ID: T-SS-3-V2

Collection Date: 7/21/2014 9:41:00 AM

Matrix: Soil

Analyses	Result	RL Quali	fier Units	DF	Date Analyzed
PCBs	SW8082	(SW3550B)	Prep	Date: 7/25/2014	Analyst: GVC
Aroclor 1016	ND	0.097	mg/Kg-dry	1	7/26/2014
Aroclor 1221	ND	0.097	mg/Kg-dry	1	7/26/2014
Aroclor 1232	ND	0.097	mg/Kg-dry	1	7/26/2014
Aroclor 1242	ND	0.097	mg/Kg-dry	1	7/26/2014
Aroclor 1248	ND	0.097	mg/Kg-dry	1	7/26/2014
Aroclor 1254	ND	0.097	mg/Kg-dry	1	7/26/2014
Aroclor 1260	ND	0.097	mg/Kg-dry	1	7/26/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	17.5	0.2 *	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14070878-085

Client Sample ID: Spruce-T-SS-18

Collection Date: 7/21/2014 1:55:00 PM

Matrix: Soil

Analyses	Result	RL Quali	fier Units	DF	Date Analyzed
PCBs	SW8082	(SW3550B)	Prep	Date: 7/25/2014	Analyst: GVC
Aroclor 1016	ND	0.10	mg/Kg-dry	1	7/26/2014
Aroclor 1221	ND	0.10	mg/Kg-dry	1	7/26/2014
Aroclor 1232	ND	0.10	mg/Kg-dry	1	7/26/2014
Aroclor 1242	ND	0.10	mg/Kg-dry	1	7/26/2014
Aroclor 1248	ND	0.10	mg/Kg-dry	1	7/26/2014
Aroclor 1254	ND	0.10	mg/Kg-dry	1	7/26/2014
Aroclor 1260	ND	0.10	mg/Kg-dry	1	7/26/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	20.0	0.2 *	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: Admin-T-SS-19

Work Order: 14070878 Revision 0 **Collection Date**: 7/21/2014 2:10:00 PM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14070878-086

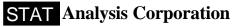
Analyses	Result	RL Q	ualifier	Units	DF	Date Analyzed
PCBs	SW8082	(SW3550)B)	Prep	Date: 7/25/2014	Analyst: GVC
Aroclor 1016	ND	0.095	r	ng/Kg-dry	1	7/26/2014
Aroclor 1221	ND	0.095	m	ng/Kg-dry	1	7/26/2014
Aroclor 1232	ND	0.095	m	ng/Kg-dry	1	7/26/2014
Aroclor 1242	ND	0.095	m	ng/Kg-dry	1	7/26/2014
Aroclor 1248	ND	0.095	m	ng/Kg-dry	1	7/26/2014
Aroclor 1254	ND	0.095	m	ng/Kg-dry	1	7/26/2014
Aroclor 1260	ND	0.095	m	ng/Kg-dry	1	7/26/2014
Percent Moisture	D2974			Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	16.2	0.2	*	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time


* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14070878-087

Client Sample ID: Power-LP-SS-1

Collection Date: 7/21/2014 1:30:00 PM

Matrix: Soil

Analyses	Result	RL Quali	ifier Units	DF	Date Analyzed
Metals by ICP/MS	SW6020 (SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Lead	330	0.61	mg/Kg-dry	10	7/28/2014
pH (25 °C)	SW9045C		Prep	Date: 7/29/2014	Analyst: RW
рН	7.5		pH Units	1	7/29/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	18.5	0.2	* wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: Power-LP-SS-2 Work Order:

14070878 Revision 0 **Collection Date**: 7/21/2014 1:34:00 PM **Project:** TPMHC, Tinley Park

Matrix: Soil

Lab ID: 14070878-088

Analyses	Result	RL Qualif	ier Units	DF	Date Analyzed
Metals by ICP/MS	SW6020	(SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Lead	150	0.62	mg/Kg-dry	10	7/28/2014
pH (25 °C)	SW90450	2	Prep	Date: 7/29/2014	Analyst: RW
рН	7.6		pH Units	1	7/29/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	17.7	0.2 *	wt%	1	7/25/2014

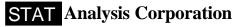
ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter


Qualifiers:

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: Power-LP-SS-3

Work Order: 14070878 Revision 0 **Collection Date**: 7/21/2014 2:30:00 PM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14070878-089

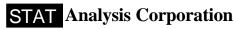
Analyses	Result	RL Qual	ifier Units	DF	Date Analyzed
Metals by ICP/MS	SW6020 (SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Lead	170	0.63	mg/Kg-dry	10	7/28/2014
pH (25 °C)	SW9045C		Prep	Date: 7/29/2014	Analyst: RW
рН	7.2		pH Units	1	7/29/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	18.8	0.2	* wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time


* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

necreations.ini ii blair 100445,0kblair 12500001,niiii-lair, bbc 101100,100211 Embedue 101202-

ANALYTICAL RESULTS

Date Reported: August 05, 2014 **Date Printed:** August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Client Sample ID: Power-LP-SS-4

Project: TPMHC, Tinley Park

Collection Date: 7/21/2014 2:34:00 PM

Matrix: Soil

Lab ID: 14070878-090 Matrix: Soil

Analyses	Result	RL Qual	ifier Units	DF	Date Analyzed
Metals by ICP/MS	SW6020 (SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Lead	73	0.60	mg/Kg-dry	10	7/28/2014
pH (25 °C)	SW9045C	SW9045C			Analyst: RW
рН	7.7		pH Units	1	7/29/2014
Percent Moisture	D2974		Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	14.7	0.2	* wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

TPMHC, Tinley Park **Project:**

Lab ID: 14070878-091 Client Sample ID: Maint-GW-1

Collection Date: 7/21/2014 11:40:00 AM

Matrix: Water

Analyses	Result	RL (Qualifier	Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW82	260B (SW50	030B)	Prep	Date:	Analyst: ART
Acetone	ND	0.020	•	mg/L	1	7/30/2014
Benzene	ND	0.0050		mg/L	1	7/30/2014
Bromodichloromethane	ND	0.0050		mg/L	1	7/30/2014
Bromoform	ND	0.0050		mg/L	1	7/30/2014
Bromomethane	ND	0.010		mg/L	1	7/30/2014
2-Butanone	ND	0.020		mg/L	1	7/30/2014
Carbon disulfide	ND	0.010		mg/L	1	7/30/2014
Carbon tetrachloride	ND	0.0050		mg/L	1	7/30/2014
Chlorobenzene	ND	0.0050		mg/L	1	7/30/2014
Chloroethane	ND	0.010		mg/L	1	7/30/2014
Chloroform	ND	0.0050		mg/L	1	7/30/2014
Chloromethane	ND	0.010		mg/L	1	7/30/2014
Dibromochloromethane	ND	0.0050		mg/L	1	7/30/2014
1,1-Dichloroethane	ND	0.0050		mg/L	1	7/30/2014
1,2-Dichloroethane	ND	0.0050		mg/L	1	7/30/2014
1,1-Dichloroethene	ND	0.0050		mg/L	1	7/30/2014
cis-1,2-Dichloroethene	ND	0.0050		mg/L	1	7/30/2014
trans-1,2-Dichloroethene	ND	0.0050		mg/L	1	7/30/2014
1,2-Dichloropropane	ND	0.0050		mg/L	1	7/30/2014
cis-1,3-Dichloropropene	ND	0.0010		mg/L	1	7/30/2014
trans-1,3-Dichloropropene	ND	0.0010		mg/L	1	7/30/2014
Ethylbenzene	ND	0.0050		mg/L	1	7/30/2014
2-Hexanone	ND	0.020		mg/L	1	7/30/2014
4-Methyl-2-pentanone	ND	0.020		mg/L	1	7/30/2014
Methylene chloride	ND	0.0050		mg/L	1	7/30/2014
Methyl tert-butyl ether	ND	0.0050		mg/L	1	7/30/2014
Styrene	ND	0.0050		mg/L	1	7/30/2014
1,1,2,2-Tetrachloroethane	ND	0.0050		mg/L	1	7/30/2014
Tetrachloroethene	ND	0.0050		mg/L	1	7/30/2014
Toluene	ND	0.0050		mg/L	1	7/30/2014
1,1,1-Trichloroethane	ND	0.0050		mg/L	1	7/30/2014
1,1,2-Trichloroethane	ND	0.0050		mg/L	1	7/30/2014
Trichloroethene	ND	0.0050		mg/L	1	7/30/2014
Vinyl chloride	ND	0.0020		mg/L	1	7/30/2014
Xylenes, Total	ND	0.015		mg/L	1	7/30/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: Cedar-SB-1-0003

Work Order: 14070878 Revision 0 Collection Date: 7/23/2014 11:10:00 AM

TPMHC, Tinley Park **Project:** Matrix: Soil

Lab ID: 14070878-092

Analyses	Result	RL Qual	ifier Units	DF	Date Analyzed
Mercury	SW74	171A	Prep l	Date: 7/28/2014	Analyst: LB
Mercury	0.035	0.023	mg/Kg-dry	1	7/28/2014
Metals by ICP/MS	SW60	020 (SW3050B)	Prep	Date: 7/25/2014	Analyst: JG
Aluminum	15000	250	mg/Kg-dry	100	7/25/2014
Antimony	ND	2.5	mg/Kg-dry	10	7/28/2014
Arsenic	7.1	1.3	mg/Kg-dry	10	7/28/2014
Barium	150	1.3	mg/Kg-dry	10	7/28/2014
Beryllium	1.0	0.63	mg/Kg-dry	10	7/28/2014
Cadmium	ND	0.63	mg/Kg-dry	10	7/28/2014
Calcium	5100	750	mg/Kg-dry	100	7/25/2014
Chromium	19	1.3	mg/Kg-dry	10	7/28/2014
Cobalt	11	1.3	mg/Kg-dry	10	7/28/2014
Copper	22	3.1	mg/Kg-dry	10	7/28/2014
Iron	22000	380	mg/Kg-dry	100	7/25/2014
Lead	25	0.63	mg/Kg-dry	10	7/28/2014
Magnesium	4200	380	mg/Kg-dry	100	7/25/2014
Manganese	580	1.3	mg/Kg-dry	10	7/28/2014
Nickel	22	1.3	mg/Kg-dry	10	7/28/2014
Potassium	1400	38	mg/Kg-dry	10	7/28/2014
Selenium	ND	1.3	mg/Kg-dry	10	7/28/2014
Silver	ND	1.3	mg/Kg-dry	10	7/28/2014
Sodium	ND	750	mg/Kg-dry	100	7/25/2014
Thallium	ND	1.3	mg/Kg-dry	10	7/28/2014
Vanadium	30	1.3	mg/Kg-dry	10	7/28/2014
Zinc	71	6.3	mg/Kg-dry	10	7/28/2014
Semivolatile Organic Compounds by GC/MS	S SW82	270C (SW3550B)) Prep	Date: 7/28/2014	Analyst: MEP
Acenaphthene	ND	0.041	mg/Kg-dry	1	7/29/2014
Acenaphthylene	ND	0.041	mg/Kg-dry	1	7/29/2014
Aniline	ND	0.42	mg/Kg-dry	1	7/29/2014
Anthracene	ND	0.041	mg/Kg-dry	1	7/29/2014
Benz(a)anthracene	ND	0.041	mg/Kg-dry	1	7/29/2014
Benzidine	ND	0.41	mg/Kg-dry	1	7/29/2014
Benzo(a)pyrene	ND	0.041	mg/Kg-dry	1	7/29/2014
Benzo(b)fluoranthene	ND	0.041	mg/Kg-dry	1	7/29/2014
Benzo(g,h,i)perylene	ND	0.041	mg/Kg-dry	1	7/29/2014
Benzo(k)fluoranthene	ND	0.041	mg/Kg-dry	1	7/29/2014
Benzoic acid	ND	1.0	mg/Kg-dry	1	7/29/2014
Benzyl alcohol	ND	0.21	mg/Kg-dry	1	7/29/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

ANALYTICAL RESULTS

Date Reported: August 05, 2014 **Date Printed:** August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: Cedar-SB-1-0003

Work Order: 14070878 Revision 0 **Collection Date**: 7/23/2014 11:10:00 AM

Project: TPMHC, Tinley Park
Lab ID: Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW827	70C (SW355	0B) Prep l	Date: 7/28/2014	Analyst: MEP
Bis(2-chloroethoxy)methane	ND	0.21	mg/Kg-dry	1	7/29/2014
Bis(2-chloroethyl)ether	ND	0.21	mg/Kg-dry	1	7/29/2014
Bis(2-ethylhexyl)phthalate	ND	1.0	mg/Kg-dry	1	7/29/2014
4-Bromophenyl phenyl ether	ND	0.21	mg/Kg-dry	1	7/29/2014
Butyl benzyl phthalate	ND	0.21	mg/Kg-dry	1	7/29/2014
Carbazole	ND	0.21	mg/Kg-dry	1	7/29/2014
4-Chloroaniline	ND	0.21	mg/Kg-dry	1	7/29/2014
4-Chloro-3-methylphenol	ND	0.41	mg/Kg-dry	1	7/29/2014
2-Chloronaphthalene	ND	0.21	mg/Kg-dry	1	7/29/2014
2-Chlorophenol	ND	0.21	mg/Kg-dry	1	7/29/2014
4-Chlorophenyl phenyl ether	ND	0.21	mg/Kg-dry	1	7/29/2014
Chrysene	ND	0.041	mg/Kg-dry	1	7/29/2014
Dibenz(a,h)anthracene	ND	0.041	mg/Kg-dry	1	7/29/2014
Dibenzofuran	ND	0.21	mg/Kg-dry	1	7/29/2014
1,2-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	7/29/2014
1,3-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	7/29/2014
1,4-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	7/29/2014
3,3´-Dichlorobenzidine	ND	0.21	mg/Kg-dry	1	7/29/2014
2,4-Dichlorophenol	ND	0.21	mg/Kg-dry	1	7/29/2014
Diethyl phthalate	ND	0.21	mg/Kg-dry	1	7/29/2014
2,4-Dimethylphenol	ND	0.21	mg/Kg-dry	1	7/29/2014
Dimethyl phthalate	ND	0.21	mg/Kg-dry	1	7/29/2014
4,6-Dinitro-2-methylphenol	ND	0.41	mg/Kg-dry	1	7/29/2014
2,4-Dinitrophenol	ND	1.0	mg/Kg-dry	1	7/29/2014
2,4-Dinitrotoluene	ND	0.041	mg/Kg-dry	1	7/29/2014
2,6-Dinitrotoluene	ND	0.041	mg/Kg-dry	1	7/29/2014
Di-n-butyl phthalate	ND	0.21	mg/Kg-dry	1	7/29/2014
Di-n-octyl phthalate	ND	0.21	mg/Kg-dry	1	7/29/2014
Fluoranthene	ND	0.041	mg/Kg-dry	1	7/29/2014
Fluorene	ND	0.041	mg/Kg-dry	1	7/29/2014
Hexachlorobenzene	ND	0.21	mg/Kg-dry	1	7/29/2014
Hexachlorobutadiene	ND	0.21	mg/Kg-dry	1	7/29/2014
Hexachlorocyclopentadiene	ND	0.21	mg/Kg-dry	1	7/29/2014
Hexachloroethane	ND	0.21	mg/Kg-dry	1	7/29/2014
Indeno(1,2,3-cd)pyrene	ND	0.041	mg/Kg-dry	1	7/29/2014
Isophorone	ND	0.21	mg/Kg-dry	1	7/29/2014
2-Methylnaphthalene	ND	0.21	mg/Kg-dry	1	7/29/2014
2-Methylphenol	ND	0.21	mg/Kg-dry	1	7/29/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: Cedar-SB-1-0003

Work Order: 14070878 Revision 0 Collection Date: 7/23/2014 11:10:00 AM

TPMHC, Tinley Park **Project:** Matrix: Soil

Lab ID: 14070878-092

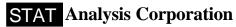
Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW3		Date: 7/28/2014	Analyst: MEP
4-Methylphenol	ND	0.21	mg/Kg-dry	1	7/29/2014
Naphthalene	ND	0.041	mg/Kg-dry	1	7/29/2014
2-Nitroaniline	ND	0.21	mg/Kg-dry	1	7/29/2014
3-Nitroaniline	ND	0.21	mg/Kg-dry	1	7/29/2014
4-Nitroaniline	ND	0.21	mg/Kg-dry	1	7/29/2014
2-Nitrophenol	ND	0.21	mg/Kg-dry	1	7/29/2014
4-Nitrophenol	ND	0.41	mg/Kg-dry	1	7/29/2014
Nitrobenzene	ND	0.041	mg/Kg-dry	1	7/29/2014
N-Nitrosodi-n-propylamine	ND	0.041	mg/Kg-dry	1	7/29/2014
N-Nitrosodimethylamine	ND	0.21	mg/Kg-dry	1	7/29/2014
N-Nitrosodiphenylamine	ND	0.041	mg/Kg-dry	1	7/29/2014
2, 2'-oxybis(1-Chloropropane)	ND	0.21	mg/Kg-dry	1	7/29/2014
Pentachlorophenol	ND	0.084	mg/Kg-dry	1	7/29/2014
Phenanthrene	ND	0.041	mg/Kg-dry	1	7/29/2014
Phenol	ND	0.21	mg/Kg-dry	1	7/29/2014
Pyrene	ND	0.041	mg/Kg-dry	1	7/29/2014
Pyridine	ND	0.84	mg/Kg-dry	1	7/29/2014
1,2,4-Trichlorobenzene	ND	0.21	mg/Kg-dry	1	7/29/2014
2,4,5-Trichlorophenol	ND	0.21	mg/Kg-dry	1	7/29/2014
2,4,6-Trichlorophenol	ND	0.21	mg/Kg-dry	1	7/29/2014
Volatile Organic Compounds by GC/MS	SW50	035/8260B	Prep	Date: 7/24/2014	Analyst: PS
Acetone	0.14	0.087	mg/Kg-dry	1	7/31/2014
Benzene	ND	0.0058	mg/Kg-dry	1	7/31/2014
Bromodichloromethane	ND	0.0058	mg/Kg-dry	1	7/31/2014
Bromoform	ND	0.0058	mg/Kg-dry	1	7/31/2014
Bromomethane	ND	0.012	mg/Kg-dry	1	7/31/2014
2-Butanone	ND	0.087	mg/Kg-dry	1	7/31/2014
Carbon disulfide	ND	0.058	mg/Kg-dry	1	7/31/2014
Carbon tetrachloride	ND	0.0058	mg/Kg-dry	1	7/31/2014
Chlorobenzene	ND	0.0058	mg/Kg-dry	1	7/31/2014
Chloroethane	ND	0.012	mg/Kg-dry	1	7/31/2014
Chloroform	ND	0.0058	mg/Kg-dry	1	7/31/2014
Chloromethane	ND	0.012	mg/Kg-dry	1	7/31/2014
Dibromochloromethane	ND	0.0058	mg/Kg-dry	1	7/31/2014
1,1-Dichloroethane	ND	0.0058	mg/Kg-dry	1	7/31/2014
1,2-Dichloroethane	ND	0.0058	mg/Kg-dry	1	7/31/2014
1,1-Dichloroethene	ND	0.0058	mg/Kg-dry	1	7/31/2014
cis-1,2-Dichloroethene	ND	0.0058	mg/Kg-dry	1	7/31/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time


* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: Cedar-SB-1-0003

Work Order: 14070878 Revision 0 **Collection Date**: 7/23/2014 11:10:00 AM

Project: TPMHC, Tinley Park
Lab ID: Matrix: Soil

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW50)35/8260B	Prep	Date: 7/24/2014	Analyst: PS
trans-1,2-Dichloroethene	ND	0.0058	mg/Kg-dry	1	7/31/2014
1,2-Dichloropropane	ND	0.0058	mg/Kg-dry	1	7/31/2014
cis-1,3-Dichloropropene	ND	0.0023	mg/Kg-dry	1	7/31/2014
trans-1,3-Dichloropropene	ND	0.0023	mg/Kg-dry	1	7/31/2014
Ethylbenzene	ND	0.0058	mg/Kg-dry	1	7/31/2014
2-Hexanone	ND	0.023	mg/Kg-dry	1	7/31/2014
4-Methyl-2-pentanone	ND	0.023	mg/Kg-dry	1	7/31/2014
Methylene chloride	ND	0.012	mg/Kg-dry	1	7/31/2014
Methyl tert-butyl ether	ND	0.0058	mg/Kg-dry	1	7/31/2014
Styrene	ND	0.0058	mg/Kg-dry	1	7/31/2014
1,1,2,2-Tetrachloroethane	ND	0.0058	mg/Kg-dry	1	7/31/2014
Tetrachloroethene	ND	0.0058	mg/Kg-dry	1	7/31/2014
Toluene	ND	0.0058	mg/Kg-dry	1	7/31/2014
1,1,1-Trichloroethane	ND	0.0058	mg/Kg-dry	1	7/31/2014
1,1,2-Trichloroethane	ND	0.0058	mg/Kg-dry	1	7/31/2014
Trichloroethene	ND	0.0058	mg/Kg-dry	1	7/31/2014
Vinyl chloride	ND	0.0058	mg/Kg-dry	1	7/31/2014
Xylenes, Total	ND	0.017	mg/Kg-dry	1	7/31/2014
Cyanide, Total	SW90	12A	Prep	Date: 7/24/2014	Analyst: YZ
Cyanide	ND	0.32	mg/Kg-dry	1	7/25/2014
pH (25 °C)	SW90)45C	Prep	Date: 7/29/2014	Analyst: RW
рН	6.7		pH Units	1	7/29/2014
Percent Moisture	D297	4	Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	21.3	0.2	* wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: Cedar-SB-2-0003

Work Order: 14070878 Revision 0 **Collection Date:** 7/23/2014 12:20:00 PM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14070878-093

Analyses	Result	RL Q	Qualifier Units	DF	Date Analyzed
Mercury	SW7	471A	Prep	Date: 7/28/2014	Analyst: LB
Mercury	0.034	0.023	mg/Kg-dry	1	7/29/2014
Metals by ICP/MS	SW6	020 (SW3050	OB) Prep	Date: 7/25/2014	Analyst: JG
Aluminum	15000	220	mg/Kg-dry	100	7/25/2014
Antimony	ND	2.2	mg/Kg-dry	10	7/25/2014
Arsenic	8.3	1.1	mg/Kg-dry	10	7/25/2014
Barium	73	1.1	mg/Kg-dry	10	7/25/2014
Beryllium	ND	0.56	mg/Kg-dry	10	7/25/2014
Cadmium	ND	0.56	mg/Kg-dry	10	7/25/2014
Calcium	1800	670	mg/Kg-dry	100	7/25/2014
Chromium	16	1.1	mg/Kg-dry	10	7/25/2014
Cobalt	8.0	1.1	mg/Kg-dry	10	7/25/2014
Copper	14	2.8	mg/Kg-dry	10	7/25/2014
Iron	22000	340	mg/Kg-dry	100	7/25/2014
Lead	14	0.56	mg/Kg-dry	10	7/25/2014
Magnesium	3100	34	mg/Kg-dry	10	7/25/2014
Manganese	350	1.1	mg/Kg-dry	10	7/25/2014
Nickel	16	1.1	mg/Kg-dry	10	7/25/2014
Potassium	990	34	mg/Kg-dry	10	7/25/2014
Selenium	ND	1.1	mg/Kg-dry	10	7/25/2014
Silver	ND	1.1	mg/Kg-dry	10	7/25/2014
Sodium	ND	67	mg/Kg-dry	10	7/25/2014
Thallium	ND	1.1	mg/Kg-dry	10	7/25/2014
Vanadium	27	1.1	mg/Kg-dry	10	7/25/2014
Zinc	39	5.6	mg/Kg-dry	10	7/25/2014
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW35	50B) Prep	Date: 7/29/2014	Analyst: DM
Acenaphthene	ND	0.039	mg/Kg-dry	1	7/30/2014
Acenaphthylene	ND	0.039	mg/Kg-dry	1	7/30/2014
Aniline	ND	0.39	mg/Kg-dry	1	7/30/2014
Anthracene	ND	0.039	mg/Kg-dry	1	7/30/2014
Benz(a)anthracene	ND	0.039	mg/Kg-dry	1	7/30/2014
Benzidine	ND	0.39	mg/Kg-dry	1	7/30/2014
Benzo(a)pyrene	ND	0.039	mg/Kg-dry	1	7/30/2014
Benzo(b)fluoranthene	ND	0.039	mg/Kg-dry	1	7/30/2014
Benzo(g,h,i)perylene	ND	0.039	mg/Kg-dry	1	7/30/2014
Benzo(k)fluoranthene	ND	0.039	mg/Kg-dry	1	7/30/2014
Benzoic acid	ND	0.98	mg/Kg-dry	1	7/30/2014
Benzyl alcohol	ND	0.20	mg/Kg-dry	1	7/30/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Qualifier Units

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Analyzed

7/30/2014

7/30/2014

7/30/2014

7/30/2014

7/30/2014

7/30/2014

7/30/2014

7/30/2014

7/30/2014

DF

Date Printed: August 05, 2014

Analyses

Fluorene

Hexachlorobenzene

Hexachlorobutadiene

Indeno(1,2,3-cd)pyrene

2-Methylnaphthalene

2-Methylphenol

Hexachloroethane

Isophorone

Qualifiers:

Hexachlorocyclopentadiene

Client: Tetra Tech EM Inc. Client Sample ID: Cedar-SB-2-0003

Work Order: 14070878 Revision 0 **Collection Date**: 7/23/2014 12:20:00 PM

RL

Project: TPMHC, Tinley Park
Lab ID: 14070878-093

Matrix: Soil

Result

Semivolatile Organic Compounds by GC/MS SW8270C (SW3550B) Prep Date: 7/29/2014 Analyst: DM Bis(2-chloroethoxy)methane ND 0.20 mg/Kg-dry 7/30/2014 1 mg/Kg-dry 7/30/2014 Bis(2-chloroethyl)ether ND 0.20 1 ND 0.98 1 7/30/2014 Bis(2-ethylhexyl)phthalate mg/Kg-dry mg/Kg-dry 4-Bromophenyl phenyl ether ND 0.20 1 7/30/2014 ND Butyl benzyl phthalate 0.20 mg/Kg-dry 1 7/30/2014 Carbazole ND 0.20 mg/Kg-dry 1 7/30/2014 4-Chloroaniline ND 0.20 mg/Kg-dry 1 7/30/2014 4-Chloro-3-methylphenol ND 0.39 1 7/30/2014 mg/Kg-dry 2-Chloronaphthalene ND 0.20 1 7/30/2014 mg/Kg-dry 2-Chlorophenol ND 0.20 mg/Kg-dry 1 7/30/2014 4-Chlorophenyl phenyl ether ND 0.20 mg/Kg-dry 1 7/30/2014 ND Chrysene 0.039 1 7/30/2014 mg/Kg-dry mg/Kg-dry Dibenz(a,h)anthracene ND 0.039 1 7/30/2014 ND 1 Dibenzofuran 0.20 mg/Kg-dry 7/30/2014 ND 0.20 1 7/30/2014 1,2-Dichlorobenzene mg/Kg-dry 1,3-Dichlorobenzene ND 0.20 mg/Kg-dry 1 7/30/2014 ND 0.20 7/30/2014 1,4-Dichlorobenzene mg/Kg-dry 1 3,3´-Dichlorobenzidine ND 0.20 mg/Kg-dry 1 7/30/2014 2,4-Dichlorophenol ND 0.20 mg/Kg-dry 1 7/30/2014 Diethyl phthalate ND mg/Kg-dry 7/30/2014 0.20 2,4-Dimethylphenol ND 0.20 mg/Kg-dry 1 7/30/2014 ND Dimethyl phthalate 0.20 mg/Kg-dry 1 7/30/2014 4,6-Dinitro-2-methylphenol ND 0.39 1 mg/Kg-dry 7/30/2014 2,4-Dinitrophenol ND 0.98 mg/Kg-dry 1 7/30/2014 2,4-Dinitrotoluene ND 0.039 mg/Kg-dry 1 7/30/2014 2,6-Dinitrotoluene ND 0.039 mg/Kg-dry 1 7/30/2014 Di-n-butyl phthalate ND 0.20 mg/Kg-dry 1 7/30/2014 Di-n-octyl phthalate ND 0.20 1 7/30/2014 mg/Kg-dry Fluoranthene ND 0.039 mg/Kg-dry 1 7/30/2014

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

1

1

1

1

1

1

1

1

1

mg/Kg-dry

mg/Kg-dry

mg/Kg-dry

mg/Kg-dry

mg/Kg-dry

mg/Kg-dry

mg/Kg-dry

mg/Kg-dry

mg/Kg-dry

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

H - Holding time exceeded

0.039

0.20

0.20

0.20

0.20

0.039

0.20

0.20

0.20

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

Date Printed:

ANALYTICAL RESULTS

Client: Tetra Tech EM Inc.

August 05, 2014

Client Sample ID: Cedar-SB-2-0003 Work Order: 14070878 Revision 0

Collection Date: 7/23/2014 12:20:00 PM TPMHC, Tinley Park **Project:**

Matrix: Soil Lab ID: 14070878-093

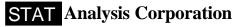
Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW	3550B) Prep	Date: 7/29/2014	4 Analyst: DM
4-Methylphenol	ND	0.20	mg/Kg-dry	1	7/30/2014
Naphthalene	ND	0.039	mg/Kg-dry	1	7/30/2014
2-Nitroaniline	ND	0.20	mg/Kg-dry	1	7/30/2014
3-Nitroaniline	ND	0.20	mg/Kg-dry	1	7/30/2014
4-Nitroaniline	ND	0.20	mg/Kg-dry	1	7/30/2014
2-Nitrophenol	ND	0.20	mg/Kg-dry	1	7/30/2014
4-Nitrophenol	ND	0.39	mg/Kg-dry	1	7/30/2014
Nitrobenzene	ND	0.039	mg/Kg-dry	1	7/30/2014
N-Nitrosodi-n-propylamine	ND	0.039	mg/Kg-dry	1	7/30/2014
N-Nitrosodimethylamine	ND	0.20	mg/Kg-dry	1	7/30/2014
N-Nitrosodiphenylamine	ND	0.039	mg/Kg-dry	1	7/30/2014
2, 2'-oxybis(1-Chloropropane)	ND	0.20	mg/Kg-dry	1	7/30/2014
Pentachlorophenol	ND	0.079	mg/Kg-dry	1	7/30/2014
Phenanthrene	ND	0.039	mg/Kg-dry	1	7/30/2014
Phenol	ND	0.20	mg/Kg-dry	1	7/30/2014
Pyrene	ND	0.039	mg/Kg-dry	1	7/30/2014
Pyridine	ND	0.79	mg/Kg-dry	1	7/30/2014
1,2,4-Trichlorobenzene	ND	0.20	mg/Kg-dry	1	7/30/2014
2,4,5-Trichlorophenol	ND	0.20	mg/Kg-dry	1	7/30/2014
2,4,6-Trichlorophenol	ND	0.20	mg/Kg-dry	1	7/30/2014
Volatile Organic Compounds by GC/MS	SW50	35/8260B	Prep	Date: 7/24/2014	4 Analyst: PS
Acetone	0.12	0.077	mg/Kg-dry	1	7/31/2014
Benzene	ND	0.0052	mg/Kg-dry	1	7/31/2014
Bromodichloromethane	ND	0.0052	mg/Kg-dry	1	7/31/2014
Bromoform	ND	0.0052	mg/Kg-dry	1	7/31/2014
Bromomethane	ND	0.010	mg/Kg-dry	1	7/31/2014
2-Butanone	ND	0.077	mg/Kg-dry	1	7/31/2014
Carbon disulfide	ND	0.052	mg/Kg-dry	1	7/31/2014
Carbon tetrachloride	ND	0.0052	mg/Kg-dry	1	7/31/2014
Chlorobenzene	ND	0.0052	mg/Kg-dry	1	7/31/2014
Chloroethane	ND	0.010	mg/Kg-dry	1	7/31/2014
Chloroform	ND	0.0052	mg/Kg-dry	1	7/31/2014
Chloromethane	ND	0.010	mg/Kg-dry	1	7/31/2014
Dibromochloromethane	ND	0.0052	mg/Kg-dry	1	7/31/2014
1,1-Dichloroethane	ND	0.0052	mg/Kg-dry	1	7/31/2014
1,2-Dichloroethane	ND	0.0052	mg/Kg-dry	1	7/31/2014
1,1-Dichloroethene	ND	0.0052	mg/Kg-dry	1	7/31/2014
cis-1,2-Dichloroethene	ND	0.0052	mg/Kg-dry	1	7/31/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time


* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: Cedar-SB-2-0003

Work Order: 14070878 Revision 0 **Collection Date**: 7/23/2014 12:20:00 PM

Project: TPMHC, Tinley Park

Matrix: Soil

Lab ID: 14070878-093

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 7/24/2014	Analyst: PS
trans-1,2-Dichloroethene	ND	0.0052	mg/Kg-dry	1	7/31/2014
1,2-Dichloropropane	ND	0.0052	mg/Kg-dry	1	7/31/2014
cis-1,3-Dichloropropene	ND	0.0021	mg/Kg-dry	1	7/31/2014
trans-1,3-Dichloropropene	ND	0.0021	mg/Kg-dry	1	7/31/2014
Ethylbenzene	ND	0.0052	mg/Kg-dry	1	7/31/2014
2-Hexanone	ND	0.021	mg/Kg-dry	1	7/31/2014
4-Methyl-2-pentanone	ND	0.021	mg/Kg-dry	1	7/31/2014
Methylene chloride	ND	0.010	mg/Kg-dry	1	7/31/2014
Methyl tert-butyl ether	ND	0.0052	mg/Kg-dry	1	7/31/2014
Styrene	ND	0.0052	mg/Kg-dry	1	7/31/2014
1,1,2,2-Tetrachloroethane	ND	0.0052	mg/Kg-dry	1	7/31/2014
Tetrachloroethene	ND	0.0052	mg/Kg-dry	1	7/31/2014
Toluene	ND	0.0052	mg/Kg-dry	1	7/31/2014
1,1,1-Trichloroethane	ND	0.0052	mg/Kg-dry	1	7/31/2014
1,1,2-Trichloroethane	ND	0.0052	mg/Kg-dry	1	7/31/2014
Trichloroethene	ND	0.0052	mg/Kg-dry	1	7/31/2014
Vinyl chloride	ND	0.0052	mg/Kg-dry	1	7/31/2014
Xylenes, Total	ND	0.015	mg/Kg-dry	1	7/31/2014
Cyanide, Total	SW90)12A	Prep	Date: 7/24/2014	Analyst: YZ
Cyanide	ND	0.30	mg/Kg-dry	1	7/25/2014
pH (25 °C)	SW9	045C	Prep	Date: 7/30/2014	Analyst: RW
рН	6.4		pH Units	1	7/30/2014
Percent Moisture	D297	4	Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	15.3	0.2	* wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

necreasimons.ini ii blair 100445,0kblair 12500001,niiiii-lair, bbc 101100,100211 Embedue 101202-

Date Reported: August 05, 2014 **Date Printed:** August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0
Project: TPMHC, Tinley Park

Lab ID: 14070878-094

ANALYTICAL RESULTS

Client Sample ID: Power-OD-SB-3-0507

Collection Date: 7/23/2014 2:50:00 PM Matrix: Soil

Analyses	Result	RL Q	Qualifier Units	DF	Date Analyzed
Mercury	SW	7471A	Prep	Date: 7/28/2014	Analyst: LB
Mercury	ND	0.024	mg/Kg-dry	1	7/28/2014
Metals by ICP/MS	sw	6020 (SW3050	OB) Prep	Date: 7/25/2014	Analyst: JG
Aluminum	7400	210	mg/Kg-dry	100	7/25/2014
Antimony	ND	2.1	mg/Kg-dry	10	7/28/2014
Arsenic	18	1.1	mg/Kg-dry	10	7/28/2014
Barium	41	1.1	mg/Kg-dry	10	7/28/2014
Beryllium	0.61	0.53	mg/Kg-dry	10	7/28/2014
Cadmium	ND	0.53	mg/Kg-dry	10	7/28/2014
Calcium	76000	640	mg/Kg-dry	100	7/25/2014
Chromium	14	1.1	mg/Kg-dry	10	7/28/2014
Cobalt	14	1.1	mg/Kg-dry	10	7/28/2014
Copper	22	2.7	mg/Kg-dry	10	7/28/2014
Iron	17000	320	mg/Kg-dry	100	7/25/2014
Lead	17	0.53	mg/Kg-dry	10	7/28/2014
Magnesium	40000	320	mg/Kg-dry	100	7/25/2014
Manganese	440	1.1	mg/Kg-dry	10	7/28/2014
Nickel	27	1.1	mg/Kg-dry	10	7/28/2014
Potassium	1500	32	mg/Kg-dry	10	7/28/2014
Selenium	ND	1.1	mg/Kg-dry	10	7/28/2014
Silver	ND	1.1	mg/Kg-dry	10	7/28/2014
Sodium	ND	640	mg/Kg-dry	100	7/25/2014
Thallium	ND	1.1	mg/Kg-dry	10	7/28/2014
Vanadium	18	1.1	mg/Kg-dry	10	7/28/2014
Zinc	52	5.3	mg/Kg-dry	10	7/28/2014
Semivolatile Organic Compounds by GC/MS	sw	8270C (SW35	50B) Prep	Date: 7/28/2014	Analyst: MEP
Acenaphthene	ND	0.040	mg/Kg-dry	1	7/29/2014
Acenaphthylene	ND	0.040	mg/Kg-dry	1	7/29/2014
Aniline	ND	0.40	mg/Kg-dry	1	7/29/2014
Anthracene	ND	0.040	mg/Kg-dry	1	7/29/2014
Benz(a)anthracene	ND	0.040	mg/Kg-dry	1	7/29/2014
Benzidine	ND	0.40	mg/Kg-dry	1	7/29/2014
Benzo(a)pyrene	ND	0.040	mg/Kg-dry	1	7/29/2014
Benzo(b)fluoranthene	ND	0.040	mg/Kg-dry	1	7/29/2014
Benzo(g,h,i)perylene	ND	0.040	mg/Kg-dry	1	7/29/2014
Benzo(k)fluoranthene	ND	0.040	mg/Kg-dry	1	7/29/2014
Benzoic acid	ND	1.0	mg/Kg-dry	1	7/29/2014
Benzyl alcohol	ND	0.21	mg/Kg-dry	1	7/29/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Client Sample ID: Power-OD-SB-3-0507

Collection Date: 7/23/2014 2:50:00 PM

Lab ID: 14070878-094 Matrix: Soil

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW827	70C (SW:	3550B) Prep	Date: 7/28/2014	Analyst: MEP
Bis(2-chloroethoxy)methane	ND	0.21	mg/Kg-dry	1	7/29/2014
Bis(2-chloroethyl)ether	ND	0.21	mg/Kg-dry	1	7/29/2014
Bis(2-ethylhexyl)phthalate	ND	1.0	mg/Kg-dry	1	7/29/2014
4-Bromophenyl phenyl ether	ND	0.21	mg/Kg-dry	1	7/29/2014
Butyl benzyl phthalate	ND	0.21	mg/Kg-dry	1	7/29/2014
Carbazole	ND	0.21	mg/Kg-dry	1	7/29/2014
4-Chloroaniline	ND	0.21	mg/Kg-dry	1	7/29/2014
4-Chloro-3-methylphenol	ND	0.40	mg/Kg-dry	1	7/29/2014
2-Chloronaphthalene	ND	0.21	mg/Kg-dry	1	7/29/2014
2-Chlorophenol	ND	0.21	mg/Kg-dry	1	7/29/2014
4-Chlorophenyl phenyl ether	ND	0.21	mg/Kg-dry	1	7/29/2014
Chrysene	ND	0.040	mg/Kg-dry	1	7/29/2014
Dibenz(a,h)anthracene	ND	0.040	mg/Kg-dry	1	7/29/2014
Dibenzofuran	ND	0.21	mg/Kg-dry	1	7/29/2014
1,2-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	7/29/2014
1,3-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	7/29/2014
1,4-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	7/29/2014
3,3´-Dichlorobenzidine	ND	0.21	mg/Kg-dry	1	7/29/2014
2,4-Dichlorophenol	ND	0.21	mg/Kg-dry	1	7/29/2014
Diethyl phthalate	ND	0.21	mg/Kg-dry	1	7/29/2014
2,4-Dimethylphenol	ND	0.21	mg/Kg-dry	1	7/29/2014
Dimethyl phthalate	ND	0.21	mg/Kg-dry	1	7/29/2014
4,6-Dinitro-2-methylphenol	ND	0.40	mg/Kg-dry	1	7/29/2014
2,4-Dinitrophenol	ND	1.0	mg/Kg-dry	1	7/29/2014
2,4-Dinitrotoluene	ND	0.040	mg/Kg-dry	1	7/29/2014
2,6-Dinitrotoluene	ND	0.040	mg/Kg-dry	1	7/29/2014
Di-n-butyl phthalate	ND	0.21	mg/Kg-dry	1	7/29/2014
Di-n-octyl phthalate	ND	0.21	mg/Kg-dry	1	7/29/2014
Fluoranthene	ND	0.040	mg/Kg-dry	1	7/29/2014
Fluorene	ND	0.040	mg/Kg-dry	1	7/29/2014
Hexachlorobenzene	ND	0.21	mg/Kg-dry	1	7/29/2014
Hexachlorobutadiene	ND	0.21	mg/Kg-dry	1	7/29/2014
Hexachlorocyclopentadiene	ND	0.21	mg/Kg-dry	1	7/29/2014
Hexachloroethane	ND	0.21	mg/Kg-dry	1	7/29/2014
Indeno(1,2,3-cd)pyrene	ND	0.040	mg/Kg-dry	1	7/29/2014
Isophorone	ND	0.21	mg/Kg-dry	1	7/29/2014
2-Methylnaphthalene	ND	0.21	mg/Kg-dry	1	7/29/2014
2-Methylphenol	ND	0.21	mg/Kg-dry	1	7/29/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Client Sample ID: Power-OD-SB-3-0507

Collection Date: 7/23/2014 2:50:00 PM

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Work Order: 14070878 Revision 0

TPMHC, Tinley Park **Project:** Matrix: Soil

Lab ID: 14070878-094

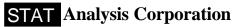
Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW3	3550B) Prep	Date: 7/28/2014	Analyst: MEP
4-Methylphenol	ND	0.21	mg/Kg-dry	1	7/29/2014
Naphthalene	ND	0.040	mg/Kg-dry	1	7/29/2014
2-Nitroaniline	ND	0.21	mg/Kg-dry	1	7/29/2014
3-Nitroaniline	ND	0.21	mg/Kg-dry	1	7/29/2014
4-Nitroaniline	ND	0.21	mg/Kg-dry	1	7/29/2014
2-Nitrophenol	ND	0.21	mg/Kg-dry	1	7/29/2014
4-Nitrophenol	ND	0.40	mg/Kg-dry	1	7/29/2014
Nitrobenzene	ND	0.040	mg/Kg-dry	1	7/29/2014
N-Nitrosodi-n-propylamine	ND	0.040	mg/Kg-dry	1	7/29/2014
N-Nitrosodimethylamine	ND	0.21	mg/Kg-dry	1	7/29/2014
N-Nitrosodiphenylamine	ND	0.040	mg/Kg-dry	1	7/29/2014
2, 2'-oxybis(1-Chloropropane)	ND	0.21	mg/Kg-dry	1	7/29/2014
Pentachlorophenol	ND	0.081	mg/Kg-dry	1	7/29/2014
Phenanthrene	ND	0.040	mg/Kg-dry	1	7/29/2014
Phenol	ND	0.21	mg/Kg-dry	1	7/29/2014
Pyrene	ND	0.040	mg/Kg-dry	1	7/29/2014
Pyridine	ND	0.81	mg/Kg-dry	1	7/29/2014
1,2,4-Trichlorobenzene	ND	0.21	mg/Kg-dry	1	7/29/2014
2,4,5-Trichlorophenol	ND	0.21	mg/Kg-dry	1	7/29/2014
2,4,6-Trichlorophenol	ND	0.21	mg/Kg-dry	1	7/29/2014
Volatile Organic Compounds by GC/MS	SW50	35/8260B	Prep	Date: 7/24/2014	Analyst: PS
Acetone	ND	0.072	mg/Kg-dry	1	7/31/2014
Benzene	ND	0.0048	mg/Kg-dry	1	7/31/2014
Bromodichloromethane	ND	0.0048	mg/Kg-dry	1	7/31/2014
Bromoform	ND	0.0048	mg/Kg-dry	1	7/31/2014
Bromomethane	ND	0.0096	mg/Kg-dry	1	7/31/2014
2-Butanone	ND	0.072	mg/Kg-dry	1	7/31/2014
Carbon disulfide	ND	0.048	mg/Kg-dry	1	7/31/2014
Carbon tetrachloride	ND	0.0048	mg/Kg-dry	1	7/31/2014
Chlorobenzene	ND	0.0048	mg/Kg-dry	1	7/31/2014
Chloroethane	ND	0.0096	mg/Kg-dry	1	7/31/2014
Chloroform	ND	0.0048	mg/Kg-dry	1	7/31/2014
Chloromethane	ND	0.0096	mg/Kg-dry	1	7/31/2014
Dibromochloromethane	ND	0.0048	mg/Kg-dry	1	7/31/2014
1,1-Dichloroethane	ND	0.0048	mg/Kg-dry	1	7/31/2014
1,2-Dichloroethane	ND	0.0048	mg/Kg-dry	1	7/31/2014
1,1-Dichloroethene	ND	0.0048	mg/Kg-dry	1	7/31/2014
cis-1,2-Dichloroethene	ND	0.0048	mg/Kg-dry	1	7/31/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time


* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations:IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Accreainations. IETA ELAT 100445, ORELAT ILS000001, ATTIA-LAT, ELC 101100, NV LAT Laucoue 101202-

Date Reported: August 05, 2014 **Date Printed:** August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14070878-094

ANALYTICAL RESULTS

Client Sample ID: Power-OD-SB-3-0507 Collection Date: 7/23/2014 2:50:00 PM

Matrix: Soil

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW50)35/8260B	Prep	Date: 7/24/2014	Analyst: PS
trans-1,2-Dichloroethene	ND	0.0048	mg/Kg-dry	1	7/31/2014
1,2-Dichloropropane	ND	0.0048	mg/Kg-dry	1	7/31/2014
cis-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	7/31/2014
trans-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	7/31/2014
Ethylbenzene	ND	0.0048	mg/Kg-dry	1	7/31/2014
2-Hexanone	ND	0.019	mg/Kg-dry	1	7/31/2014
4-Methyl-2-pentanone	ND	0.019	mg/Kg-dry	1	7/31/2014
Methylene chloride	ND	0.0096	mg/Kg-dry	1	7/31/2014
Methyl tert-butyl ether	ND	0.0048	mg/Kg-dry	1	7/31/2014
Styrene	ND	0.0048	mg/Kg-dry	1	7/31/2014
1,1,2,2-Tetrachloroethane	ND	0.0048	mg/Kg-dry	1	7/31/2014
Tetrachloroethene	ND	0.0048	mg/Kg-dry	1	7/31/2014
Toluene	ND	0.0048	mg/Kg-dry	1	7/31/2014
1,1,1-Trichloroethane	ND	0.0048	mg/Kg-dry	1	7/31/2014
1,1,2-Trichloroethane	ND	0.0048	mg/Kg-dry	1	7/31/2014
Trichloroethene	ND	0.0048	mg/Kg-dry	1	7/31/2014
Vinyl chloride	ND	0.0048	mg/Kg-dry	1	7/31/2014
Xylenes, Total	ND	0.014	mg/Kg-dry	1	7/31/2014
Cyanide, Total	SW90	12A	Prep	Date: 7/24/2014	Analyst: YZ
Cyanide	ND	0.30	mg/Kg-dry	1	7/25/2014
pH (25 °C)	SW90)45C	Prep	Date: 7/29/2014	Analyst: RW
pH	8.0		pH Units	1	7/29/2014
Percent Moisture	D297	4	Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	17.6	0.2	* wt%	1	7/25/2014

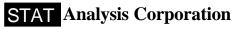
ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter


Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14070878-095

Client Sample ID: Cedar-FB-SS-1

Collection Date: 7/23/2014 12:30:00 PM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Mercury	SW7471A			Prep	Date: 7/28/2	014 Analyst: LB
Mercury	2.8	0.22		mg/Kg-dry	10	7/28/2014
pH (25 °C)	SW90450	;		Prep	Date: 7/29/2	014 Analyst: RW
рН	8.0			pH Units	1	7/29/2014
Percent Moisture	D2974			Prep	Date: 7/24/2 0	014 Analyst: RW
Percent Moisture	16.4	0.2	*	wt%	1	7/25/2014

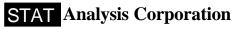
ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter


Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14070878-096

Client Sample ID: Cedar-FB-SS-2

Collection Date: 7/23/2014 12:36:00 PM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Mercury	SW7471A			Prep	Date: 7/28/2014	Analyst: LB
Mercury	44	2.4	1	mg/Kg-dry	100	7/28/2014
pH (25 °C)	SW9045C			Prep	Date: 7/29/2014	Analyst: RW
рН	7.8			pH Units	1	7/29/2014
Percent Moisture	D2974			Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	22.2	0.2	*	wt%	1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc.

Work Order: 14070878 Revision 0

Client Sample ID: Cedar-FB-SS-2-D

Work Order: 14070878 Revision 0
Project: TPMHC, Tinley Park

Collection Date: 7/23/2014 12:36:00 PM

Matrice Soil

Lab ID: 14070878-097 Matrix: Soil

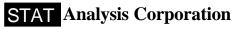
Analyses	Result	RL	Qualifier Un	nits	DF	Date Analyzed
Mercury	SW7471A			Prep	Date: 7/28/2014	Analyst: LB
Mercury	9.1	0.45	mg/K		20	7/28/2014
pH (25 °C)	SW9045C			Prep	Date: 7/29/2014	Analyst: RW
pH	7.6		pH U	Jnits .	1	7/29/2014
Percent Moisture	D2974			Prep	Date: 7/24/2014	Analyst: RW
Percent Moisture	13.2	0.2	* wt	:%	1	7/25/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time


* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

August 05, 2014

Date Printed:

Client: Tetra Tech EM Inc. Client Sample ID: Cedar-FB-SS-3 Work Order:

14070878 Revision 0 **Collection Date**: 7/23/2014 12:47:00 PM

Project: TPMHC, Tinley Park Matrix: Soil Lab ID: 14070878-098

Analyses	Result	RL	Qualifier Units	s DF	Date Analyzed
Mercury	SW7471A		Pr	ep Date: 7/2	8/2014 Analyst: LB
Mercury	6.2	0.24	mg/Kg-d	•	7/28/2014
pH (25 °C)	SW9045C		Pr	ep Date: 7/2	9/2014 Analyst: RW
рН	7.3		pH Unit	s 1	7/29/2014
Percent Moisture	D2974		Pr	ep Date: 7/2	4/2014 Analyst: RW
Percent Moisture	21.3	0.2	* wt%	. 1	7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accorditations: IEPA ELAP 100445-OPELAP II 300001-AIHA LAP LLC 101160-NVI AP II

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 05, 2014

ANALYTICAL RESULTS

Date Printed: August 05, 2014

Client: Tetra Tech EM Inc. Client Sample ID: Cedar-FB-SS-4

Work Order: 14070878 Revision 0 **Collection Date**: 7/23/2014 12:44:00 PM

Project: TPMHC, Tinley Park
Lab ID: 14070878-099

Matrix: Soil

Analyses Result **RL Qualifier Units** DF **Date Analyzed** Mercury SW7471A Prep Date: 7/28/2014 Analyst: LB Mercury 8.0 0.42 mg/Kg-dry 7/28/2014 20 pH (25 °C) SW9045C Prep Date: 7/29/2014 Analyst: RW 7.7 7/29/2014 **Percent Moisture** D2974 Prep Date: 7/24/2014 Analyst: RW Percent Moisture 21.6 0.2 wt% 7/25/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

STAT Analysis Corporation
2242 W. Harrison Suite 200, Chicago, Illinois 60612 Phone: (312) 733-0551 Fax: (312) 733-2386
e-mail address: STATinfo@STATAnalysis.com AIHA, NVLAP and NELAP accredited

)	<i>,</i>	(E	AIN OF	CHAIN OF CUSTODY RECORD	o N	856660 page.	09.60	90
Company: TETRA TECH					P.O. No.:	•		age .	
Project Number:		Client 7	Client Tracking No.:	No.:					
Project Name: TPM HC					Onote No .				
Project Location: TINLEY PARK									
Sampler(s): ADAM PETERCA! CORDELL	L RENNER								\
Report To: Tom HAHUE		32 (315)	4747-105(215)	14	\ 				
	Fax:	4 (SIZ) 201-0031) 201-0	031					Turn Around:
QC Level: 1 2 3 4	e-mail:	~	ne@tet	1 9	The state of the s				Stand:
Client Sample Number/Description:	Date Taken Taken		Comp. Grab	4 ō	13/20				am/pm
Maint-58-1-0003	7/21/14 0923	S						Remarks	Lab No.:
		V.		AF			K Chassel !	-1	- 0 g
Maint - 5B - 2-0003	7/21/14 1653	S			×××××				7 2 5
	7/21/14 1058	S			XXXX				200
-5B-3-0003	7/21/14 1350	S		AF 5	XXXX				2007
SB-2-1012-D	-+	2		AF S	XXXX				200
	7/21/14 1423	S		4F 5	X X X				450
					XXXX		***************************************		COCA
5B-4-0810	7/21/14 1502	S		A.F 5	XXX				3 6
Maint - SB - 5-0003	7/21/14 1534	S			X X X				010
5-0810	7/21/14 1545	S			XXX				
SB-5-0810-MSMSD	7/21/H 1545	Š		,,	XXXX		>		4
- -S	7/17	S	X	A	×				012
75-h-S7	1	S	X	4	X				230
	41/17	S	X	4	X				Dick
T-55-10-54	41/12/	S	×	. 4 .	X				000
1-55-(3-55	7/21/14 1155	S	X	A	X				3
-4-86	7/21/14 1005	S	×	A I	×				0.0
+5-9-	7/21/14 1025	S		4 -	×				375
T-55-7-58	7/21/14 1637	S	X,	4 1	×				200
Relinquished by: (Signature)	£	Date/Time: 7/	ne: 7 /73/	13/14 1949		1 20 Sept 50 mg	Laboratorv	Wark Order N	
Received by: (Signature)		Date/Time:			1949 Possible future Trip			りも・コフニ	0
Relinquished by: (Signature)		Date/Time:	ле:			i garage	ンゲー	ا ا ا	2/2
Received by: (Signature)		Date/Time:	ле:				Received	Received on Ice. Vec 1 No	
Relinquished by: (Signature)		Date/Time:	.je:		Preservation Code: A = None	e B = HNO, C = NaOH		21 	
Received by: (Signature)		Date/Time:	le:		: : DH	5035/EnCore		Temperature: (', U °C	ာ ့ /)
					1011 T 40071			, 	

STAT Analysis Corporation
2242 W. Harrison Suite 200, Chicago, Illinois 60612 Phone: (312) 733-0551 Fax: (312) 733-2386
e-mail address: STATinfo@STATAnalysis.com
AIHA, NYLAP and NEL.

AIHA, NVLAP and NELAP accredited

Project Number: Project Name: TPMHC					P.O. No.:				
Name: TPMHC		Client Tracking No.:	king No.		1.0.140:				
					Ouete Me.			(///	
Project Location: TINLEY PARK					Kuote 140	Ta.			
A: LANCE	SUMMERS								
Report To: Tom HAHNE	one:	727 201-7474	4141		000	No XX		Turn Around.	
	Fax:	312) 201-00	-0031			No constant		J. J.	
QC Level: 1 2 3 4	e-mail: 🔓	ton, halme Ottorate chocom	tarata	howm				Results Needed:	
Client Sample Number/Description: Date Taken	ken Time Taken	Matrix Comp.	Grab Preserv.	No. of Containers	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			-	
Lime-58-1-0204 7-22-14	1235	Sk	マダ	¢,mon			Kemarks	Lab No.:	
Line -58.2 - 0002	1245		<u> </u>	E-Processon	X			3 - 22	
-1/12 - SB-2-0204	1247		277920000		1 XX				
Jue - 58-3 10002	1316				××			700	
-Int - SB-3-0002-D	3.0		enipid 20 p _{depid}		×			295	
- 58-3-0204	12.15	-	estate est	>	×			207	
- 58-3-0204-MS/MSD	1315	_	<i>></i>	H	X			3	
1-88-	704	Processo	1 AF	ŧ5	XXXX		3	200	
- SB- 1	1410	erinomo	, <u>u</u>	L/s	XXXX		1	3/3	
158-7	1434	COLUMN TO A	A T	N	XXXX			320	
- 58-2-1416	27.20	~	Z Y	n	XXXX			620	
- 58-3-0003	_+		AF	2	XXXX			020	
58-3	amo		₩. TT	N	XXXX			150	
SB-4	855		A P	2	XXXX			020	
- 58.4	0000		A T	v	XXX				
188.5	6922		,	N	XXXX			とうの	
1 28	0117			S	XXXX		>	120	
Cedar - 58-6 - 0003	2001			\$	X	X		000	
77 77		*		n	XX	X		4	
- 3B-3-003 V	1040		<i>></i>	N	X	XX		070	
Relinquished by: (Signature)		Date/Time: 7/2 5	41/52/	1.5	Comments: [Some To		Tahoratory Work Order No.		43
Received by: (Signature)		Date/Time#	I P	5	Casible City			1	T T
Relinquished by: (Signature)		Date/Time:	L		Š	TI analysis		ころも	
Received by: (Signature)		Date/Time:					Received on Ice. Vec	Vec No.	
Relinquished by: (Signature)		Date/Time:			Preservation Code: A = None	ne B = HNO, C = NaOH) :	
Received by: (Signature)		Date/Time:			D = H.SO, $E = HCI$	5035/EnCore		Temperature: 5,4 °C	

STAT Analysis Corporation
2242 W. Harrison Suite 200, Chicago, Illinois 60612 Phone: (312) 733-0551 Fax: (312) 733-2386
e-mail address: STATinfo@STATAnalysis.com
AIHA, NVLAP and NEL

AIHA, NVLAP and NELAP accredited

Remarks Remarks Resured O O O O O O O O O O O O O O O O O O O					CE	(AIN O	F CUS	ODY	CHAIN OF CUSTODY RECORD	0		856654 Page: 3	3 of 6
September Street	Company:							.O. No.:					1
Property	Project Number:			Client	Tracking	No.:							
See Contract Con	Project Name:							Juote No		R			
The Part	Project Location:										/ /e		
Turn Account Finest Fine	Sampler(s):												\
First 1 2 3 4 1 1 1 1 1 1 1 1 1	Report To:		Phone:						\	D\			\
Liver 2			Fax:	(312)2					1		3		Turn Around:
Client Sample Number/Description: Traine 2	123		e-mail:					`					Results Needed
Payor - 1.P. 55 - 1.O Payor - 1.P. 55 - 1.D Payo	Client Sample Number/Description:	Date Taken		xirtsM		ļ	No. of ntainers	15.0	10/				/ am/pm
14.55 5.4	Power-LP-55-10	7-22-14	1	3,5	×	4		×	\frac{\times}{-}			Kemarks	Lab No.:
A	Power-LP-55-11	400000	1455	75	×	Change			×				の大の
Park - P	72	(CAPPER OLTHOGO)	1458	75	Ŗ.				X				720
	, 12,	-	1458	SL	X	No.	, ,	*	¥			>	() ()
		***************************************	1517	3/4	×	And the second s		×					M H O
1530 5L x 1530 5L x 1	.		15.7	24	X		7	X					
F - SR - D - O - O - O - O - O - O - O - O - O	Cottage -T-55.1	No.	1530	75	X			X					hho
F - 5B - 5 - 0003 F - 5B - 5B - 5B - 5B - BB - BB - BB - B	3	Webser	1530	SL	R	(cres)	į	×					レンつ
F = 5B = 5 - 010 4	3		745	34	X	ر م	vo		X X X	X			950
F - 58 - 6 - 0104 S 443 56	- 58 - C	**************************************	815	27	X.	7	S	\ 	XXX	Х			けない
F - (B - 6 - 0104 ~ P)	, SB - 6 - 0104		843	36	×	À.F.	4.0		XXX	×			230
1	~ (B-6 -0104"		₩ ₩ ₩	54			1.0		XXX	×			650
1	- SR-5-0003	.000.00	2	\$ <i>i</i>		- 1	10	^	XXX	X			070
1	するとう。		100	75	1	7	3						
12 2 2 2 2 2 2 2 2 2	- 38-2	acasperi Carell	942	3/			10	^	XXV	×			120
- 58 - 1 - 0104 - 58 - 2 - 0003 - M5/M5P - 58 - 4 - 0003 - 68 - 4 - 0003 - 68 - 4 - 0003 - 68 - 4 - 0003 - 68 - 4 - 0003 - 68 - 4 - 0003 - 68 - 4 - 0003 - 68 - 4 - 0003 - 68 - 4 - 0003 - 68 - 4 - 0003 - 68 - 4 - 0003 - 68 - 4 - 0003 - 68 - 4 - 0003 - 78 - 4 - 0003 - 78 - 4 - 0003 - 78 - 4 - 0003 - 78 - 4 - 0003 - 78 - 4 - 0003 - 78 - 4 - 0003 - 78 - 4 - 0003 - 78 - 4 - 0003 - 78 - 4 - 0003 - 78 - 4 - 0003 - 78 - 4 - 0003 - 78 - 4 - 0003 - 78 - 4 - 0003 - 78 - 4 - 0003 - 78 - 4 - 0003 - 78 - 4 - 0003 - 78 - 0003 - 78 - 0003 - 78	-48-3	-QISANGHA	5007	37			in	<u>^</u>	メメノ	X			120
58-2-0003-Ms/msp 442 5.L x h f f f f s x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x	1 5B-1		522	27	16000	AF S	10	_	XXX	X			67
126 5L X X X X X X X X X	- 58-2-0003-		942	27	×	A. F. W.	5.5	^	X X X	×			8
Lure) Lu	- SR - 4		1126	75					XXV	×			0500
Date/Time: 7(2/i)+ (944) Comments: 1; Save Total Samples for Laboratory Work Order No Date/Time: Da	-	>	1250	24		À				X			らんと
Date/Time: Date/Time: Date/Date/Date/Date/Date/Date/Date/Date/	Se II	X		Date/Ti	me: 1 /23			omments:	1. Save	Toru LEAN	1	Laboratory Work Or	ler No:
Date/Time: Date/Date/Date/Date/Date/Date/Date/Date/	har			Date/Ti	Home	1	646.	3055'ble	17.4	おかり		5 5 =	6
Date/Time: Date/Time: Date/Date/Date/Date/Date/Date/Date/Date/	Relinquished by: (Signature)			Date/Ti	me:	-	<u> </u>		<u>.</u>	Parks and	×1×	シュー	5,(0
Date/Time:	Received by: (Signature)			Date/Ti	me:							Received on Ice: Y	IN
Date/Time: $D = H_2SO_4 = HCI = 5035/EnCore = G = Other$	Relinquished by: (Signature)			Date/Ti	me:		P.	eservation		1	C = NaOH		\
	Received by: (Signature)			Date/Ti	me:) = H,SO ₄		50	G = Other	Temperature: <	ったい

STAT Analysis Corporation
2242 W. Harrison Suite 200, Chicago, Illinois 60612 Phone: (312) 733-0551 Fax: (312) 733-2386
e-mail address: STATinfo@STATAnalysis.com
AIHA, NVLAP and NEL

AIHA, NVLAP and NELAP accredited

			CHAIL	OF CUS	CHAIN OF CUSTODY RECORD		700000	Page: 4	ور م
Company: TETRA TECH					P.O. No.:			l	
		Client T	Client Tracking No.:		1000				
Project Name: TPMHC					Quote No.:				
Project Location: TANLEY PARK									
24 ; (DORDELL RENNER								\
Report To: Tom HAHVE	Phone:	(312)	41-14-102		3.				Turn Around:
	Fax:	(312) 20	201-0031					/	7
QC Level: 1 2 3 4	4 e-mail:	- 1	tom. Mahne@tetratechicom	techicom				Re	Results Needed:
Client Sample Number/Description:	Date Taken Taken	5 E xirtsM	Comp. Grab Preserv.	No. of Containers	A STATE OF THE PARTY OF THE PAR			-	am/pm
Power - LP-55-5	7/21/14 (1440	504	₹	_			200	So Contract	Can No.:
Power - LP-55-6	_	_	4		×				かいつ
Power-LP-55-6-D	主	-	₹	Macath	X				75C
7	7/21/14 1451		И		×				650
Power - LP-55-8	7/21/14 (456		Ų.		×				930
. LP. SS-0	I		A	-	X				190
	7/21/14 1555		A	,	X				290
Power - LP-55-13-MSMSD	40	1	4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	XX				061
Power - LP-SS-17	7/21/14 1549		A	-	××				V80370
Power - LP SS - 15	7/21/14 1544	5	A	-	X				064 der
	7/21/14 1540		4	aggrand	XX				065 66
Power - LP-55-17	7/21/14 1512	2 S	4		XX				No
[P-SS-	7/21/14 1535	S	4	· eggspan	XX				79C
Pauer - LP - 55 - 19	7/21/14 1520	S	4	-	XX				390
Ruer - LP-55-20	7/21/14 15/24	4.5	A.		XX			>	690
Atom Cadar - 58-3-0003	7/23/14 1256	\$	AF.	ľ	XX	X			540
Parer - 60-58-1-6003	1/23/14 1330	0	4,F	Z	XXX	×			けら
8	7/23/4 1340	5 0	AF	S	×	×			20
-00-SB-	7/23/41 1475	5 5	AF	5	×				0.23
Power-0B-58-2-05-07-D	7/23/14 1425	5 3	14F	5	×	×			なれの
Relinquished by: (Signature)		Date/Time: 7,	me:7/23/14	49	Comments: 1; Saw.	1: Saw Tran I was some	4	Laboratory Work Order No.:	
Received by: (Signature)	The transmission of the contract of the contra	Date/Time:	1554	bhbi hi	posible fature	Store ICI Paril	Ž	N AZZ	るみ
Relinquished by: (Signature)		Date/Time:	ne:		•	Carry II			o \
Received by: (Signature)		Date/Time:	ne:				Rec	Received on Ice: Yes	L %
Relinquished by: (Signature)		Date/Time:	ne:		Preservation Code: A = None	B = HNO ₃	C = NaOH	,	
								Temperature: < /	ζ° γ

Analysis Corporation 2242 W. Harrison Suite 200, Chicago, Illinois 60612 Phone: (312) 733-0551 Fax: (312) 733-2386

AIHA, NVLAP and NELAP accredited e-mail address: STATinfo@STATAnalysis.com

Turn Around: Results Needed: 9,0 83 080 480 272 587 28 94c CSS **5**% e 07K 3 20 770 S C Received on Ice: Yes Vo Temperature: 5.4°C Stand Page: 5 Remarks Smmen 856659 Comments: 1: Save Total Lend Symples for **Preservation Code:** A = None $B = HNO_3$ C = NaOHG = OtherTCLP analysis S₀ E = HCl F = 5035/EnCoreDate/Time: A27/14 194/19055166 future CHAIN OF CUSTODY RECORD Quote No.: $D = H_2SO_4$ P.O. No.: tom. halpre@tetratechium Date/Time: 7/23/14 1949 Containers AF 10 12/201-7474 Client Tracking No.: 全日 d. 312) 201-0031 Grab Comp. Date/Time: Date/Time Matrix 1430 Taken 7/21/14 1355 434 e-mail: Time 7/21/14 1050 0420 7/21/14 1410 1330 1334 077) (221) Phone: 7/21/14 1206 1336 7/21/14 1336 0929 7/21/14/1637 1 140 2 Fax: RENNER H1717/L 1/23/14 7/21/14 7/21/14 7/21/14 7/21/14 7/23/14 7/21/14 7/21/14 7/4/14 41/12// 7/21/14 7/23/14 Date Taken Sampler(s): ADAM PETERCA: CORDELL Client Sample Number/Description: 2001-58-2-0003-MSMSB TOM HAHAVE Project Location: |INLEY PETRA TECH Project Name: TPMHC Ledar - 5B - 7 - 0003 Powar - 14-55-4 SS- Spruce-1 edar - 58 - 1-0003 Relinquished by: (Signature) Pewer - 1P-55-3 -58-16-06 Hamin-T-55-19 Relinquished by: (Signature) Relinquished by: (Signature) T-SS-7-S8-D -85-14-05 - SS-10-UT - SS - 17- US Sowa-LP-55-2 Power - LP - 55 - 1 -3-72 - 55-8-TI - SS - 1 - U4 -SS-2-VI Received by: (Signature) Received by: (Signature) Received by: (Signature) Maint-GW-1 Project Number: QC Level: 1 Company: Report To:

AIHA, NVLAP and NELAP accredited STAT Analysis Corporation
2242 W. Harrison Suite 200, Chicago, Illinois 60612 Phone: (312) 733-0551 Fax: (312) 733-2386 e-mail address: STATinfo@STATAnalysis.com

am/pm Results Needed: Turn Around: Lab No.: 290 29.7 88 990 350 Temperature: 5.4 °C Received on Ice: Yes Vo 8+80+0h1 Laboratory Work Order No.: 856715 Page: 6 Remarks See Comment 1949 Comments: 1; Save Total Macuity samples for 4/19480ssible future TCLP availysis **Preservation Code:** A = None B = HNO₃ C = NaOH G = OtherĮ V $D=H_2SO_4 \quad E=HCl \quad F=5035/EnCore$ CHAIN OF CUSTODY RECORD Quote No.: No. of Containers tow. hahue & tetratech, com 1 Date/Time: 7/23/14 (312)201-0031 Client Tracking No .: 312) 201- 7474 Comp. Date/Time: Date/Time: Date/Time: Date/Time: Matrix Time Taken Phone: 450 1230 13% 1244 1244 1236 e-mail: 1520 7/23/14 SURMERS Date Taken Sampler(s): ADAM PETERCH: LANCE Client Sample Number/Description: Project Location: Tryler PARK edar - FB-55-4-MSMSD Company: TETRA TECHT Report To: TON HAHME TPMHC Relinquished by: (Signature) 🗸 Power-00-56-3-0507 Casar - FB-55-2-Relinquished by: (Signature) Cedar - FB - 55-2 -dar- FB-55-4 Relinquished by: (Signaturg) Jehr- FB-55-3 Cesar- FB-55-1 Received by: (Signature) Received by: (Signature) Received by: (Signature) Mr. T-55-1 Project Number: Project Name: QC Level: 1

Sample Receipt Checklist

Client Name TETRA CHICAGO		Date and Tin	ne Received:	7/23/2014 7:49:00 PM
Work Order Number 14070878		Received by:	JOK	
Checklist completed by: Signature Date Matrix: Carrier name	23/14 Client Delivered	Reviewed by	: FZ Initials	8/4/14 Date
Shipping container/cooler in good condition?	Yes 🗸	No 🗌	Not Present	
Custody seals intact on shippping container/cooler?	Yes	No 🗌	Not Present 🗹	
Custody seals intact on sample bottles?	Yes	No 🗌	Not Present 🗸	
Chain of custody present?	Yes 🗸	No 🗌		
Chain of custody signed when relinquished and received?	Yes 🗸	No 🗌		
Chain of custody agrees with sample labels/containers?	Yes	No 🗸		
Samples in proper container/bottle?	Yes 🗸	No 🗌		
Sample containers intact?	Yes 🗸	No 🗌		
Sufficient sample volume for indicated test?	Yes 🗸	No 🗌		
All samples received within holding time?	Yes 🗸	No 🗌		
Container or Temp Blank temperature in compliance?	Yes 🗸	No 🗌	Temperature	5.4 °C
Water - VOA vials have zero headspace? No VOA vials subm	itted	Yes 🗸	No 🗌	
Water - Samples pH checked?	Yes 🔳	No 💹	Checked by:	
Water - Samples properly preserved?	Yes	No 🔣	pH Adjusted?	Value
Any No response must be detailed in the comments section below.		000 000 000 000 000 000 000 000 000 00		
Comments: Sample IS Pine-T-SI but was not received.	-1 wa	g list.	ed on p	te coc
Client / Person Contacted: TM MAHNE Date contacted: 712 Response:	spor4 1050	Contac	ited by: W V	A MAR.

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

August 11, 2014

Tetra Tech EM Inc. 1 South Wacker Drive Chicago, IL 60606

Telephone: (312) 946-6474 Fax: (312) 938-0118

Analytical Report for STAT Work Order: 14080033 Revision 0

RE: TPMHC, Tinley Park

Dear Tom Hahne:

STAT Analysis received 8 samples for the referenced project on 8/1/2014 4:45:00 PM. The analytical results are presented in the following report.

All analyses were performed in accordance with the requirements of 35 IAC Part 186 / NELAC standards. Analyses were performed in accordance with methods as referenced on the analytical report. Those analytical results expressed on a dry weight basis are also noted on the analytical report.

All analyses were performed within established holding time criteria, and all Quality Control criteria met EPA or laboratory specifications except when noted in the Case Narrative or Analytical Report. If required, an estimate of uncertainty for the analyses can be provided. A listing of accredited methods/parameters can also be provided.

Thank you for the opportunity to serve you and I look forward to working with you in the future. If you have any questions regarding the enclosed materials, please contact me at (312) 733-0551.

Sincerely,

Frank Capoccia

Project Manager

The information contained in this report and any attachments is confidential information intended only for the use of the individual or entities named above. The results of this report relate only to the samples tested. If you have received this report in error, please notify us immediately by phone. This report shall not be reproduced, except in its entirety, unless written approval has been obtained from the laboratory. This analytical report shall become property of the Customer upon payment in full. Otherwise, STAT will be under no obligation to support, defend or discuss the analytical report.

Date: August 11, 2014

Client: Tetra Tech EM Inc.

Project: TPMHC, Tinley Park

Work Order: 14080033 Revision 0

Work Order: Tetra Tech EM Inc.

Work Order Sample Summary

Lab Sample ID	Client Sample ID	Tag Number	Collection Date	Date Received
14080033-001A	TP-1		7/31/2014 9:15:00 AM	8/1/2014
14080033-002A	TP-2		7/31/2014 10:05:00 AM	8/1/2014
14080033-003A	TP-3		7/31/2014 11:05:00 AM	8/1/2014
14080033-004A	TP-3-D		7/31/2014 11:05:00 AM	8/1/2014
14080033-005A	TP-4		7/31/2014 11:40:00 AM	8/1/2014
14080033-006A	TP-5		7/31/2014 12:30:00 PM	8/1/2014
14080033-007A	TP-6		7/31/2014 1:05:00 PM	8/1/2014
14080033-008A	TP-7		7/31/2014 1:40:00 PM	8/1/2014

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Client Sample ID: TP-1

Date Reported: August 11, 2014

ANALYTICAL RESULTS

Collection Date: 7/31/2014 9:15:00 AM

Date Printed: August 11, 2014

Client: Tetra Tech EM Inc.

Work Order: 14080033 Revision 0

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14080033-001

Analyses	Result	RL (Qualifier Units	DF	Date Analyzed
PCBs	SW8082	2 (SW355	50B) Prep	Date: 8/6/2014	Analyst: GVC
Aroclor 1016	ND	0.10	mg/Kg-dry	1	8/7/2014
Aroclor 1221	ND	0.10	mg/Kg-dry	1	8/7/2014
Aroclor 1232	ND	0.10	mg/Kg-dry	1	8/7/2014
Aroclor 1242	ND	0.10	mg/Kg-dry	1	8/7/2014
Aroclor 1248	ND	0.10	mg/Kg-dry	1	8/7/2014
Aroclor 1254	ND	0.10	mg/Kg-dry	1	8/7/2014
Aroclor 1260	ND	0.10	mg/Kg-dry	1	8/7/2014
Pesticides	SW8081	1 (SW355	50B) Prep	Date: 8/6/2014	Analyst: GVC
4,4´-DDD	ND	0.0020	mg/Kg-dry	1	8/7/2014
4,4´-DDE	ND	0.0020	mg/Kg-dry	1	8/7/2014
4,4´-DDT	ND	0.0020	mg/Kg-dry	1	8/7/2014
Aldrin	ND	0.0020	mg/Kg-dry	1	8/7/2014
alpha-BHC	ND	0.0020	mg/Kg-dry	1	8/7/2014
alpha-Chlordane	ND	0.0020	mg/Kg-dry	1	8/7/2014
beta-BHC	ND	0.0020	mg/Kg-dry	1	8/7/2014
Chlordane	ND	0.020	mg/Kg-dry	1	8/7/2014
delta-BHC	ND	0.0020	mg/Kg-dry	1	8/7/2014
Dieldrin	ND	0.0020	mg/Kg-dry	1	8/7/2014
Endosulfan I	ND	0.0020	mg/Kg-dry	1	8/7/2014
Endosulfan II	ND	0.0020	mg/Kg-dry	1	8/7/2014
Endosulfan sulfate	ND	0.0020	mg/Kg-dry	1	8/7/2014
Endrin	ND	0.0020	mg/Kg-dry	1	8/7/2014
Endrin aldehyde	ND	0.0020	mg/Kg-dry	1	8/7/2014
Endrin ketone	ND	0.0020	mg/Kg-dry	1	8/7/2014
gamma-BHC	ND	0.0020	mg/Kg-dry	1	8/7/2014
gamma-Chlordane	ND	0.0020	mg/Kg-dry	1	8/7/2014
Heptachlor	ND	0.0020	mg/Kg-dry	1	8/7/2014
Heptachlor epoxide	ND	0.0020	mg/Kg-dry	1	8/7/2014
Methoxychlor	ND	0.0020	mg/Kg-dry	1	8/7/2014
Toxaphene	ND	0.042	mg/Kg-dry	1	8/7/2014
Herbicides in Soil	SW8321	1A (SW35	550B) Prep	Date: 8/7/2014	Analyst: MEP
2,4,5-T	ND	0.0042	mg/Kg-dry	1	8/8/2014
2,4,5-TP (Silvex)	ND	0.0042	mg/Kg-dry	1	8/8/2014
2,4-D	ND	0.0042	mg/Kg-dry	1	8/8/2014
2,4-DB	ND	0.0085	mg/Kg-dry	1	8/8/2014
Dalapon	ND	0.042	mg/Kg-dry	1	8/8/2014
Dicamba	ND	0.0085	mg/Kg-dry	1	8/8/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Client Sample ID: TP-1

Date Reported: August 11, 2014

ANALYTICAL RESULTS

Date Printed:

Client: Tetra Tech EM Inc.

August 11, 2014

Work Order: 14080033 Revision 0 **Collection Date**: 7/31/2014 9:15:00 AM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14080033-001

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Herbicides in Soil	SW8	321A (SW3	550B)	Prep	Date: 8/7/2014	Analyst: MEP
Dichlorprop	ND	0.0085	n	ng/Kg-dry	1	8/8/2014
Dinoseb	ND	0.0085	n	ng/Kg-dry	1	8/8/2014
MCPA	ND	0.0085	n	ng/Kg-dry	1	8/8/2014
MCPP	ND	0.0042	n	ng/Kg-dry	1	8/8/2014
Picloram	ND	0.0085	* n	ng/Kg-dry	1	8/8/2014
TCLP Mercury	SW1:	311/7470A		Prep	Date: 8/5/2014	Analyst: LB
Mercury	ND	0.00020		mg/L	1	8/5/2014
Mercury	SW74	471A		Prep	Date: 8/6/2014	Analyst: LB
Mercury	0.031	0.023	n	ng/Kg-dry	1	8/6/2014
Metals by ICP/MS	SW6	020 (SW30	50B)	Prep	Date: 8/5/2014	Analyst: JG
Aluminum	17000	220	n	ng/Kg-dry	100	8/6/2014
Antimony	ND	2.2	n	ng/Kg-dry	10	8/6/2014
Arsenic	8.4	1.1	n	ng/Kg-dry	10	8/6/2014
Barium	120	1.1	n	ng/Kg-dry	10	8/6/2014
Beryllium	1.2	0.55	n	ng/Kg-dry	10	8/6/2014
Cadmium	ND	0.55	n	ng/Kg-dry	10	8/6/2014
Calcium	18000	660	n	ng/Kg-dry	100	8/6/2014
Chromium	22	1.1	n	ng/Kg-dry	10	8/6/2014
Cobalt	11	1.1	n	ng/Kg-dry	10	8/6/2014
Copper	22	2.8	n	ng/Kg-dry	10	8/6/2014
Iron	27000	330	n	ng/Kg-dry	100	8/6/2014
Lead	21	0.55	n	ng/Kg-dry	10	8/6/2014
Magnesium	9800	33	n	ng/Kg-dry	10	8/6/2014
Manganese	530	1.1	n	ng/Kg-dry	10	8/6/2014
Nickel	27	1.1	n	ng/Kg-dry	10	8/6/2014
Potassium	1700	33	n	ng/Kg-dry	10	8/6/2014
Selenium	ND	1.1	n	ng/Kg-dry	10	8/6/2014
Silver	ND	1.1	n	ng/Kg-dry	10	8/6/2014
Sodium	110	66	n	ng/Kg-dry	10	8/6/2014
Thallium	ND	1.1	n	ng/Kg-dry	10	8/6/2014
Vanadium	31	1.1	n	ng/Kg-dry	10	8/6/2014
Zinc	62	5.5	n	ng/Kg-dry	10	8/6/2014
TCLP Metals by ICP/MS	SW1	311/6020 (\$	SW3005A)	Prep	Date: 8/5/2014	Analyst: JG
Arsenic	ND	0.010	-	mg/L	5	8/6/2014
Barium	0.62	0.050		mg/L	5	8/6/2014
Cadmium	ND	0.0050		mg/L	5	8/6/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

Date Printed:

ANALYTICAL RESULTS

Client: Tetra Tech EM Inc.

August 11, 2014

Work Order: 14080033 Revision 0

TPMHC, Tinley Park **Project:**

Lab ID: 14080033-001 Client Sample ID: TP-1

Collection Date: 7/31/2014 9:15:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
TCLP Metals by ICP/MS	SW13	311/6020 (SW3005A)	Prep	Date: 8/5/2014	Analyst: JG
Chromium	ND	0.010	,	mg/L	5	8/6/2014
Lead	ND	0.0050		mg/L	5	8/6/2014
Selenium	ND	0.010		mg/L	5	8/6/2014
Silver	ND	0.010		mg/L	5	8/6/2014
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW	3550B)	Prep	Date: 8/6/2014	Analyst: DM
Acenaphthene	ND	0.042		mg/Kg-dry	1	8/10/2014
Acenaphthylene	ND	0.042		mg/Kg-dry	1	8/10/2014
Aniline	ND	0.42		mg/Kg-dry	1	8/10/2014
Anthracene	ND	0.042		mg/Kg-dry	1	8/10/2014
Benz(a)anthracene	ND	0.042		mg/Kg-dry	1	8/10/2014
Benzidine	ND	0.42		mg/Kg-dry	1	8/10/2014
Benzo(a)pyrene	ND	0.042		mg/Kg-dry	1	8/10/2014
Benzo(b)fluoranthene	ND	0.042		mg/Kg-dry	1	8/10/2014
Benzo(g,h,i)perylene	ND	0.042		mg/Kg-dry	1	8/10/2014
Benzo(k)fluoranthene	ND	0.042		mg/Kg-dry	1	8/10/2014
Benzoic acid	ND	1.1		mg/Kg-dry	1	8/10/2014
Benzyl alcohol	ND	0.22		mg/Kg-dry	1	8/10/2014
Bis(2-chloroethoxy)methane	ND	0.22		mg/Kg-dry	1	8/10/2014
Bis(2-chloroethyl)ether	ND	0.22		mg/Kg-dry	1	8/10/2014
Bis(2-ethylhexyl)phthalate	ND	1.1		mg/Kg-dry	1	8/10/2014
4-Bromophenyl phenyl ether	ND	0.22		mg/Kg-dry	1	8/10/2014
Butyl benzyl phthalate	ND	0.22		mg/Kg-dry	1	8/10/2014
Carbazole	ND	0.22		mg/Kg-dry	1	8/10/2014
4-Chloroaniline	ND	0.22		mg/Kg-dry	1	8/10/2014
4-Chloro-3-methylphenol	ND	0.42		mg/Kg-dry	1	8/10/2014
2-Chloronaphthalene	ND	0.22		mg/Kg-dry	1	8/10/2014
2-Chlorophenol	ND	0.22		mg/Kg-dry	1	8/10/2014
4-Chlorophenyl phenyl ether	ND	0.22		mg/Kg-dry	1	8/10/2014
Chrysene	ND	0.042		mg/Kg-dry	1	8/10/2014
Dibenz(a,h)anthracene	ND	0.042		mg/Kg-dry	1	8/10/2014
Dibenzofuran	ND	0.22		mg/Kg-dry	1	8/10/2014
1,2-Dichlorobenzene	ND	0.22		mg/Kg-dry	1	8/10/2014
1,3-Dichlorobenzene	ND	0.22		mg/Kg-dry	1	8/10/2014
1,4-Dichlorobenzene	ND	0.22		mg/Kg-dry	1	8/10/2014
3,3´-Dichlorobenzidine	ND	0.22		mg/Kg-dry	1	8/10/2014
2,4-Dichlorophenol	ND	0.22		mg/Kg-dry	1	8/10/2014
Diethyl phthalate	ND	0.22		mg/Kg-dry	1	8/10/2014
2,4-Dimethylphenol	ND	0.22		mg/Kg-dry	1	8/10/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

Date Printed:

ANALYTICAL RESULTS

Client: Tetra Tech EM Inc.

August 11, 2014

Client Sample ID: TP-1 Work Order: 14080033 Revision 0

Collection Date: 7/31/2014 9:15:00 AM Project: TPMHC, Tinley Park

Matrix: Soil Lab ID: 14080033-001

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	70C (SW	3550B) Prep	Date: 8/6/2014	Analyst: DM
Dimethyl phthalate	ND	0.22	mg/Kg-dry	1	8/10/2014
4,6-Dinitro-2-methylphenol	ND	0.42	mg/Kg-dry	1	8/10/2014
2,4-Dinitrophenol	ND	1.1	mg/Kg-dry	1	8/10/2014
2,4-Dinitrotoluene	ND	0.042	mg/Kg-dry	1	8/10/2014
2,6-Dinitrotoluene	ND	0.042	mg/Kg-dry	1	8/10/2014
Di-n-butyl phthalate	ND	0.22	mg/Kg-dry	1	8/10/2014
Di-n-octyl phthalate	ND	0.22	mg/Kg-dry	1	8/10/2014
Fluoranthene	ND	0.042	mg/Kg-dry	1	8/10/2014
Fluorene	ND	0.042	mg/Kg-dry	1	8/10/2014
Hexachlorobenzene	ND	0.22	mg/Kg-dry	1	8/10/2014
Hexachlorobutadiene	ND	0.22	mg/Kg-dry	1	8/10/2014
Hexachlorocyclopentadiene	ND	0.22	mg/Kg-dry	1	8/10/2014
Hexachloroethane	ND	0.22	mg/Kg-dry	1	8/10/2014
Indeno(1,2,3-cd)pyrene	ND	0.042	mg/Kg-dry	1	8/10/2014
Isophorone	ND	0.22	mg/Kg-dry	1	8/10/2014
2-Methylnaphthalene	ND	0.22	mg/Kg-dry	1	8/10/2014
2-Methylphenol	ND	0.22	mg/Kg-dry	1	8/10/2014
4-Methylphenol	ND	0.22	mg/Kg-dry	1	8/10/2014
Naphthalene	ND	0.042	mg/Kg-dry	1	8/10/2014
2-Nitroaniline	ND	0.22	mg/Kg-dry	1	8/10/2014
3-Nitroaniline	ND	0.22	mg/Kg-dry	1	8/10/2014
4-Nitroaniline	ND	0.22	mg/Kg-dry	1	8/10/2014
2-Nitrophenol	ND	0.22	mg/Kg-dry	1	8/10/2014
4-Nitrophenol	ND	0.42	mg/Kg-dry	1	8/10/2014
Nitrobenzene	ND	0.042	mg/Kg-dry	1	8/10/2014
N-Nitrosodi-n-propylamine	ND	0.042	mg/Kg-dry	1	8/10/2014
N-Nitrosodimethylamine	ND	0.22	mg/Kg-dry	1	8/10/2014
N-Nitrosodiphenylamine	ND	0.042	mg/Kg-dry	1	8/10/2014
2, 2'-oxybis(1-Chloropropane)	ND	0.22	mg/Kg-dry	1	8/10/2014
Pentachlorophenol	ND	0.085	mg/Kg-dry	1	8/10/2014
Phenanthrene	ND	0.042	mg/Kg-dry	1	8/10/2014
Phenol	ND	0.22	mg/Kg-dry	1	8/10/2014
Pyrene	ND	0.042	mg/Kg-dry	1	8/10/2014
Pyridine	ND	0.85	mg/Kg-dry	1	8/10/2014
1,2,4-Trichlorobenzene	ND	0.22	mg/Kg-dry	1	8/10/2014
2,4,5-Trichlorophenol	ND	0.22	mg/Kg-dry	1	8/10/2014
2,4,6-Trichlorophenol	ND	0.22	mg/Kg-dry	1	8/10/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

ANALYTICAL RESULTS

Date Printed: August 11, 2014

Client: Tetra Tech EM Inc.

Work Order: 14080033 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14080033-001

Client Sample ID: TP-1

Collection Date: 7/31/2014 9:15:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	r Units	DF	Date Analyzed
Cyanide, Total	SW9012A	ı.		Prep	Date: 8/5/2014	Analyst: YZ
Cyanide	ND	0.32		mg/Kg-dry	1	8/6/2014
pH (25 °C)	SW9045C	;		Prep	Date: 8/7/2014	Analyst: RW
рН	7.7			pH Units	1	8/7/2014
Percent Moisture	D2974			Prep	Date: 8/4/2014	Analyst: RW
Percent Moisture	21.7	0.2	*	wt%	1	8/5/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

ANALYTICAL RESULTS

Date Reported: August 11, 2014

August 11, 2014

Date Printed:

Client:

Tetra Tech EM Inc. Client Sample ID: TP-2 Work Order: 14080033 Revision 0 Collection Date: 7/31/2014 10:05:00 AM

TPMHC, Tinley Park **Project:** Matrix: Soil

Lab ID: 14080033-002

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
PCBs	SW8082	(SW35	50B)	Prep	Date: 8/6/2014	Analyst: GVC
Aroclor 1016	ND	0.091		g/Kg-dry	1	8/7/2014
Aroclor 1221	ND	0.091	m	g/Kg-dry	1	8/7/2014
Aroclor 1232	ND	0.091	m	g/Kg-dry	1	8/7/2014
Aroclor 1242	ND	0.091	m	g/Kg-dry	1	8/7/2014
Aroclor 1248	ND	0.091	m	g/Kg-dry	1	8/7/2014
Aroclor 1254	ND	0.091	m	g/Kg-dry	1	8/7/2014
Aroclor 1260	ND	0.091	m	g/Kg-dry	1	8/7/2014
Pesticides	SW8081	(SW35	50B)	Prep	Date: 8/6/2014	Analyst: GVC
4,4´-DDD	ND	0.0018	m	g/Kg-dry	1	8/7/2014
4,4'-DDE	ND	0.0018	m	g/Kg-dry	1	8/7/2014
4,4´-DDT	ND	0.0018	m	g/Kg-dry	1	8/7/2014
Aldrin	ND	0.0018	m	g/Kg-dry	1	8/7/2014
alpha-BHC	ND	0.0018	m	g/Kg-dry	1	8/7/2014
alpha-Chlordane	ND	0.0018	m	g/Kg-dry	1	8/7/2014
beta-BHC	ND	0.0018	m	g/Kg-dry	1	8/7/2014
Chlordane	ND	0.018	m	g/Kg-dry	1	8/7/2014
delta-BHC	ND	0.0018	m	g/Kg-dry	1	8/7/2014
Dieldrin	ND	0.0018	m	g/Kg-dry	1	8/7/2014
Endosulfan I	ND	0.0018	m	g/Kg-dry	1	8/7/2014
Endosulfan II	ND	0.0018	m	g/Kg-dry	1	8/7/2014
Endosulfan sulfate	ND	0.0018	m	g/Kg-dry	1	8/7/2014
Endrin	ND	0.0018	m	g/Kg-dry	1	8/7/2014
Endrin aldehyde	ND	0.0018	m	g/Kg-dry	1	8/7/2014
Endrin ketone	ND	0.0018	m	g/Kg-dry	1	8/7/2014
gamma-BHC	ND	0.0018	m	g/Kg-dry	1	8/7/2014
gamma-Chlordane	ND	0.0018	m	g/Kg-dry	1	8/7/2014
Heptachlor	ND	0.0018	m	g/Kg-dry	1	8/7/2014
Heptachlor epoxide	ND	0.0018	m	g/Kg-dry	1	8/7/2014
Methoxychlor	ND	0.0018	m	g/Kg-dry	1	8/7/2014
Toxaphene	ND	0.038	m	g/Kg-dry	1	8/7/2014
Herbicides in Soil	SW8321	A (SW3	550B)	Prep	Date: 8/7/2014	Analyst: MEP
2,4,5-T	ND	0.0038	m	g/Kg-dry	1	8/8/2014
2,4,5-TP (Silvex)	ND	0.0038	m	g/Kg-dry	1	8/8/2014
2,4-D	ND	0.0038	m	g/Kg-dry	1	8/8/2014
2,4-DB	ND	0.0077	m	g/Kg-dry	1	8/8/2014
Dalapon	ND	0.038	m	g/Kg-dry	1	8/8/2014
Dicamba	ND	0.0077	m	g/Kg-dry	1	8/8/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

ANALYTICAL RESULTS

Date Reported: August 11, 2014 **Date Printed:** August 11, 2014

Client: Tetra Tech EM Inc. Client Sample ID: TP-2

Work Order: 14080033 Revision 0 **Collection Date**: 7/31/2014 10:05:00 AM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14080033-002

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Herbicides in Soil	SW8	321A (SW3	3550B)	Prep	Date: 8/7/2014	Analyst: MEP
Dichlorprop	ND	0.0077	mg	g/Kg-dry	1	8/8/2014
Dinoseb	ND	0.0077	mg	g/Kg-dry	1	8/8/2014
MCPA	ND	0.0077	mg	g/Kg-dry	1	8/8/2014
MCPP	ND	0.0038	mg	g/Kg-dry	1	8/8/2014
Picloram	ND	0.0077	* mg	g/Kg-dry	1	8/8/2014
TCLP Mercury	SW1	311/7470A		Prep	Date: 8/5/2014	Analyst: LB
Mercury	ND	0.00020		mg/L	1	8/5/2014
Mercury	SW74	471A		Prep	Date: 8/6/2014	Analyst: LB
Mercury	0.033	0.018	mg	g/Kg-dry	1	8/6/2014
Metals by ICP/MS	SW6	020 (SW30)50B)	Prep	Date: 8/5/2014	Analyst: JG
Aluminum	16000	210	mg	g/Kg-dry	100	8/6/2014
Antimony	ND	2.1	mg	g/Kg-dry	10	8/6/2014
Arsenic	13	1.0	mg	g/Kg-dry	10	8/6/2014
Barium	73	1.0	mg	g/Kg-dry	10	8/6/2014
Beryllium	1.1	0.52	mg	g/Kg-dry	10	8/6/2014
Cadmium	ND	0.52	mg	g/Kg-dry	10	8/6/2014
Calcium	39000	620	mg	g/Kg-dry	100	8/6/2014
Chromium	21	1.0	mg	g/Kg-dry	10	8/6/2014
Cobalt	13	1.0	mg	g/Kg-dry	10	8/6/2014
Copper	31	2.6	mg	g/Kg-dry	10	8/6/2014
Iron	33000	310	mg	g/Kg-dry	100	8/6/2014
Lead	19	0.52	mg	g/Kg-dry	10	8/6/2014
Magnesium	16000	31	mg	g/Kg-dry	10	8/6/2014
Manganese	370	1.0	mg	g/Kg-dry	10	8/6/2014
Nickel	36	1.0	mg	g/Kg-dry	10	8/6/2014
Potassium	1900	31	mg	g/Kg-dry	10	8/6/2014
Selenium	ND	1.0	mg	g/Kg-dry	10	8/6/2014
Silver	ND	1.0	mg	g/Kg-dry	10	8/6/2014
Sodium	70	62	mg	g/Kg-dry	10	8/6/2014
Thallium	ND	1.0	mg	g/Kg-dry	10	8/6/2014
Vanadium	25	1.0	mg	g/Kg-dry	10	8/6/2014
Zinc	72	5.2	mg	g/Kg-dry	10	8/6/2014
TCLP Metals by ICP/MS	SW1:	311/6020 (\$	SW3005A)	Prep	Date: 8/5/2014	Analyst: JG
Arsenic	ND	0.010		mg/L	5	8/6/2014
Barium	0.58	0.050		mg/L	5	8/6/2014
Cadmium	ND	0.0050		mg/L	5	8/6/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014 **Date Printed:** August 11, 2014

ANALYTICAL RESULTS

Clients Test EMIs

Client: Tetra Tech EM Inc. Client Sample ID: TP-2

Work Order: 14080033 Revision 0 **Collection Date**: 7/31/2014 10:05:00 AM

Project: TPMHC, Tinley Park
Lab ID: Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
TCLP Metals by ICP/MS	SW13	311/6020 (SW3005A)	Prep	Date: 8/5/2014	Analyst: JG
Chromium	ND	0.010	•	mg/L	5	8/6/2014
Lead	ND	0.0050		mg/L	5	8/6/2014
Selenium	ND	0.010		mg/L	5	8/6/2014
Silver	ND	0.010		mg/L	5	8/6/2014
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW	3550B)	Prep	Date: 8/6/2014	Analyst: DM
Acenaphthene	ND	0.038	m	ng/Kg-dry	1	8/10/2014
Acenaphthylene	ND	0.038	m	ng/Kg-dry	1	8/10/2014
Aniline	ND	0.38	m	ng/Kg-dry	1	8/10/2014
Anthracene	ND	0.038	m	ng/Kg-dry	1	8/10/2014
Benz(a)anthracene	ND	0.038	m	ng/Kg-dry	1	8/10/2014
Benzidine	ND	0.38	m	ng/Kg-dry	1	8/10/2014
Benzo(a)pyrene	ND	0.038	m	ng/Kg-dry	1	8/10/2014
Benzo(b)fluoranthene	ND	0.038	m	ng/Kg-dry	1	8/10/2014
Benzo(g,h,i)perylene	ND	0.038	m	ng/Kg-dry	1	8/10/2014
Benzo(k)fluoranthene	ND	0.038	m	ng/Kg-dry	1	8/10/2014
Benzoic acid	ND	0.94	m	ng/Kg-dry	1	8/10/2014
Benzyl alcohol	ND	0.19	m	ng/Kg-dry	1	8/10/2014
Bis(2-chloroethoxy)methane	ND	0.19	m	ng/Kg-dry	1	8/10/2014
Bis(2-chloroethyl)ether	ND	0.19	m	ng/Kg-dry	1	8/10/2014
Bis(2-ethylhexyl)phthalate	ND	0.94	m	ng/Kg-dry	1	8/10/2014
4-Bromophenyl phenyl ether	ND	0.19	m	ng/Kg-dry	1	8/10/2014
Butyl benzyl phthalate	ND	0.19	m	ng/Kg-dry	1	8/10/2014
Carbazole	ND	0.19	m	ng/Kg-dry	1	8/10/2014
4-Chloroaniline	ND	0.19	m	ng/Kg-dry	1	8/10/2014
4-Chloro-3-methylphenol	ND	0.38	m	ng/Kg-dry	1	8/10/2014
2-Chloronaphthalene	ND	0.19	m	ng/Kg-dry	1	8/10/2014
2-Chlorophenol	ND	0.19	m	ng/Kg-dry	1	8/10/2014
4-Chlorophenyl phenyl ether	ND	0.19	m	ng/Kg-dry	1	8/10/2014
Chrysene	ND	0.038		ng/Kg-dry	1	8/10/2014
Dibenz(a,h)anthracene	ND	0.038	m	ng/Kg-dry	1	8/10/2014
Dibenzofuran	ND	0.19		ng/Kg-dry	1	8/10/2014
1,2-Dichlorobenzene	ND	0.19	m	ng/Kg-dry	1	8/10/2014
1,3-Dichlorobenzene	ND	0.19	m	ng/Kg-dry	1	8/10/2014
1,4-Dichlorobenzene	ND	0.19	m	ng/Kg-dry	1	8/10/2014
3,3'-Dichlorobenzidine	ND	0.19	m	ng/Kg-dry	1	8/10/2014
2,4-Dichlorophenol	ND	0.19		ng/Kg-dry	1	8/10/2014
Diethyl phthalate	ND	0.19		ng/Kg-dry	1	8/10/2014
2,4-Dimethylphenol	ND	0.19		ng/Kg-dry	1	8/10/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

ANALYTICAL RESULTS

August 11, 2014

Date Printed:

Client: Tetra Tech EM Inc.

Work Order: 14080033 Revision 0

TPMHC, Tinley Park Project:

Lab ID: 14080033-002 Client Sample ID: TP-2

Collection Date: 7/31/2014 10:05:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	70C (SW:	3550B) Prep	Date: 8/6/2014	Analyst: DM
Dimethyl phthalate	ND	0.19	mg/Kg-dry	1	8/10/2014
4,6-Dinitro-2-methylphenol	ND	0.38	mg/Kg-dry	1	8/10/2014
2,4-Dinitrophenol	ND	0.94	mg/Kg-dry	1	8/10/2014
2,4-Dinitrotoluene	ND	0.038	mg/Kg-dry	1	8/10/2014
2,6-Dinitrotoluene	ND	0.038	mg/Kg-dry	1	8/10/2014
Di-n-butyl phthalate	ND	0.19	mg/Kg-dry	1	8/10/2014
Di-n-octyl phthalate	ND	0.19	mg/Kg-dry	1	8/10/2014
Fluoranthene	ND	0.038	mg/Kg-dry	1	8/10/2014
Fluorene	ND	0.038	mg/Kg-dry	1	8/10/2014
Hexachlorobenzene	ND	0.19	mg/Kg-dry	1	8/10/2014
Hexachlorobutadiene	ND	0.19	mg/Kg-dry	1	8/10/2014
Hexachlorocyclopentadiene	ND	0.19	mg/Kg-dry	1	8/10/2014
Hexachloroethane	ND	0.19	mg/Kg-dry	1	8/10/2014
Indeno(1,2,3-cd)pyrene	ND	0.038	mg/Kg-dry	1	8/10/2014
Isophorone	ND	0.19	mg/Kg-dry	1	8/10/2014
2-Methylnaphthalene	ND	0.19	mg/Kg-dry	1	8/10/2014
2-Methylphenol	ND	0.19	mg/Kg-dry	1	8/10/2014
4-Methylphenol	ND	0.19	mg/Kg-dry	1	8/10/2014
Naphthalene	ND	0.038	mg/Kg-dry	1	8/10/2014
2-Nitroaniline	ND	0.19	mg/Kg-dry	1	8/10/2014
3-Nitroaniline	ND	0.19	mg/Kg-dry	1	8/10/2014
4-Nitroaniline	ND	0.19	mg/Kg-dry	1	8/10/2014
2-Nitrophenol	ND	0.19	mg/Kg-dry	1	8/10/2014
4-Nitrophenol	ND	0.38	mg/Kg-dry	1	8/10/2014
Nitrobenzene	ND	0.038	mg/Kg-dry	1	8/10/2014
N-Nitrosodi-n-propylamine	ND	0.038	mg/Kg-dry	1	8/10/2014
N-Nitrosodimethylamine	ND	0.19	mg/Kg-dry	1	8/10/2014
N-Nitrosodiphenylamine	ND	0.038	mg/Kg-dry	1	8/10/2014
2, 2'-oxybis(1-Chloropropane)	ND	0.19	mg/Kg-dry	1	8/10/2014
Pentachlorophenol	ND	0.076	mg/Kg-dry	1	8/10/2014
Phenanthrene	ND	0.038	mg/Kg-dry	1	8/10/2014
Phenol	ND	0.19	mg/Kg-dry	1	8/10/2014
Pyrene	ND	0.038	mg/Kg-dry	1	8/10/2014
Pyridine	ND	0.76	mg/Kg-dry	1	8/10/2014
1,2,4-Trichlorobenzene	ND	0.19	mg/Kg-dry	1	8/10/2014
2,4,5-Trichlorophenol	ND	0.19	mg/Kg-dry	1	8/10/2014
2,4,6-Trichlorophenol	ND	0.19	mg/Kg-dry	1	8/10/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

ANALYTICAL RESULTS

Date Printed: August 11, 2014

Client: Tetra Tech EM Inc.

Work Order: 14080033 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14080033-002

Client Sample ID: TP-2

Collection Date: 7/31/2014 10:05:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Cyanide, Total	SW9012A	L.		Prep	Date: 8/5/2014	Analyst: YZ
Cyanide	ND	0.29		mg/Kg-dry	1	8/6/2014
pH (25 °C)	SW90450	;		Prep	Date: 8/7/2014	Analyst: RW
рН	8.0			pH Units	1	8/7/2014
Percent Moisture	D2974			Prep	Date: 8/4/2014	Analyst: RW
Percent Moisture	12.9	0.2	*	wt%	1	8/5/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

August 11, 2014

Date Printed:

ANALYTICAL RESULTS

Client: Tetra Tech EM Inc. Client Sample ID: TP-3

Work Order: 14080033 Revision 0 **Collection Date**: 7/31/2014 11:05:00 AM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14080033-003

Analyses	Result	RL (Qualifier Uı	nits	DF	Date Analyzed
PCBs	SW8082	2 (SW355	50B)	Prep	Date: 8/6/2014	Analyst: GVC
Aroclor 1016	ND	0.10	mg/K		1	8/7/2014
Aroclor 1221	ND	0.10	mg/K	g-dry	1	8/7/2014
Aroclor 1232	ND	0.10	mg/K	g-dry	1	8/7/2014
Aroclor 1242	ND	0.10	mg/K	g-dry	1	8/7/2014
Aroclor 1248	ND	0.10	mg/K	g-dry	1	8/7/2014
Aroclor 1254	ND	0.10	mg/K	g-dry	1	8/7/2014
Aroclor 1260	ND	0.10	mg/K	g-dry	1	8/7/2014
Pesticides	SW8081	(SW355	50B)	Prep	Date: 8/6/2014	Analyst: GVC
4,4´-DDD	ND	0.0020	mg/K	g-dry	1	8/7/2014
4,4´-DDE	ND	0.0020	mg/K	g-dry	1	8/7/2014
4,4´-DDT	ND	0.0020	mg/K	g-dry	1	8/7/2014
Aldrin	ND	0.0020	mg/K	g-dry	1	8/7/2014
alpha-BHC	ND	0.0020	mg/K	g-dry	1	8/7/2014
alpha-Chlordane	ND	0.0020	mg/K	g-dry	1	8/7/2014
beta-BHC	ND	0.0020	mg/K	g-dry	1	8/7/2014
Chlordane	ND	0.020	mg/K	g-dry	1	8/7/2014
delta-BHC	ND	0.0020	mg/K	g-dry	1	8/7/2014
Dieldrin	ND	0.0020	mg/K	g-dry	1	8/7/2014
Endosulfan I	ND	0.0020	mg/K	g-dry	1	8/7/2014
Endosulfan II	ND	0.0020	mg/K	g-dry	1	8/7/2014
Endosulfan sulfate	ND	0.0020	mg/K	g-dry	1	8/7/2014
Endrin	ND	0.0020	mg/K	g-dry	1	8/7/2014
Endrin aldehyde	ND	0.0020	mg/K	g-dry	1	8/7/2014
Endrin ketone	ND	0.0020	mg/K	g-dry	1	8/7/2014
gamma-BHC	ND	0.0020	mg/K	g-dry	1	8/7/2014
gamma-Chlordane	ND	0.0020	mg/K	g-dry	1	8/7/2014
Heptachlor	ND	0.0020	mg/K	g-dry	1	8/7/2014
Heptachlor epoxide	ND	0.0020	mg/K	g-dry	1	8/7/2014
Methoxychlor	ND	0.0020	mg/K	g-dry	1	8/7/2014
Toxaphene	ND	0.042	mg/K	g-dry	1	8/7/2014
Herbicides in Soil	SW8321	A (SW3	550B)	Prep	Date: 8/7/2014	Analyst: MEP
2,4,5-T	ND	0.0042	mg/K	g-dry	1	8/8/2014
2,4,5-TP (Silvex)	ND	0.0042	mg/K	g-dry	1	8/8/2014
2,4-D	ND	0.0042	mg/K	g-dry	1	8/8/2014
2,4-DB	ND	0.0084	mg/K	g-dry	1	8/8/2014
Dalapon	ND	0.042	mg/K	g-dry	1	8/8/2014
Dicamba	ND	0.0084	mg/K	g-dry	1	8/8/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

ANALYTICAL RESULTS

Date Printed: August 11, 2014

Client: Tetra Tech EM Inc. Client Sample ID: TP-3

Work Order: 14080033 Revision 0 **Collection Date**: 7/31/2014 11:05:00 AM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14080033-003

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Herbicides in Soil	SW8	321A (SW3	550B)	Prep	Date: 8/7/2014	Analyst: MEP
Dichlorprop	ND	0.0084		ng/Kg-dry	1	8/8/2014
Dinoseb	ND	0.0084	n	ng/Kg-dry	1	8/8/2014
MCPA	ND	0.0084	n	ng/Kg-dry	1	8/8/2014
MCPP	ND	0.0042	n	ng/Kg-dry	1	8/8/2014
Picloram	ND	0.0084	* n	ng/Kg-dry	1	8/8/2014
TCLP Mercury	SW1:	311/7470A		Prep	Date: 8/5/2014	Analyst: LB
Mercury	ND	0.00020		mg/L	1	8/5/2014
Mercury	SW74	471A		Prep	Date: 8/5/2014	Analyst: LB
Mercury	0.028	0.022	n	ng/Kg-dry	1	8/5/2014
Metals by ICP/MS	SW6	020 (SW30	50B)	Prep	Date: 8/5/2014	Analyst: JG
Aluminum	16000	250	n	ng/Kg-dry	100	8/6/2014
Antimony	ND	2.5	n	ng/Kg-dry	10	8/6/2014
Arsenic	6.0	1.2	n	ng/Kg-dry	10	8/6/2014
Barium	110	1.2	n	ng/Kg-dry	10	8/6/2014
Beryllium	1.1	0.62	n	ng/Kg-dry	10	8/6/2014
Cadmium	ND	0.62	n	ng/Kg-dry	10	8/6/2014
Calcium	16000	740	n	ng/Kg-dry	100	8/6/2014
Chromium	21	1.2	n	ng/Kg-dry	10	8/6/2014
Cobalt	8.1	1.2	n	ng/Kg-dry	10	8/6/2014
Copper	23	3.1	n	ng/Kg-dry	10	8/6/2014
Iron	24000	370	n	ng/Kg-dry	100	8/6/2014
Lead	17	0.62	n	ng/Kg-dry	10	8/6/2014
Magnesium	8400	37	n	ng/Kg-dry	10	8/6/2014
Manganese	400	1.2	n	ng/Kg-dry	10	8/6/2014
Nickel	27	1.2	n	ng/Kg-dry	10	8/6/2014
Potassium	1400	37	n	ng/Kg-dry	10	8/6/2014
Selenium	ND	1.2	n	ng/Kg-dry	10	8/6/2014
Silver	ND	1.2	n	ng/Kg-dry	10	8/6/2014
Sodium	ND	74	n	ng/Kg-dry	10	8/6/2014
Thallium	ND	1.2	n	ng/Kg-dry	10	8/6/2014
Vanadium	27	1.2	n	ng/Kg-dry	10	8/6/2014
Zinc	58	6.2	n	ng/Kg-dry	10	8/6/2014
TCLP Metals by ICP/MS	SW1:	311/6020 (S	W3005A)	Prep	Date: 8/5/2014	Analyst: JG
Arsenic	ND	0.010		mg/L	5	8/6/2014
Barium	0.50	0.050		mg/L	5	8/6/2014
Cadmium	ND	0.0050		mg/L	5	8/6/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

ANALYTICAL RESULTS

Date Printed: August 11, 2014

Tetra Tech EM Inc. **Client:**

Client Sample ID: TP-3 Work Order: 14080033 Revision 0

Collection Date: 7/31/2014 11:05:00 AM TPMHC, Tinley Park **Project:**

Matrix: Soil Lab ID: 14080033-003

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
TCLP Metals by ICP/MS	SW13	311/6020 (SW3005A)	Prep	Date: 8/5/2014	Analyst: JG
Chromium	ND	0.010	,	mg/L	5	8/6/2014
Lead	ND	0.0050		mg/L	5	8/6/2014
Selenium	ND	0.010		mg/L	5	8/6/2014
Silver	ND	0.010		mg/L	5	8/6/2014
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW	3550B)	Prep	Date: 8/6/2014	Analyst: DM
Acenaphthene	ND	0.041		mg/Kg-dry	1	8/10/2014
Acenaphthylene	ND	0.041		mg/Kg-dry	1	8/10/2014
Aniline	ND	0.42		mg/Kg-dry	1	8/10/2014
Anthracene	ND	0.041		mg/Kg-dry	1	8/10/2014
Benz(a)anthracene	ND	0.041		mg/Kg-dry	1	8/10/2014
Benzidine	ND	0.41		mg/Kg-dry	1	8/10/2014
Benzo(a)pyrene	ND	0.041		mg/Kg-dry	1	8/10/2014
Benzo(b)fluoranthene	ND	0.041		mg/Kg-dry	1	8/10/2014
Benzo(g,h,i)perylene	ND	0.041		mg/Kg-dry	1	8/10/2014
Benzo(k)fluoranthene	ND	0.041		mg/Kg-dry	1	8/10/2014
Benzoic acid	ND	1.0		mg/Kg-dry	1	8/10/2014
Benzyl alcohol	ND	0.21		mg/Kg-dry	1	8/10/2014
Bis(2-chloroethoxy)methane	ND	0.21		mg/Kg-dry	1	8/10/2014
Bis(2-chloroethyl)ether	ND	0.21		mg/Kg-dry	1	8/10/2014
Bis(2-ethylhexyl)phthalate	ND	1.0		mg/Kg-dry	1	8/10/2014
4-Bromophenyl phenyl ether	ND	0.21		mg/Kg-dry	1	8/10/2014
Butyl benzyl phthalate	ND	0.21		mg/Kg-dry	1	8/10/2014
Carbazole	ND	0.21		mg/Kg-dry	1	8/10/2014
4-Chloroaniline	ND	0.21		mg/Kg-dry	1	8/10/2014
4-Chloro-3-methylphenol	ND	0.41		mg/Kg-dry	1	8/10/2014
2-Chloronaphthalene	ND	0.21		mg/Kg-dry	1	8/10/2014
2-Chlorophenol	ND	0.21		mg/Kg-dry	1	8/10/2014
4-Chlorophenyl phenyl ether	ND	0.21		mg/Kg-dry	1	8/10/2014
Chrysene	ND	0.041		mg/Kg-dry	1	8/10/2014
Dibenz(a,h)anthracene	ND	0.041		mg/Kg-dry	1	8/10/2014
Dibenzofuran	ND	0.21		mg/Kg-dry	1	8/10/2014
1,2-Dichlorobenzene	ND	0.21		mg/Kg-dry	1	8/10/2014
1,3-Dichlorobenzene	ND	0.21		mg/Kg-dry	1	8/10/2014
1,4-Dichlorobenzene	ND	0.21		mg/Kg-dry	1	8/10/2014
3,3´-Dichlorobenzidine	ND	0.21		mg/Kg-dry	1	8/10/2014
2,4-Dichlorophenol	ND	0.21		mg/Kg-dry	1	8/10/2014
Diethyl phthalate	ND	0.21		mg/Kg-dry	1	8/10/2014
2,4-Dimethylphenol	ND	0.21		mg/Kg-dry	1	8/10/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

ANALYTICAL RESULTS

Date Printed: August 11, 2014

Client: Tetra Tech EM Inc.

Work Order: 14080033 Revision 0

TPMHC, Tinley Park **Project:**

Lab ID: 14080033-003 **Client Sample ID:** TP-3

Collection Date: 7/31/2014 11:05:00 AM

Matrix: Soil

Analyses	Result	RL (Qualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	70C (SW35	550B) Prep	Date: 8/6/2014	Analyst: DM
Dimethyl phthalate	ND	0.21	mg/Kg-dry	1	8/10/2014
4,6-Dinitro-2-methylphenol	ND	0.41	mg/Kg-dry	1	8/10/2014
2,4-Dinitrophenol	ND	1.0	mg/Kg-dry	1	8/10/2014
2,4-Dinitrotoluene	ND	0.041	mg/Kg-dry	1	8/10/2014
2,6-Dinitrotoluene	ND	0.041	mg/Kg-dry	1	8/10/2014
Di-n-butyl phthalate	ND	0.21	mg/Kg-dry	1	8/10/2014
Di-n-octyl phthalate	ND	0.21	mg/Kg-dry	1	8/10/2014
Fluoranthene	ND	0.041	mg/Kg-dry	1	8/10/2014
Fluorene	ND	0.041	mg/Kg-dry	1	8/10/2014
Hexachlorobenzene	ND	0.21	mg/Kg-dry	1	8/10/2014
Hexachlorobutadiene	ND	0.21	mg/Kg-dry	1	8/10/2014
Hexachlorocyclopentadiene	ND	0.21	mg/Kg-dry	1	8/10/2014
Hexachloroethane	ND	0.21	mg/Kg-dry	1	8/10/2014
Indeno(1,2,3-cd)pyrene	ND	0.041	mg/Kg-dry	1	8/10/2014
Isophorone	ND	0.21	mg/Kg-dry	1	8/10/2014
2-Methylnaphthalene	ND	0.21	mg/Kg-dry	1	8/10/2014
2-Methylphenol	ND	0.21	mg/Kg-dry	1	8/10/2014
4-Methylphenol	ND	0.21	mg/Kg-dry	1	8/10/2014
Naphthalene	ND	0.041	mg/Kg-dry	1	8/10/2014
2-Nitroaniline	ND	0.21	mg/Kg-dry	1	8/10/2014
3-Nitroaniline	ND	0.21	mg/Kg-dry	1	8/10/2014
4-Nitroaniline	ND	0.21	mg/Kg-dry	1	8/10/2014
2-Nitrophenol	ND	0.21	mg/Kg-dry	1	8/10/2014
4-Nitrophenol	ND	0.41	mg/Kg-dry	1	8/10/2014
Nitrobenzene	ND	0.041	mg/Kg-dry	1	8/10/2014
N-Nitrosodi-n-propylamine	ND	0.041	mg/Kg-dry	1	8/10/2014
N-Nitrosodimethylamine	ND	0.21	mg/Kg-dry	1	8/10/2014
N-Nitrosodiphenylamine	ND	0.041	mg/Kg-dry	1	8/10/2014
2, 2'-oxybis(1-Chloropropane)	ND	0.21	mg/Kg-dry	1	8/10/2014
Pentachlorophenol	ND	0.084	mg/Kg-dry	1	8/10/2014
Phenanthrene	ND	0.041	mg/Kg-dry	1	8/10/2014
Phenol	ND	0.21	mg/Kg-dry	1	8/10/2014
Pyrene	ND	0.041	mg/Kg-dry	1	8/10/2014
Pyridine	ND	0.84	mg/Kg-dry	1	8/10/2014
1,2,4-Trichlorobenzene	ND	0.21	mg/Kg-dry	1	8/10/2014
2,4,5-Trichlorophenol	ND	0.21	mg/Kg-dry	1	8/10/2014
2,4,6-Trichlorophenol	ND	0.21	mg/Kg-dry	1	8/10/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

Date Printed:

ANALYTICAL RESULTS

Client: Tetra Tech EM Inc.

Work Order: 14080033 Revision 0

August 11, 2014

Project: TPMHC, Tinley Park

Lab ID: 14080033-003

Client Sample ID: TP-3

Collection Date: 7/31/2014 11:05:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Cyanide, Total	SW9012A			Prep	Date: 8/5/2014	Analyst: YZ
Cyanide	ND	0.32		mg/Kg-dry	1	8/6/2014
pH (25 °C)	SW9045C			Prep	Date: 8/7/2014	Analyst: RW
pH	8.0			pH Units	1	8/7/2014
Percent Moisture	D2974			Prep	Date: 8/4/2014	Analyst: RW
Percent Moisture	21.0	0.2	*	wt%	1	8/5/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

ANALYTICAL RESULTS

Date Printed: August 11, 2014

Client: Tetra Tech EM Inc. Client Sample ID: TP-3-D

Work Order: 14080033 Revision 0 **Collection Date**: 7/31/2014 11:05:00 AM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14080033-004

Analyses	Result	RL Qua	lifier Units	DF	Date Analyzed
Pesticides	SW80	81 (SW3550B)	Prep [Date: 8/7/2014	Analyst: GVC
4,4´-DDD	ND	0.0019	mg/Kg-dry	1	8/7/2014
4,4´-DDE	ND	0.0019	mg/Kg-dry	1	8/7/2014
4,4´-DDT	ND	0.0019	mg/Kg-dry	1	8/7/2014
Aldrin	ND	0.0019	mg/Kg-dry	1	8/7/2014
alpha-BHC	ND	0.0019	mg/Kg-dry	1	8/7/2014
alpha-Chlordane	ND	0.0019	mg/Kg-dry	1	8/7/2014
beta-BHC	ND	0.0019	mg/Kg-dry	1	8/7/2014
Chlordane	ND	0.019	mg/Kg-dry	1	8/7/2014
delta-BHC	ND	0.0019	mg/Kg-dry	1	8/7/2014
Dieldrin	ND	0.0019	mg/Kg-dry	1	8/7/2014
Endosulfan I	ND	0.0019	mg/Kg-dry	1	8/7/2014
Endosulfan II	ND	0.0019	mg/Kg-dry	1	8/7/2014
Endosulfan sulfate	ND	0.0019	mg/Kg-dry	1	8/7/2014
Endrin	ND	0.0019	mg/Kg-dry	1	8/7/2014
Endrin aldehyde	ND	0.0019	mg/Kg-dry	1	8/7/2014
Endrin ketone	ND	0.0019	mg/Kg-dry	1	8/7/2014
gamma-BHC	ND	0.0019	mg/Kg-dry	1	8/7/2014
gamma-Chlordane	ND	0.0019	mg/Kg-dry	1	8/7/2014
Heptachlor	ND	0.0019	mg/Kg-dry	1	8/7/2014
Heptachlor epoxide	ND	0.0019	mg/Kg-dry	1	8/7/2014
Methoxychlor	ND	0.0019	mg/Kg-dry	1	8/7/2014
Toxaphene	ND	0.039	mg/Kg-dry	1	8/7/2014
Herbicides in Soil	SW83	21A (SW3550B	Prep [Date: 8/7/2014	Analyst: MEP
2,4,5-T	ND	0.0039	mg/Kg-dry	1	8/8/2014
2,4,5-TP (Silvex)	ND	0.0039	mg/Kg-dry	1	8/8/2014
2,4-D	ND	0.0039	mg/Kg-dry	1	8/8/2014
2,4-DB	ND	0.0079	mg/Kg-dry	1	8/8/2014
Dalapon	ND	0.039	mg/Kg-dry	1	8/8/2014
Dicamba	ND	0.0079	mg/Kg-dry	1	8/8/2014
Dichlorprop	ND	0.0079	mg/Kg-dry	1	8/8/2014
Dinoseb	ND	0.0079	mg/Kg-dry	1	8/8/2014
MCPA	ND	0.0079	mg/Kg-dry	1	8/8/2014
MCPP	ND	0.0039	mg/Kg-dry	1	8/8/2014
Picloram	ND	0.0079	* mg/Kg-dry	1	8/8/2014
Percent Moisture	D2974	ļ	Prep [Date: 8/11/2014	Analyst: RW
Percent Moisture	16.1	0.2	* wt%	1	8/11/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

Date Printed:

ANALYTICAL RESULTS

Tetra Tech EM Inc. **Client:**

August 11, 2014

Client Sample ID: TP-4 Work Order: 14080033 Revision 0

Collection Date: 7/31/2014 11:40:00 AM TPMHC, Tinley Park **Project:**

Matrix: Soil Lab ID: 14080033-005

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
PCBs	SW8082	2 (SW35	50B) Prep	Date: 8/6/2014	Analyst: GVC
Aroclor 1016	ND	0.093	mg/Kg-dry	1	8/7/2014
Aroclor 1221	ND	0.093	mg/Kg-dry	1	8/7/2014
Aroclor 1232	ND	0.093	mg/Kg-dry	1	8/7/2014
Aroclor 1242	ND	0.093	mg/Kg-dry	1	8/7/2014
Aroclor 1248	ND	0.093	mg/Kg-dry	1	8/7/2014
Aroclor 1254	ND	0.093	mg/Kg-dry	1	8/7/2014
Aroclor 1260	ND	0.093	mg/Kg-dry	1	8/7/2014
Pesticides	SW8081	(SW35	50B) Prep	Date: 8/6/2014	Analyst: GVC
4,4´-DDD	ND	0.0019	mg/Kg-dry	1	8/7/2014
4,4´-DDE	ND	0.0019	mg/Kg-dry	1	8/7/2014
4,4´-DDT	ND	0.0019	mg/Kg-dry	1	8/7/2014
Aldrin	ND	0.0019	mg/Kg-dry	1	8/7/2014
alpha-BHC	ND	0.0019	mg/Kg-dry	1	8/7/2014
alpha-Chlordane	ND	0.0019	mg/Kg-dry	1	8/7/2014
beta-BHC	ND	0.0019	mg/Kg-dry	1	8/7/2014
Chlordane	ND	0.019	mg/Kg-dry	1	8/7/2014
delta-BHC	ND	0.0019	mg/Kg-dry	1	8/7/2014
Dieldrin	ND	0.0019	mg/Kg-dry	1	8/7/2014
Endosulfan I	ND	0.0019	mg/Kg-dry	1	8/7/2014
Endosulfan II	ND	0.0019	mg/Kg-dry	1	8/7/2014
Endosulfan sulfate	ND	0.0019	mg/Kg-dry	1	8/7/2014
Endrin	ND	0.0019	mg/Kg-dry	1	8/7/2014
Endrin aldehyde	ND	0.0019	mg/Kg-dry	1	8/7/2014
Endrin ketone	ND	0.0019	mg/Kg-dry	1	8/7/2014
gamma-BHC	ND	0.0019	mg/Kg-dry	1	8/7/2014
gamma-Chlordane	ND	0.0019	mg/Kg-dry	1	8/7/2014
Heptachlor	ND	0.0019	mg/Kg-dry	1	8/7/2014
Heptachlor epoxide	ND	0.0019	mg/Kg-dry	1	8/7/2014
Methoxychlor	ND	0.0019	mg/Kg-dry	1	8/7/2014
Toxaphene	ND	0.038	mg/Kg-dry	1	8/7/2014
Herbicides in Soil	SW8321	A (SW3	550B) Prep	Date: 8/7/2014	Analyst: MEP
2,4,5-T	ND	0.0038	mg/Kg-dry	1	8/8/2014
2,4,5-TP (Silvex)	ND	0.0038	mg/Kg-dry	1	8/8/2014
2,4-D	ND	0.0038	mg/Kg-dry	1	8/8/2014
2,4-DB	ND	0.0077	mg/Kg-dry	1	8/8/2014
Dalapon	ND	0.038	mg/Kg-dry	1	8/8/2014
Dicamba	ND	0.0077	mg/Kg-dry	1	8/8/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

August 11, 2014

Date Printed:

ANALYTICAL RESULTS

Client: Tetra Tech EM Inc. Client Sample ID: TP-4

Work Order: 14080033 Revision 0 **Collection Date**: 7/31/2014 11:40:00 AM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14080033-005

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Herbicides in Soil	SW8	321A (SW3	550B) Prep	Date: 8/7/2014	Analyst: MEP
Dichlorprop	ND	0.0077	mg/Kg-dry	1	8/8/2014
Dinoseb	ND	0.0077	mg/Kg-dry	1	8/8/2014
MCPA	ND	0.0077	mg/Kg-dry	1	8/8/2014
MCPP	ND	0.0038	mg/Kg-dry	1	8/8/2014
Picloram	ND	0.0077	* mg/Kg-dry	1	8/8/2014
TCLP Mercury	SW1:	311/7470A	Prep	Date: 8/6/2014	Analyst: LB
Mercury	ND	0.00020	mg/L	1	8/6/2014
Mercury	SW74	471A	Prep	Date: 8/6/2014	Analyst: LB
Mercury	0.030	0.023	mg/Kg-dry	1	8/6/2014
Metals by ICP/MS	SW6	020 (SW30	50B) Prep	Date: 8/5/2014	Analyst: JG
Aluminum	15000	240	mg/Kg-dry	100	8/6/2014
Antimony	ND	2.4	mg/Kg-dry	10	8/6/2014
Arsenic	8.4	1.2	mg/Kg-dry	10	8/6/2014
Barium	95	1.2	mg/Kg-dry	10	8/6/2014
Beryllium	1.1	0.60	mg/Kg-dry	10	8/6/2014
Cadmium	ND	0.60	mg/Kg-dry	10	8/6/2014
Calcium	32000	720	mg/Kg-dry	100	8/6/2014
Chromium	23	1.2	mg/Kg-dry	10	8/6/2014
Cobalt	13	1.2	mg/Kg-dry	10	8/6/2014
Copper	25	3.0	mg/Kg-dry	10	8/6/2014
Iron	27000	360	mg/Kg-dry	100	8/6/2014
Lead	28	0.60	mg/Kg-dry	10	8/6/2014
Magnesium	15000	36	mg/Kg-dry	10	8/6/2014
Manganese	430	1.2	mg/Kg-dry	10	8/6/2014
Nickel	32	1.2	mg/Kg-dry	10	8/6/2014
Potassium	2300	36	mg/Kg-dry	10	8/6/2014
Selenium	ND	1.2	mg/Kg-dry	10	8/6/2014
Silver	ND	1.2	mg/Kg-dry	10	8/6/2014
Sodium	ND	72	mg/Kg-dry	10	8/6/2014
Thallium	ND	1.2	mg/Kg-dry	10	8/6/2014
Vanadium	28	1.2	mg/Kg-dry	10	8/6/2014
Zinc	72	6.0	mg/Kg-dry	10	8/6/2014
TCLP Metals by ICP/MS	SW1:	311/6020 (S	W3005A) Prep	Date: 8/5/2014	Analyst: JG
Arsenic	ND	0.010	mg/L	5	8/6/2014
Barium	0.51	0.050	mg/L	5	8/6/2014
Cadmium	ND	0.0050	mg/L	5	8/6/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

August 11, 2014

Date Printed:

ANALYTICAL RESULTS

Client: Tetra Tech EM Inc. Client Sample ID: TP-4

Work Order: 14080033 Revision 0 **Collection Date**: 7/31/2014 11:40:00 AM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14080033-005

Chromium ND 0.010 mg/L 5 8/6/201 Lead ND 0.0050 mg/L 5 8/6/201 Selenium ND 0.010 mg/L 5 8/6/201 Silver ND 0.010 mg/L 5 8/6/2014 Analyst: Semivolatile Organic Compounds by GC/MS SW8270C (SW3550B) Prep Date: 8/6/2014 Analyst: Acenaphthene ND 0.038 mg/Kg-dry 1 8/10/20 Acenaphthylene ND 0.038 mg/Kg-dry 1 8/10/20 Anliracene ND 0.038 mg/Kg-dry 1 8/10/20 Anthracene ND 0.038 mg/Kg-dry 1 8/10/20 Benz(a)anthracene ND 0.038 mg/Kg-dry 1 8/10/20 Benz(b)fluoranthene ND 0.38 mg/Kg-dry 1 8/10/20 Benzo(b)fluoranthene ND 0.038 mg/Kg-dry 1 8/10/20 Benzo(c)fluoranthene ND	er U	Qualifie	Qualifier	Units	DF	Date Analyzed
Chromium ND 0.010 mg/L 5 8/6/201 Lead ND 0.0050 mg/L 5 8/6/201 Selenium ND 0.010 mg/L 5 8/6/201 Silver ND 0.010 mg/L 5 8/6/2014 Analyst: Semivolatile Organic Compounds by GC/MS SW8270C (SW3550B) Prep Date: 8/6/2014 Analyst: Acenaphthene ND 0.038 mg/Kg-dry 1 8/10/201 Acenaphthylene ND 0.038 mg/Kg-dry 1 8/10/201 Anlline ND 0.038 mg/Kg-dry 1 8/10/201 Anthracene ND 0.038 mg/Kg-dry 1 8/10/201 Benz(a)anthracene ND 0.038 mg/Kg-dry 1 8/10/201 Benz(b)ineranthene ND 0.038 mg/Kg-dry 1 8/10/201 Benz(b)fluoranthene ND 0.038 mg/Kg-dry 1 8/10/201 Benz(c)hilporphene ND 0.038	٠)	(SW3005A)	SW3005A)	Prep Da	ate: 8/5/2014	Analyst: JG
Selenium ND 0.010 mg/L 5 8/6/201 Silver ND 0.010 mg/L 5 8/6/201 Semivolatile Organic Compounds by GC/MS SW8270C (SW3550B) Prep Date: 8/6/2014 Analyst: 8/6/2014 Analyst: 8/10/201 Acenaphthene ND 0.038 mg/Kg-dry 1 8/10/201 Acenaphthylene ND 0.038 mg/Kg-dry 1 8/10/201 Aniline ND 0.038 mg/Kg-dry 1 8/10/201 Anthracene ND 0.038 mg/Kg-dry 1 8/10/201 Benz(a)janthracene ND 0.038 mg/Kg-dry 1 8/10/201 Benzidine ND 0.38 mg/Kg-dry 1 8/10/201 Benzidine ND 0.038 mg/Kg-dry 1 8/10/201 Benzidine ND 0.038 mg/Kg-dry 1 8/10/201 Benzidine ND 0.038 mg/Kg-dry 1 8/10/201 Benzidine ND	-	·	•	=		8/6/2014
Silver ND 0.010 mg/L 5 8/6/2014 Semivolatile Organic Compounds by GC/MS SW8270C (SW3550B) Prep Date: 8/6/2014 Analyst: Acenaphthene Acenaphthene ND 0.038 mg/Kg-dry 1 8/10/201 Acenaphthylene ND 0.038 mg/Kg-dry 1 8/10/201 Aniline ND 0.038 mg/Kg-dry 1 8/10/201 Anthracene ND 0.038 mg/Kg-dry 1 8/10/201 Benz(a)anthracene ND 0.038 mg/Kg-dry 1 8/10/201 Benzo(di)gricoranthene ND 0.038 mg/Kg-dry 1 8/10/201 Benzo(g), i)perylene ND 0.038 mg/Kg-dry 1 8/10/201 B	m			mg/L	5	8/6/2014
Semivolatile Organic Compounds by GC/MS SW8270C (SW3550B) Prep Date: 8/6/2014 Analysts Acenaphthene ND 0.038 mg/Kg-dry 1 8/10/2014 Acenaphthylene ND 0.038 mg/Kg-dry 1 8/10/2014 Aniline ND 0.39 mg/Kg-dry 1 8/10/2014 Antiracene ND 0.038 mg/Kg-dry 1 8/10/2014 Benz(a)anthracene ND 0.038 mg/Kg-dry 1 8/10/2016 Benzo(a)pyrene ND 0.038 mg/Kg-dry 1 8/10/2016 Benzo(a)pyrene ND 0.038 mg/Kg-dry 1 8/10/2016 Benzo(b)fluoranthene ND 0.038 mg/Kg-dry 1 8/10/2016 Benzo(k)fluoranthene ND 0.038 mg/Kg-dry 1 8/10/2016 Benzo(k)fluoranthene ND 0.038 mg/Kg-dry 1 8/10/2016 Benzo(k)fluoranthene ND 0.038 mg/Kg-dry 1 8/10/2016 <td< td=""><td>m</td><td></td><td></td><td>mg/L</td><td>5</td><td>8/6/2014</td></td<>	m			mg/L	5	8/6/2014
Acenaphthene ND 0.038 mg/Kg-dry 1 8/10/20/20/20/20 Acenaphthylene ND 0.038 mg/Kg-dry 1 8/10/20/20 Aniline ND 0.39 mg/Kg-dry 1 8/10/20/20 Anthracene ND 0.038 mg/Kg-dry 1 8/10/20/20 Benz(a)anthracene ND 0.038 mg/Kg-dry 1 8/10/20/20 Benzo(a)pyrene ND 0.038 mg/Kg-dry 1 8/10/20/20 Benzo(b)fluoranthene ND 0.038 mg/Kg-dry 1 8/10/20/20 Benzo(b)fluoranthene ND 0.038 mg/Kg-dry 1 8/10/20/20 Benzo(k)fluoranthene ND 0.038 mg/Kg-dry 1 8/10/20/20 Benzol acid ND 0.038 mg/Kg-dry 1 8/10/20/20 Benzol acid ND 0.096 mg/Kg-dry 1 8/10/20/20 Benzol acid ND 0.096 mg/Kg-dry 1 8/10/20/20 Ben	m			mg/L	5	8/6/2014
Acenaphthylene ND 0.038 mg/Kg-dry 1 8/10/200 Aniline ND 0.39 mg/Kg-dry 1 8/10/200 Anthracene ND 0.038 mg/Kg-dry 1 8/10/200 Benz(a)anthracene ND 0.038 mg/Kg-dry 1 8/10/200 Benzidine ND 0.038 mg/Kg-dry 1 8/10/200 Benzo(a)pyrene ND 0.038 mg/Kg-dry 1 8/10/200 Benzo(b)fluoranthene ND 0.038 mg/Kg-dry 1 8/10/200 Benzo(b(k		/3550B)	3550B)	Prep Da	ate: 8/6/2014	Analyst: DM
Aniline ND 0.39 mg/Kg-dry 1 8/10/201 Anthracene ND 0.038 mg/Kg-dry 1 8/10/201 Benz(a)anthracene ND 0.038 mg/Kg-dry 1 8/10/201 Benzo(a)pyrene ND 0.38 mg/Kg-dry 1 8/10/201 Benzo(b)fluoranthene ND 0.038 mg/Kg-dry 1 8/10/201 Benzo(b)fluoranthene ND 0.038 mg/Kg-dry 1 8/10/201 Benzo(g,h,i)perylene ND 0.038 mg/Kg-dry 1 8/10/201 Benzo(k)fluoranthene ND 0.038 mg/Kg-dry 1 8/10/201 Benzoic acid ND 0.038 mg/Kg-dry 1 8/10/201 Benzoj alcohol ND 0.96 mg/Kg-dry 1 8/10/201 Bis(2-chloroethxy)methane ND 0.20 mg/Kg-dry 1 8/10/201 Bis(2-chloroethxy)phthalate ND 0.20 mg/Kg-dry 1 8/10/201 <t< td=""><td>mg/k</td><td></td><td>m</td><td>ıg/Kg-dry</td><td>1</td><td>8/10/2014</td></t<>	mg/k		m	ıg/Kg-dry	1	8/10/2014
Anthracene ND 0.038 mg/Kg-dry 1 8/10/207 Benz(a)anthracene ND 0.038 mg/Kg-dry 1 8/10/207 Benzidine ND 0.38 mg/Kg-dry 1 8/10/207 Benzo(a)pyrene ND 0.038 mg/Kg-dry 1 8/10/207 Benzo(b)filuoranthene ND 0.038 mg/Kg-dry 1 8/10/207 Benzo(k)filuoranthene ND 0.038 mg/Kg-dry 1 8/10/207 Benzoic acid ND 0.038 mg/Kg-dry 1 8/10/207 Benzyl alcohol ND 0.96 mg/Kg-dry 1 8/10/207 Bis(2-chloroethoxy)methane ND 0.20 mg/Kg-dry 1 8/10/207	mg/k		m	ıg/Kg-dry	1	8/10/2014
Benz(a)anthracene ND 0.038 mg/Kg-dry 1 8/10/207 Benzidine ND 0.38 mg/Kg-dry 1 8/10/207 Benzo(a)pyrene ND 0.038 mg/Kg-dry 1 8/10/207 Benzo(b)fluoranthene ND 0.038 mg/Kg-dry 1 8/10/207 Benzo(g,h,i)perylene ND 0.038 mg/Kg-dry 1 8/10/207 Benzo(k)fluoranthene ND 0.20 mg/Kg-dry 1 8/10/207 Benzo(k)fluoranthene ND 0.20 mg/Kg-dry 1 8/10/207	mg/k		m	ıg/Kg-dry	1	8/10/2014
Benzidine ND 0.38 mg/Kg-dry 1 8/10/20/20/20/20 Benzo(a)pyrene ND 0.038 mg/Kg-dry 1 8/10/20/20/20 Benzo(b)fluoranthene ND 0.038 mg/Kg-dry 1 8/10/20/20/20 Benzo(g,h,i)perylene ND 0.038 mg/Kg-dry 1 8/10/20/20/20 Benzo(k)fluoranthene ND 0.038 mg/Kg-dry 1 8/10/20/20/20 Benzoic acid ND 0.96 mg/Kg-dry 1 8/10/20/20 Benzyl alcohol ND 0.96 mg/Kg-dry 1 8/10/20/20 Bis(2-chloroethoxy)methane ND 0.20 mg/Kg-dry	mg/k		m	ıg/Kg-dry	1	8/10/2014
Benzo(a)pyrene ND 0.038 mg/Kg-dry 1 8/10/20 Benzo(b)fluoranthene ND 0.038 mg/Kg-dry 1 8/10/20 Benzo(g,h,i)perylene ND 0.038 mg/Kg-dry 1 8/10/20 Benzo(k)fluoranthene ND 0.038 mg/Kg-dry 1 8/10/20 Benzoic acid ND 0.96 mg/Kg-dry 1 8/10/20 Benzyl alcohol ND 0.20 mg/Kg-dry 1 8/10/20 Bis(2-chloroethoxy)methane ND 0.20 mg/Kg-dry 1 8/10/20 Bis(2-chloroethoxy)lpether ND 0.20 mg/Kg-dry 1 8/10/20 Bis(2-chloroethoxyl)lpether ND 0.20 mg/Kg-dry 1 8/10/2	mg/k		m	ıg/Kg-dry	1	8/10/2014
Benzo(b)fluoranthene ND 0.038 mg/kg-dry 1 8/10/20 Benzo(g,h,i)perylene ND 0.038 mg/kg-dry 1 8/10/20 Benzo(k)fluoranthene ND 0.038 mg/kg-dry 1 8/10/20 Benzoic acid ND 0.96 mg/kg-dry 1 8/10/20 Benzyl alcohol ND 0.20 mg/kg-dry 1 8/10/20 Bis(2-chloroethoxy)methane ND 0.20 mg/kg-dry 1 8/10/20 Bis(2-chloroethyl)ether ND 0.20 mg/kg-dry 1 8/10/20 Bis(2-ethylhexyl)phthalate ND 0.20 mg/kg-dry 1 8/10/20 4-Bromophenyl phenyl ether ND 0.20 mg/kg-dry 1 8/10/20 Butyl benzyl phthalate ND 0.20 mg/kg-dry 1 8/10/20 Carbazole ND 0.20 mg/kg-dry 1 8/10/20 4-Chloroaniline ND 0.20 mg/kg-dry 1 8/10/20	mg/k		m	ıg/Kg-dry	1	8/10/2014
Benzo(g,h,i)perylene ND 0.038 mg/Kg-dry 1 8/10/20² Benzo(k)fluoranthene ND 0.038 mg/Kg-dry 1 8/10/20² Benzoic acid ND 0.96 mg/Kg-dry 1 8/10/20² Benzyl alcohol ND 0.20 mg/Kg-dry 1 8/10/20² Bis(2-chloroethoxy)methane ND 0.20 mg/Kg-dry 1 8/10/20² Bis(2-chloroethyl)ether ND 0.20 mg/Kg-dry 1 8/10/20² Bis(2-ethylhexyl)phthalate ND 0.96 mg/Kg-dry 1 8/10/20² 4-Bromophenyl phenyl ether ND 0.20 mg/Kg-dry 1 8/10/20² Butyl benzyl phthalate ND 0.20 mg/Kg-dry 1 8/10/20² Carbazole ND 0.20 mg/Kg-dry 1 8/10/20² 4-Chloroaniline ND 0.20 mg/Kg-dry 1 8/10/20² 4-Chloroaphthalene ND 0.20 mg/Kg-dry 1 8/10/20²	mg/k		m	ıg/Kg-dry	1	8/10/2014
Benzo(k)fluoranthene ND 0.038 mg/kg-dry 1 8/10/20² Benzoic acid ND 0.96 mg/kg-dry 1 8/10/20² Benzyl alcohol ND 0.20 mg/kg-dry 1 8/10/20² Bis(2-chloroethoxy)methane ND 0.20 mg/kg-dry 1 8/10/20² Bis(2-chloroethoxy)methane ND 0.20 mg/kg-dry 1 8/10/20² Bis(2-chloroethoxy)methane ND 0.20 mg/kg-dry 1 8/10/20² Bis(2-chloroethyl)ether ND 0.20 mg/kg-dry 1 8/10/20² Bis(2-chloroethyl)ether ND 0.20 mg/kg-dry 1 8/10/20² Bis(2-chlorophenyl phenyl ether ND 0.96 mg/kg-dry 1 8/10/20² 4-Bromophenyl phenyl ether ND 0.20 mg/kg-dry 1 8/10/20² Butyl benzyl phthalate ND 0.20 mg/kg-dry 1 8/10/20² Carbazole ND 0.20 mg/kg-dry 1 <	mg/k		m	ıg/Kg-dry	1	8/10/2014
Benzoic acid ND 0.96 mg/Kg-dry 1 8/10/20² Benzyl alcohol ND 0.20 mg/Kg-dry 1 8/10/20² Bis(2-chloroethoxy)methane ND 0.20 mg/Kg-dry 1 8/10/20² Bis(2-chloroethyl)ether ND 0.20 mg/Kg-dry 1 8/10/20² Bis(2-ethylhexyl)phthalate ND 0.96 mg/Kg-dry 1 8/10/20² 4-Bromophenyl phenyl ether ND 0.20 mg/Kg-dry 1 8/10/20² Butyl benzyl phthalate ND 0.20 mg/Kg-dry 1 8/10/20² Carbazole ND 0.20 mg/Kg-dry 1 8/10/20² 4-Chloroaniline ND 0.20 mg/Kg-dry 1 8/10/20² 4-Chloro-3-methylphenol ND 0.38 mg/Kg-dry 1 8/10/20² 2-Chlorophenol ND 0.20 mg/Kg-dry 1 8/10/20² 4-Chlorophenyl phenyl ether ND 0.20 mg/Kg-dry 1 8/10/20² <	mg/k		m	ıg/Kg-dry	1	8/10/2014
Benzyl alcohol ND 0.20 mg/Kg-dry 1 8/10/20² Bis(2-chloroethoxy)methane ND 0.20 mg/Kg-dry 1 8/10/20² Bis(2-chloroethyl)ether ND 0.20 mg/Kg-dry 1 8/10/20² Bis(2-ethylhexyl)phthalate ND 0.96 mg/Kg-dry 1 8/10/20² 4-Bromophenyl phenyl ether ND 0.20 mg/Kg-dry 1 8/10/20² Butyl benzyl phthalate ND 0.20 mg/Kg-dry 1 8/10/20² Carbazole ND 0.20 mg/Kg-dry 1 8/10/20² 4-Chloroaniline ND 0.20 mg/Kg-dry 1 8/10/20² 4-Chloro-3-methylphenol ND 0.38 mg/Kg-dry 1 8/10/20² 2-Chloroaphthalene ND 0.20 mg/Kg-dry 1 8/10/20² 2-Chlorophenol ND 0.20 mg/Kg-dry 1 8/10/20² 4-Chlorophenyl phenyl ether ND 0.038 mg/Kg-dry 1 8/10/20² <td>mg/k</td> <td></td> <td>m</td> <td>ıg/Kg-dry</td> <td>1</td> <td>8/10/2014</td>	mg/k		m	ıg/Kg-dry	1	8/10/2014
Bis(2-chloroethoxy)methane ND 0.20 mg/Kg-dry 1 8/10/20² Bis(2-chloroethyl)ether ND 0.20 mg/Kg-dry 1 8/10/20² Bis(2-ethylhexyl)phthalate ND 0.96 mg/Kg-dry 1 8/10/20² 4-Bromophenyl phenyl ether ND 0.20 mg/Kg-dry 1 8/10/20² Butyl benzyl phthalate ND 0.20 mg/Kg-dry 1 8/10/20² Carbazole ND 0.20 mg/Kg-dry 1 8/10/20² 4-Chloroaniline ND 0.20 mg/Kg-dry 1 8/10/20² 4-Chloro-3-methylphenol ND 0.38 mg/Kg-dry 1 8/10/20² 2-Chloronaphthalene ND 0.20 mg/Kg-dry 1 8/10/20² 2-Chlorophenol ND 0.20 mg/Kg-dry 1 8/10/20² 4-Chlorophenyl phenyl ether ND 0.20 mg/Kg-dry 1 8/10/20² Chrysene ND 0.038 mg/Kg-dry 1 8/10/20²	mg/k		m	ıg/Kg-dry	1	8/10/2014
Bis(2-chloroethyl)ether ND 0.20 mg/Kg-dry 1 8/10/20² Bis(2-ethylhexyl)phthalate ND 0.96 mg/Kg-dry 1 8/10/20² 4-Bromophenyl phenyl ether ND 0.20 mg/Kg-dry 1 8/10/20² Butyl benzyl phthalate ND 0.20 mg/Kg-dry 1 8/10/20² Carbazole ND 0.20 mg/Kg-dry 1 8/10/20² 4-Chloroaniline ND 0.20 mg/Kg-dry 1 8/10/20² 4-Chloro-3-methylphenol ND 0.38 mg/Kg-dry 1 8/10/20² 2-Chloroaphthalene ND 0.20 mg/Kg-dry 1 8/10/20² 2-Chlorophenol ND 0.20 mg/Kg-dry 1 8/10/20² 4-Chlorophenyl phenyl ether ND 0.038 mg/Kg-dry 1 8/10/20² Chrysene ND 0.038 mg/Kg-dry 1 8/10/20² Dibenzofuran ND 0.038 mg/Kg-dry 1 8/10/20² <td>mg/k</td> <td></td> <td>m</td> <td>ıg/Kg-dry</td> <td>1</td> <td>8/10/2014</td>	mg/k		m	ıg/Kg-dry	1	8/10/2014
Bis(2-ethylhexyl)phthalate ND 0.96 mg/Kg-dry 1 8/10/20² 4-Bromophenyl phenyl ether ND 0.20 mg/Kg-dry 1 8/10/20² Butyl benzyl phthalate ND 0.20 mg/Kg-dry 1 8/10/20² Carbazole ND 0.20 mg/Kg-dry 1 8/10/20² 4-Chloroaniline ND 0.20 mg/Kg-dry 1 8/10/20² 4-Chloro-3-methylphenol ND 0.38 mg/Kg-dry 1 8/10/20² 2-Chloroaphthalene ND 0.20 mg/Kg-dry 1 8/10/20² 2-Chlorophenol ND 0.20 mg/Kg-dry 1 8/10/20² 4-Chlorophenyl phenyl ether ND 0.20 mg/Kg-dry 1 8/10/20² Chrysene ND 0.038 mg/Kg-dry 1 8/10/20² Dibenz(a,h)anthracene ND 0.038 mg/Kg-dry 1 8/10/20² Dibenzofuran ND 0.20 mg/Kg-dry 1 8/10/20²	mg/k		m	ıg/Kg-dry	1	8/10/2014
4-Bromophenyl phenyl ether ND 0.20 mg/Kg-dry 1 8/10/20² Butyl benzyl phthalate ND 0.20 mg/Kg-dry 1 8/10/20² Carbazole ND 0.20 mg/Kg-dry 1 8/10/20² 4-Chloroaniline ND 0.20 mg/Kg-dry 1 8/10/20² 4-Chloro-3-methylphenol ND 0.38 mg/Kg-dry 1 8/10/20² 2-Chloroaphthalene ND 0.20 mg/Kg-dry 1 8/10/20² 2-Chlorophenol ND 0.20 mg/Kg-dry 1 8/10/20² 4-Chlorophenyl phenyl ether ND 0.20 mg/Kg-dry 1 8/10/20² Chrysene ND 0.038 mg/Kg-dry 1 8/10/20² Dibenz(a,h)anthracene ND 0.038 mg/Kg-dry 1 8/10/20² Dibenzofuran ND 0.20 mg/Kg-dry 1 8/10/20²	mg/k		m	ıg/Kg-dry	1	8/10/2014
Butyl benzyl phthalate ND 0.20 mg/Kg-dry 1 8/10/20² Carbazole ND 0.20 mg/Kg-dry 1 8/10/20² 4-Chloroaniline ND 0.20 mg/Kg-dry 1 8/10/20² 4-Chloro-3-methylphenol ND 0.38 mg/Kg-dry 1 8/10/20² 2-Chloronaphthalene ND 0.20 mg/Kg-dry 1 8/10/20² 2-Chlorophenol ND 0.20 mg/Kg-dry 1 8/10/20² 4-Chlorophenyl phenyl ether ND 0.20 mg/Kg-dry 1 8/10/20² Chrysene ND 0.038 mg/Kg-dry 1 8/10/20² Dibenz(a,h)anthracene ND 0.038 mg/Kg-dry 1 8/10/20² Dibenzofuran ND 0.20 mg/Kg-dry 1 8/10/20²	mg/k		m	ıg/Kg-dry	1	8/10/2014
Carbazole ND 0.20 mg/Kg-dry 1 8/10/20² 4-Chloroaniline ND 0.20 mg/Kg-dry 1 8/10/20² 4-Chloro-3-methylphenol ND 0.38 mg/Kg-dry 1 8/10/20² 2-Chloronaphthalene ND 0.20 mg/Kg-dry 1 8/10/20² 2-Chlorophenol ND 0.20 mg/Kg-dry 1 8/10/20² 4-Chlorophenyl phenyl ether ND 0.20 mg/Kg-dry 1 8/10/20² Chrysene ND 0.038 mg/Kg-dry 1 8/10/20² Dibenz(a,h)anthracene ND 0.038 mg/Kg-dry 1 8/10/20² Dibenzofuran ND 0.20 mg/Kg-dry 1 8/10/20²	mg/k		m	ıg/Kg-dry	1	8/10/2014
4-Chloroaniline ND 0.20 mg/Kg-dry 1 8/10/20² 4-Chloro-3-methylphenol ND 0.38 mg/Kg-dry 1 8/10/20² 2-Chloronaphthalene ND 0.20 mg/Kg-dry 1 8/10/20² 2-Chlorophenol ND 0.20 mg/Kg-dry 1 8/10/20² 4-Chlorophenyl phenyl ether ND 0.20 mg/Kg-dry 1 8/10/20² Chrysene ND 0.038 mg/Kg-dry 1 8/10/20² Dibenz(a,h)anthracene ND 0.038 mg/Kg-dry 1 8/10/20² Dibenzofuran ND 0.20 mg/Kg-dry 1 8/10/20²	mg/k		m	ıg/Kg-dry	1	8/10/2014
4-Chloro-3-methylphenol ND 0.38 mg/Kg-dry 1 8/10/20² 2-Chloronaphthalene ND 0.20 mg/Kg-dry 1 8/10/20² 2-Chlorophenol ND 0.20 mg/Kg-dry 1 8/10/20² 4-Chlorophenyl phenyl ether ND 0.20 mg/Kg-dry 1 8/10/20² Chrysene ND 0.038 mg/Kg-dry 1 8/10/20² Dibenz(a,h)anthracene ND 0.038 mg/Kg-dry 1 8/10/20² Dibenzofuran ND 0.20 mg/Kg-dry 1 8/10/20²	mg/k		m	ıg/Kg-dry	1	8/10/2014
2-Chloronaphthalene ND 0.20 mg/Kg-dry 1 8/10/20² 2-Chlorophenol ND 0.20 mg/Kg-dry 1 8/10/20² 4-Chlorophenyl phenyl ether ND 0.20 mg/Kg-dry 1 8/10/20² Chrysene ND 0.038 mg/Kg-dry 1 8/10/20² Dibenz(a,h)anthracene ND 0.038 mg/Kg-dry 1 8/10/20² Dibenzofuran ND 0.20 mg/Kg-dry 1 8/10/20²	mg/k		m	ıg/Kg-dry	1	8/10/2014
2-Chlorophenol ND 0.20 mg/Kg-dry 1 8/10/201 4-Chlorophenyl phenyl ether ND 0.20 mg/Kg-dry 1 8/10/201 Chrysene ND 0.038 mg/Kg-dry 1 8/10/201 Dibenz(a,h)anthracene ND 0.038 mg/Kg-dry 1 8/10/201 Dibenzofuran ND 0.20 mg/Kg-dry 1 8/10/201	mg/k		m	ıg/Kg-dry	1	8/10/2014
4-Chlorophenyl phenyl ether ND 0.20 mg/Kg-dry 1 8/10/20² Chrysene ND 0.038 mg/Kg-dry 1 8/10/20² Dibenz(a,h)anthracene ND 0.038 mg/Kg-dry 1 8/10/20² Dibenzofuran ND 0.20 mg/Kg-dry 1 8/10/20²	mg/k		m	ıg/Kg-dry	1	8/10/2014
Chrysene ND 0.038 mg/Kg-dry 1 8/10/20² Dibenz(a,h)anthracene ND 0.038 mg/Kg-dry 1 8/10/20² Dibenzofuran ND 0.20 mg/Kg-dry 1 8/10/20²	mg/k		m	ıg/Kg-dry	1	8/10/2014
Dibenz(a,h)anthracene ND 0.038 mg/Kg-dry 1 8/10/201 Dibenzofuran ND 0.20 mg/Kg-dry 1 8/10/201	mg/k		m	ıg/Kg-dry	1	8/10/2014
Dibenzofuran ND 0.20 mg/Kg-dry 1 8/10/20*	mg/k		m	ıg/Kg-dry	1	8/10/2014
5 7	mg/k		m	ıg/Kg-dry	1	8/10/2014
• • •	mg/k		m	ıg/Kg-dry	1	8/10/2014
1,2-Dichlorobenzene ND 0.20 mg/Kg-dry 1 8/10/20 ⁻	-				1	8/10/2014
1,3-Dichlorobenzene ND 0.20 mg/Kg-dry 1 8/10/201	mg/k		m	g/Kg-dry	1	8/10/2014
	-				1	8/10/2014
	_				1	8/10/2014
	-				1	8/10/2014
	_				1	8/10/2014
	-			0 0 ,		8/10/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Client Sample ID: TP-4

Date Reported: August 11, 2014

ANALYTICAL RESULTS

Collection Date: 7/31/2014 11:40:00 AM

Date Printed: August 11, 2014

Client: Tetra Tech EM Inc.

Work Order: 14080033 Revision 0

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14080033-005

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	70C (SW3	550B) Prep	Date: 8/6/2014	Analyst: DM
Dimethyl phthalate	ND	0.20	mg/Kg-dry	1	8/10/2014
4,6-Dinitro-2-methylphenol	ND	0.38	mg/Kg-dry	1	8/10/2014
2,4-Dinitrophenol	ND	0.96	mg/Kg-dry	1	8/10/2014
2,4-Dinitrotoluene	ND	0.038	mg/Kg-dry	1	8/10/2014
2,6-Dinitrotoluene	ND	0.038	mg/Kg-dry	1	8/10/2014
Di-n-butyl phthalate	ND	0.20	mg/Kg-dry	1	8/10/2014
Di-n-octyl phthalate	ND	0.20	mg/Kg-dry	1	8/10/2014
Fluoranthene	ND	0.038	mg/Kg-dry	1	8/10/2014
Fluorene	ND	0.038	mg/Kg-dry	1	8/10/2014
Hexachlorobenzene	ND	0.20	mg/Kg-dry	1	8/10/2014
Hexachlorobutadiene	ND	0.20	mg/Kg-dry	1	8/10/2014
Hexachlorocyclopentadiene	ND	0.20	mg/Kg-dry	1	8/10/2014
Hexachloroethane	ND	0.20	mg/Kg-dry	1	8/10/2014
Indeno(1,2,3-cd)pyrene	ND	0.038	mg/Kg-dry	1	8/10/2014
Isophorone	ND	0.20	mg/Kg-dry	1	8/10/2014
2-Methylnaphthalene	ND	0.20	mg/Kg-dry	1	8/10/2014
2-Methylphenol	ND	0.20	mg/Kg-dry	1	8/10/2014
4-Methylphenol	ND	0.20	mg/Kg-dry	1	8/10/2014
Naphthalene	ND	0.038	mg/Kg-dry	1	8/10/2014
2-Nitroaniline	ND	0.20	mg/Kg-dry	1	8/10/2014
3-Nitroaniline	ND	0.20	mg/Kg-dry	1	8/10/2014
4-Nitroaniline	ND	0.20	mg/Kg-dry	1	8/10/2014
2-Nitrophenol	ND	0.20	mg/Kg-dry	1	8/10/2014
4-Nitrophenol	ND	0.38	mg/Kg-dry	1	8/10/2014
Nitrobenzene	ND	0.038	mg/Kg-dry	1	8/10/2014
N-Nitrosodi-n-propylamine	ND	0.038	mg/Kg-dry	1	8/10/2014
N-Nitrosodimethylamine	ND	0.20	mg/Kg-dry	1	8/10/2014
N-Nitrosodiphenylamine	ND	0.038	mg/Kg-dry	1	8/10/2014
2, 2'-oxybis(1-Chloropropane)	ND	0.20	mg/Kg-dry	1	8/10/2014
Pentachlorophenol	ND	0.077	mg/Kg-dry	1	8/10/2014
Phenanthrene	ND	0.038	mg/Kg-dry	1	8/10/2014
Phenol	ND	0.20	mg/Kg-dry	1	8/10/2014
Pyrene	ND	0.038	mg/Kg-dry	1	8/10/2014
Pyridine	ND	0.77	mg/Kg-dry	1	8/10/2014
1,2,4-Trichlorobenzene	ND	0.20	mg/Kg-dry	1	8/10/2014
2,4,5-Trichlorophenol	ND	0.20	mg/Kg-dry	1	8/10/2014
2,4,6-Trichlorophenol	ND	0.20	mg/Kg-dry	1	8/10/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

ANALYTICAL RESULTS

Date Printed: August 11, 2014

Client: Tetra Tech EM Inc.

Work Order: 14080033 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14080033-005

Client Sample ID: TP-4

Collection Date: 7/31/2014 11:40:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	r Units	DF	Date Analyzed
Cyanide, Total	SW9012A			Prep	Date: 8/5/2014	Analyst: YZ
Cyanide	ND	0.29		mg/Kg-dry	1	8/6/2014
pH (25 °C)	SW9045C	;		Prep	Date: 8/7/2014	Analyst: RW
рН	7.9			pH Units	1	8/7/2014
Percent Moisture	D2974			Prep	Date: 8/4/2014	Analyst: RW
Percent Moisture	14.0	0.2	*	wt%	1	8/5/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

ANALYTICAL RESULTS

Date Printed: August 11, 2014

Client: Tetra Tech EM Inc.

Work Order: 14080033 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14080033-006

Client Sample ID: TP-5

Collection Date: 7/31/2014 12:30:00 PM

Matrix: Soil

Analyses	Result	RL Qua	lifier Units	DF	Date Analyzed
PCBs	SW80	82 (SW3550B)	Prep	Date: 8/7/2014	Analyst: GVC
Aroclor 1016	ND	0.091	mg/Kg-dry	1	8/7/2014
Aroclor 1221	ND	0.091	mg/Kg-dry	1	8/7/2014
Aroclor 1232	ND	0.091	mg/Kg-dry	1	8/7/2014
Aroclor 1242	ND	0.091	mg/Kg-dry	1	8/7/2014
Aroclor 1248	ND	0.091	mg/Kg-dry	1	8/7/2014
Aroclor 1254	ND	0.091	mg/Kg-dry	1	8/7/2014
Aroclor 1260	ND	0.091	mg/Kg-dry	1	8/7/2014
TCLP Mercury	SW13	11/7470A	Prep	Date: 8/5/2014	Analyst: LB
Mercury	ND	0.00020	mg/L	1	8/5/2014
Mercury	SW74	71A	Prep	Date: 8/6/2014	Analyst: LB
Mercury	0.035	0.021	mg/Kg-dry	1	8/6/2014
Metals by ICP/MS	SW60	20 (SW3050B)	Prep	Date: 8/5/2014	Analyst: JG
Aluminum	16000	210	mg/Kg-dry	100	8/6/2014
Antimony	ND	2.1	mg/Kg-dry	10	8/6/2014
Arsenic	8.6	1.1	mg/Kg-dry	10	8/6/2014
Barium	130	1.1	mg/Kg-dry	10	8/6/2014
Beryllium	1.1	0.53	mg/Kg-dry	10	8/6/2014
Cadmium	ND	0.53	mg/Kg-dry	10	8/6/2014
Calcium	56000	640	mg/Kg-dry	100	8/6/2014
Chromium	21	1.1	mg/Kg-dry	10	8/6/2014
Cobalt	12	1.1	mg/Kg-dry	10	8/6/2014
Copper	24	2.7	mg/Kg-dry	10	8/6/2014
Iron	25000	320	mg/Kg-dry	100	8/6/2014
Lead	38	0.53	mg/Kg-dry	10	8/6/2014
Magnesium	25000	32	mg/Kg-dry	10	8/6/2014
Manganese	620	1.1	mg/Kg-dry	10	8/6/2014
Nickel	24	1.1	mg/Kg-dry	10	8/6/2014
Potassium	1700	32	mg/Kg-dry	10	8/6/2014
Selenium	ND	1.1	mg/Kg-dry	10	8/6/2014
Silver	ND	1.1	mg/Kg-dry	10	8/6/2014
Sodium	370	64	mg/Kg-dry	10	8/6/2014
Thallium	ND	1.1	mg/Kg-dry	10	8/6/2014
Vanadium	30	1.1	mg/Kg-dry	10	8/6/2014
Zinc	82	5.3	mg/Kg-dry	10	8/6/2014
TCLP Metals by ICP/MS	SW13	11/6020 (SW30	05A) Prep	Date: 8/5/2014	Analyst: JG
Arsenic	ND	0.010	mg/L	5	8/6/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014 **Date Printed:** August 11, 2014 ANALYTICAL RESULTS

Client: Tetra Tech EM Inc.

Work Order: 14080033 Revision 0 Client Sample ID: TP-5

Project: TPMHC, Tinley Park

Collection Date: 7/31/2014 12:30:00 PM

Matrix: Soil

Lab ID: 14080033-006 Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
TCLP Metals by ICP/MS	SW13	311/6020 (SW3005A)	Prep	Date: 8/5/2014	Analyst: JG
Barium	0.63	0.050	,	mg/L	5	8/6/2014
Cadmium	ND	0.0050		mg/L	5	8/6/2014
Chromium	ND	0.010		mg/L	5	8/6/2014
Lead	ND	0.0050		mg/L	5	8/6/2014
Selenium	ND	0.010		mg/L	5	8/6/2014
Silver	ND	0.010		mg/L	5	8/6/2014
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW	3550B)	Prep	Date: 8/6/2014	Analyst: DM
Acenaphthene	0.071	0.037		mg/Kg-dry	1	8/10/2014
Acenaphthylene	ND	0.037		mg/Kg-dry	1	8/10/2014
Aniline	ND	0.38		mg/Kg-dry	1	8/10/2014
Anthracene	0.13	0.037		mg/Kg-dry	1	8/10/2014
Benz(a)anthracene	0.42	0.037		mg/Kg-dry	1	8/10/2014
Benzidine	ND	0.37		mg/Kg-dry	1	8/10/2014
Benzo(a)pyrene	0.51	0.037		mg/Kg-dry	1	8/10/2014
Benzo(b)fluoranthene	0.50	0.037		mg/Kg-dry	1	8/10/2014
Benzo(g,h,i)perylene	0.38	0.037		mg/Kg-dry	1	8/10/2014
Benzo(k)fluoranthene	0.43	0.037		mg/Kg-dry	1	8/10/2014
Benzoic acid	ND	0.94		mg/Kg-dry	1	8/10/2014
Benzyl alcohol	ND	0.19		mg/Kg-dry	1	8/10/2014
Bis(2-chloroethoxy)methane	ND	0.19		mg/Kg-dry	1	8/10/2014
Bis(2-chloroethyl)ether	ND	0.19		mg/Kg-dry	1	8/10/2014
Bis(2-ethylhexyl)phthalate	ND	0.94		mg/Kg-dry	1	8/10/2014
4-Bromophenyl phenyl ether	ND	0.19		mg/Kg-dry	1	8/10/2014
Butyl benzyl phthalate	ND	0.19		mg/Kg-dry	1	8/10/2014
Carbazole	ND	0.19		mg/Kg-dry	1	8/10/2014
4-Chloroaniline	ND	0.19		mg/Kg-dry	1	8/10/2014
4-Chloro-3-methylphenol	ND	0.37		mg/Kg-dry	1	8/10/2014
2-Chloronaphthalene	ND	0.19		mg/Kg-dry	1	8/10/2014
2-Chlorophenol	ND	0.19		mg/Kg-dry	1	8/10/2014
4-Chlorophenyl phenyl ether	ND	0.19		mg/Kg-dry	1	8/10/2014
Chrysene	0.52	0.037		mg/Kg-dry	1	8/10/2014
Dibenz(a,h)anthracene	0.18	0.037		mg/Kg-dry	1	8/10/2014
Dibenzofuran	ND	0.19		mg/Kg-dry	1	8/10/2014
1,2-Dichlorobenzene	ND	0.19		mg/Kg-dry	1	8/10/2014
1,3-Dichlorobenzene	ND	0.19		mg/Kg-dry	1	8/10/2014
1,4-Dichlorobenzene	ND	0.19		mg/Kg-dry	1	8/10/2014
3,3´-Dichlorobenzidine	ND	0.19		mg/Kg-dry	1	8/10/2014
2,4-Dichlorophenol	ND	0.19		mg/Kg-dry	1	8/10/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Client Sample ID: TP-5

Date Reported: August 11, 2014

ANALYTICAL RESULTS

Date Printed: August 11, 2014

Tetra Tech EM Inc. **Client:**

Work Order: 14080033 Revision 0 **Collection Date**: 7/31/2014 12:30:00 PM

TPMHC, Tinley Park **Project:** Matrix: Soil

Lab ID: 14080033-006

Analyses	Result	RL (Qualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	270C (SW35	50B) Prep	Date: 8/6/2014	Analyst: DM
Diethyl phthalate	ND	0.19	mg/Kg-dry	1	8/10/2014
2,4-Dimethylphenol	ND	0.19	mg/Kg-dry	1	8/10/2014
Dimethyl phthalate	ND	0.19	mg/Kg-dry	1	8/10/2014
4,6-Dinitro-2-methylphenol	ND	0.37	mg/Kg-dry	1	8/10/2014
2,4-Dinitrophenol	ND	0.94	mg/Kg-dry	1	8/10/2014
2,4-Dinitrotoluene	ND	0.037	mg/Kg-dry	1	8/10/2014
2,6-Dinitrotoluene	ND	0.037	mg/Kg-dry	1	8/10/2014
Di-n-butyl phthalate	ND	0.19	mg/Kg-dry	1	8/10/2014
Di-n-octyl phthalate	ND	0.19	mg/Kg-dry	1	8/10/2014
Fluoranthene	1.1	0.037	mg/Kg-dry	1	8/10/2014
Fluorene	0.063	0.037	mg/Kg-dry	1	8/10/2014
Hexachlorobenzene	ND	0.19	mg/Kg-dry	1	8/10/2014
Hexachlorobutadiene	ND	0.19	mg/Kg-dry	1	8/10/2014
Hexachlorocyclopentadiene	ND	0.19	mg/Kg-dry	1	8/10/2014
Hexachloroethane	ND	0.19	mg/Kg-dry	1	8/10/2014
Indeno(1,2,3-cd)pyrene	0.34	0.037	mg/Kg-dry	1	8/10/2014
Isophorone	ND	0.19	mg/Kg-dry	1	8/10/2014
2-Methylnaphthalene	ND	0.19	mg/Kg-dry	1	8/10/2014
2-Methylphenol	ND	0.19	mg/Kg-dry	1	8/10/2014
4-Methylphenol	ND	0.19	mg/Kg-dry	1	8/10/2014
Naphthalene	ND	0.037	mg/Kg-dry	1	8/10/2014
2-Nitroaniline	ND	0.19	mg/Kg-dry	1	8/10/2014
3-Nitroaniline	ND	0.19	mg/Kg-dry	1	8/10/2014
4-Nitroaniline	ND	0.19	mg/Kg-dry	1	8/10/2014
2-Nitrophenol	ND	0.19	mg/Kg-dry	1	8/10/2014
4-Nitrophenol	ND	0.37	mg/Kg-dry	1	8/10/2014
Nitrobenzene	ND	0.037	mg/Kg-dry	1	8/10/2014
N-Nitrosodi-n-propylamine	ND	0.037	mg/Kg-dry	1	8/10/2014
N-Nitrosodimethylamine	ND	0.19	mg/Kg-dry	1	8/10/2014
N-Nitrosodiphenylamine	ND	0.037	mg/Kg-dry	1	8/10/2014
2, 2'-oxybis(1-Chloropropane)	ND	0.19	mg/Kg-dry	1	8/10/2014
Pentachlorophenol	ND	0.076	mg/Kg-dry	1	8/10/2014
Phenanthrene	0.69	0.037	mg/Kg-dry	1	8/10/2014
Phenol	ND	0.19	mg/Kg-dry	1	8/10/2014
Pyrene	0.88	0.037	mg/Kg-dry	1	8/10/2014
Pyridine	ND	0.76	mg/Kg-dry	1	8/10/2014
1,2,4-Trichlorobenzene	ND	0.19	mg/Kg-dry	1	8/10/2014
2,4,5-Trichlorophenol	ND	0.19	mg/Kg-dry	1	8/10/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

ANALYTICAL RESULTS

Date Reported: August 11, 2014 **Date Printed:** August 11, 2014

Client: Tetra Tech EM Inc. Client Sample ID: TP-5

Work Order: 14080033 Revision 0 **Collection Date**: 7/31/2014 12:30:00 PM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14080033-006

Analyses	Result	RL Qualifi	er Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS 2,4,6-Trichlorophenol	SW8270C ND	(SW3550B) 0.19	Prep mg/Kg-dry	Date: 8/6/2014	Analyst: DM 8/10/2014
Cyanide, Total Cyanide	SW9012A ND	0.29	Prep mg/Kg-dry	Date: 8/5/2014	Analyst: YZ 8/6/2014
pH (25 °C) pH	SW9045C 8.0		Prep pH Units	Date: 8/7/2014	Analyst: RW 8/7/2014
Percent Moisture Percent Moisture	D2974 12.4	0.2 *	Prep wt%	Date: 8/4/2014	Analyst: RW 8/5/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Client Sample ID: TP-6

Matrix: Soil

Date Reported: August 11, 2014

ANALYTICAL RESULTS

Collection Date: 7/31/2014 1:05:00 PM

Date Printed: August 11, 2014

Client: Tetra Tech EM Inc.

Work Order: 14080033 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14080033-007

Analyses	Result	RL Qua	lifier Units	DF	Date Analyzed
PCBs	SW80)82 (SW3550B)	Prep	Date: 8/7/2014	Analyst: GVC
Aroclor 1016	ND	0.090	mg/Kg-dry	1	8/7/2014
Aroclor 1221	ND	0.090	mg/Kg-dry	1	8/7/2014
Aroclor 1232	ND	0.090	mg/Kg-dry	1	8/7/2014
Aroclor 1242	ND	0.090	mg/Kg-dry	1	8/7/2014
Aroclor 1248	ND	0.090	mg/Kg-dry	1	8/7/2014
Aroclor 1254	ND	0.090	mg/Kg-dry	1	8/7/2014
Aroclor 1260	ND	0.090	mg/Kg-dry	1	8/7/2014
TCLP Mercury	SW13	311/7470A	Prep	Date: 8/5/2014	Analyst: LB
Mercury	ND	0.00020	mg/L	1	8/5/2014
Mercury	SW74	71A	Prep	Date: 8/6/2014	Analyst: LB
Mercury	0.058	0.020	mg/Kg-dry	1	8/6/2014
Metals by ICP/MS	SW60)20 (SW3050B)	Prep	Date: 8/5/2014	Analyst: JG
Aluminum	13000	240	mg/Kg-dry	100	8/6/2014
Antimony	ND	2.4	mg/Kg-dry	10	8/6/2014
Arsenic	8.3	1.2	mg/Kg-dry	10	8/6/2014
Barium	100	1.2	mg/Kg-dry	10	8/6/2014
Beryllium	1.0	0.59	mg/Kg-dry	10	8/6/2014
Cadmium	ND	0.59	mg/Kg-dry	10	8/6/2014
Calcium	56000	710	mg/Kg-dry	100	8/6/2014
Chromium	24	1.2	mg/Kg-dry	10	8/6/2014
Cobalt	11	1.2	mg/Kg-dry	10	8/6/2014
Copper	26	2.9	mg/Kg-dry	10	8/6/2014
Iron	23000	350	mg/Kg-dry	100	8/6/2014
Lead	67	0.59	mg/Kg-dry	10	8/6/2014
Magnesium	28000	35	mg/Kg-dry	10	8/6/2014
Manganese	540	1.2	mg/Kg-dry	10	8/6/2014
Nickel	24	1.2	mg/Kg-dry	10	8/6/2014
Potassium	1800	35	mg/Kg-dry	10	8/6/2014
Selenium	ND	1.2	mg/Kg-dry	10	8/6/2014
Silver	ND	1.2	mg/Kg-dry	10	8/6/2014
Sodium	460	71	mg/Kg-dry	10	8/6/2014
Thallium	ND	1.2	mg/Kg-dry	10	8/6/2014
Vanadium	27	1.2	mg/Kg-dry	10	8/6/2014
Zinc	89	5.9	mg/Kg-dry	10	8/6/2014
TCLP Metals by ICP/MS	SW13	311/6020 (SW30	05A) Prep	Date: 8/5/2014	Analyst: JG
Arsenic	ND	0.010	mg/L	5	8/6/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

ANALYTICAL RESULTS

Date Printed: August 11, 2014

Client: Tetra Tech EM Inc.

Work Order: 14080033 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14080033-007

Client Sample ID: TP-6

Collection Date: 7/31/2014 1:05:00 PM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
TCLP Metals by ICP/MS	SW13	311/6020 (SW3005A)	Prep	Date: 8/5/2014	Analyst: JG
Barium	0.60	0.050	•	mg/L	5	8/6/2014
Cadmium	ND	0.0050		mg/L	5	8/6/2014
Chromium	ND	0.010		mg/L	5	8/6/2014
Lead	ND	0.0050		mg/L	5	8/6/2014
Selenium	ND	0.010		mg/L	5	8/6/2014
Silver	ND	0.010		mg/L	5	8/6/2014
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW:	3550B)	Prep	Date: 8/6/2014	Analyst: DM
Acenaphthene	0.076	0.037	· -	mg/Kg-dry	1	8/10/2014
Acenaphthylene	ND	0.037		mg/Kg-dry	1	8/10/2014
Aniline	ND	0.38		mg/Kg-dry	1	8/10/2014
Anthracene	0.20	0.037		mg/Kg-dry	1	8/10/2014
Benz(a)anthracene	0.80	0.037		mg/Kg-dry	1	8/10/2014
Benzidine	ND	0.37		mg/Kg-dry	1	8/10/2014
Benzo(a)pyrene	0.87	0.037		mg/Kg-dry	1	8/10/2014
Benzo(b)fluoranthene	0.90	0.037		mg/Kg-dry	1	8/10/2014
Benzo(g,h,i)perylene	0.59	0.037		mg/Kg-dry	1	8/10/2014
Benzo(k)fluoranthene	0.70	0.037		mg/Kg-dry	1	8/10/2014
Benzoic acid	ND	0.94		mg/Kg-dry	1	8/10/2014
Benzyl alcohol	ND	0.19		mg/Kg-dry	1	8/10/2014
Bis(2-chloroethoxy)methane	ND	0.19		mg/Kg-dry	1	8/10/2014
Bis(2-chloroethyl)ether	ND	0.19		mg/Kg-dry	1	8/10/2014
Bis(2-ethylhexyl)phthalate	ND	0.94		mg/Kg-dry	1	8/10/2014
4-Bromophenyl phenyl ether	ND	0.19		mg/Kg-dry	1	8/10/2014
Butyl benzyl phthalate	ND	0.19		mg/Kg-dry	1	8/10/2014
Carbazole	ND	0.19		mg/Kg-dry	1	8/10/2014
4-Chloroaniline	ND	0.19		mg/Kg-dry	1	8/10/2014
4-Chloro-3-methylphenol	ND	0.37		mg/Kg-dry	1	8/10/2014
2-Chloronaphthalene	ND	0.19		mg/Kg-dry	1	8/10/2014
2-Chlorophenol	ND	0.19		mg/Kg-dry	1	8/10/2014
4-Chlorophenyl phenyl ether	ND	0.19		mg/Kg-dry	1	8/10/2014
Chrysene	0.88	0.037		mg/Kg-dry	1	8/10/2014
Dibenz(a,h)anthracene	0.27	0.037		mg/Kg-dry	1	8/10/2014
Dibenzofuran	ND	0.19		mg/Kg-dry	1	8/10/2014
1,2-Dichlorobenzene	ND	0.19		mg/Kg-dry	1	8/10/2014
1,3-Dichlorobenzene	ND	0.19		mg/Kg-dry	1	8/10/2014
1,4-Dichlorobenzene	ND	0.19		mg/Kg-dry	1	8/10/2014
3,3´-Dichlorobenzidine	ND	0.19		mg/Kg-dry	1	8/10/2014
2,4-Dichlorophenol	ND	0.19		mg/Kg-dry	1	8/10/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accorditations: IEPA ELAP 100445; OPELAP II 300001; AIHA LAP II C 101160; I

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

ANALYTICAL RESULTS

Date Reported: August 11, 2014 **Date Printed:** August 11, 2014

Client: Tetra Tech EM Inc. Client Sample ID: TP-6

Work Order: 14080033 Revision 0 **Collection Date**: 7/31/2014 1:05:00 PM

Project: TPMHC, Tinley Park
Lab ID: 14080033-007

Matrix: Soil

DF **Analyses** Result RLQualifier Units **Date Analyzed** Semivolatile Organic Compounds by GC/MS SW8270C (SW3550B) Prep Date: 8/6/2014 Analyst: DM Diethyl phthalate ND 0.19 mg/Kg-dry 8/10/2014 1 mg/Kg-dry 8/10/2014 2,4-Dimethylphenol ND 0.19 1 ND Dimethyl phthalate 0.19 1 8/10/2014 mg/Kg-dry mg/Kg-dry 4,6-Dinitro-2-methylphenol ND 0.37 1 8/10/2014 ND 2,4-Dinitrophenol 0.94 mg/Kg-dry 1 8/10/2014 2,4-Dinitrotoluene ND 0.037 mg/Kg-dry 1 8/10/2014 2,6-Dinitrotoluene ND 0.037 mg/Kg-dry 1 8/10/2014 Di-n-butyl phthalate ND 1 8/10/2014 0.19 mg/Kg-dry Di-n-octyl phthalate ND 0.19 8/10/2014 mg/Kg-dry 1 1.8 0.037 8/10/2014 Fluoranthene mg/Kg-dry 1 Fluorene 0.071 0.037 mg/Kg-dry 1 8/10/2014 Hexachlorobenzene ND 0.19 1 8/10/2014 mg/Kg-dry mg/Kg-dry Hexachlorobutadiene ND 0.19 1 8/10/2014 ND 1 Hexachlorocyclopentadiene 0.19 mg/Kg-dry 8/10/2014 Hexachloroethane ND 0.19 1 8/10/2014 mg/Kg-dry Indeno(1,2,3-cd)pyrene 0.54 0.037 mg/Kg-dry 1 8/10/2014 ND 0.19 8/10/2014 Isophorone mg/Kg-dry 1 2-Methylnaphthalene ND 0.19 mg/Kg-dry 1 8/10/2014 2-Methylphenol ND 0.19 mg/Kg-dry 1 8/10/2014 4-Methylphenol ND 0.19 mg/Kg-dry 1 8/10/2014 Naphthalene ND 0.037 mg/Kg-dry 1 8/10/2014 ND 2-Nitroaniline 0.19 mg/Kg-dry 1 8/10/2014 ND 3-Nitroaniline 0.19 1 8/10/2014 mg/Kg-dry 4-Nitroaniline ND 0.19 mg/Kg-dry 1 8/10/2014 ND 2-Nitrophenol 0.19 mg/Kg-dry 1 8/10/2014 4-Nitrophenol ND 0.37 mg/Kg-dry 1 8/10/2014 Nitrobenzene ND 0.037 mg/Kg-dry 1 8/10/2014 ND 0.037 1 8/10/2014 N-Nitrosodi-n-propylamine mg/Kg-dry N-Nitrosodimethylamine ND 0.19 mg/Kg-dry 1 8/10/2014 N-Nitrosodiphenylamine ND 0.037 1 8/10/2014 mg/Kg-dry 2, 2'-oxybis(1-Chloropropane) ND 0.19 mg/Kg-dry 1 8/10/2014 Pentachlorophenol ND 8/10/2014 0.076 mg/Kg-dry 1 Phenanthrene 1.0 0.037 mg/Kg-dry 1 8/10/2014 ND Phenol 0.19 mg/Kg-dry 1 8/10/2014 Pyrene 1.5 0.037 mg/Kg-dry 1 8/10/2014 Pyridine ND 0.76 mg/Kg-dry 1 8/10/2014 1,2,4-Trichlorobenzene ND 0.19 1 8/10/2014 mg/Kg-dry

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

2,4,5-Trichlorophenol

B - Analyte detected in the associated Method Blank

ND

HT - Sample received past holding time

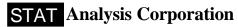
* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

1

8/10/2014

S - Spike Recovery outside accepted recovery limits


R - RPD outside accepted recovery limits

E - Value above quantitation range

H - Holding time exceeded

mg/Kg-dry

0.19

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

ANALYTICAL RESULTS

Date Printed: August 11, 2014

14080033-007

Lab ID:

Client: Tetra Tech EM Inc. Client Sample ID: TP-6

Work Order: 14080033 Revision 0
Project: TPMHC, Tinley Park

Collection Date: 7/31/2014 1:05:00 PM

Matrix: Soil

Result **RL Qualifier Units** DF **Date Analyzed** Analyses Semivolatile Organic Compounds by GC/MS SW8270C (SW3550B) Prep Date: 8/6/2014 Analyst: **DM** 2,4,6-Trichlorophenol ND 0.19 8/10/2014 mg/Kg-dry Cyanide, Total SW9012A Prep Date: 8/5/2014 Analyst: YZ Cyanide ND mg/Kg-dry 8/6/2014 pH (25 °C) SW9045C Prep Date: 8/7/2014 Analyst: RW рΗ 7.8 pH Units 8/7/2014 **Percent Moisture** D2974 Prep Date: 8/4/2014 Analyst: RW 8/5/2014 Percent Moisture 11.5 0.2 wt%

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

ANALYTICAL RESULTS

Date Printed: August 11, 2014

Client: Tetra Tech EM Inc.

Work Order: 14080033 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14080033-008

Client Sample ID: TP-7

Collection Date: 7/31/2014 1:40:00 PM

Matrix: Soil

Analyses	Result	RL Qua	lifier Units	DF	Date Analyzed
PCBs	SW80	082 (SW3550B)	Prep	Date: 8/7/2014	Analyst: GVC
Aroclor 1016	ND	0.091	mg/Kg-dry	1	8/7/2014
Aroclor 1221	ND	0.091	mg/Kg-dry	1	8/7/2014
Aroclor 1232	ND	0.091	mg/Kg-dry	1	8/7/2014
Aroclor 1242	ND	0.091	mg/Kg-dry	1	8/7/2014
Aroclor 1248	ND	0.091	mg/Kg-dry	1	8/7/2014
Aroclor 1254	ND	0.091	mg/Kg-dry	1	8/7/2014
Aroclor 1260	ND	0.091	mg/Kg-dry	1	8/7/2014
TCLP Mercury	SW13	311/7470A	Prep	Date: 8/5/2014	Analyst: LB
Mercury	ND	0.00020	mg/L	1	8/5/2014
Mercury	SW74	71A	Prep	Date: 8/6/2014	Analyst: LB
Mercury	0.15	0.020	mg/Kg-dry	1	8/6/2014
Metals by ICP/MS	SW60	020 (SW3050B)	Prep	Date: 8/5/2014	Analyst: JG
Aluminum	8400	210	mg/Kg-dry	100	8/6/2014
Antimony	ND	2.1	mg/Kg-dry	10	8/6/2014
Arsenic	4.9	1.0	mg/Kg-dry	10	8/6/2014
Barium	60	1.0	mg/Kg-dry	10	8/6/2014
Beryllium	0.73	0.52	mg/Kg-dry	10	8/6/2014
Cadmium	ND	0.52	mg/Kg-dry	10	8/6/2014
Calcium	180000	630	mg/Kg-dry	100	8/6/2014
Chromium	25	1.0	mg/Kg-dry	10	8/6/2014
Cobalt	5.8	1.0	mg/Kg-dry	10	8/6/2014
Copper	17	2.6	mg/Kg-dry	10	8/6/2014
Iron	18000	310	mg/Kg-dry	100	8/6/2014
Lead	60	0.52	mg/Kg-dry	10	8/6/2014
Magnesium	67000	310	mg/Kg-dry	100	8/6/2014
Manganese	330	1.0	mg/Kg-dry	10	8/6/2014
Nickel	18	1.0	mg/Kg-dry	10	8/6/2014
Potassium	1200	31	mg/Kg-dry	10	8/6/2014
Selenium	ND	1.0	mg/Kg-dry	10	8/6/2014
Silver	ND	1.0	mg/Kg-dry	10	8/6/2014
Sodium	240	63	mg/Kg-dry	10	8/6/2014
Thallium	ND	1.0	mg/Kg-dry	10	8/6/2014
Vanadium	16	1.0	mg/Kg-dry	10	8/6/2014
Zinc	61	5.2	mg/Kg-dry	10	8/6/2014
TCLP Metals by ICP/MS	SW13	311/6020 (SW30	05A) Prep	Date: 8/5/2014	Analyst: JG
Arsenic	ND	0.010	mg/L	5	8/6/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accorditations: IEPA FLAP 100445: ORFLAP II 300001: AIHA LAP II C 101160: 1

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

ANALYTICAL RESULTS

Date Reported: August 11, 2014 **Date Printed:** August 11, 2014

Client: Tetra Tech EM Inc. Client Sample ID: TP-7

Work Order: 14080033 Revision 0 **Collection Date**: 7/31/2014 1:40:00 PM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14080033-008

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
TCLP Metals by ICP/MS	SW1:	311/6020 (S	SW3005A)	Prep	Date: 8/5/2014	Analyst: JG
Barium	0.40	0.050	,	mg/L	5	8/6/2014
Cadmium	ND	0.0050		mg/L	5	8/6/2014
Chromium	ND	0.010		mg/L	5	8/6/2014
Lead	0.0068	0.0050		mg/L	5	8/6/2014
Selenium	ND	0.010		mg/L	5	8/6/2014
Silver	ND	0.010		mg/L	5	8/6/2014
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW3	3550B)	Prep	Date: 8/6/2014	Analyst: DM
Acenaphthene	0.42	0.038	İ	mg/Kg-dry	1	8/10/2014
Acenaphthylene	0.081	0.038	İ	mg/Kg-dry	1	8/10/2014
Aniline	ND	0.38	İ	mg/Kg-dry	1	8/10/2014
Anthracene	0.96	0.038	1	mg/Kg-dry	1	8/10/2014
Benz(a)anthracene	3.2	0.038	1	mg/Kg-dry	1	8/10/2014
Benzidine	ND	0.38	İ	mg/Kg-dry	1	8/10/2014
Benzo(a)pyrene	3.5	0.038	İ	mg/Kg-dry	1	8/10/2014
Benzo(b)fluoranthene	3.0	0.038	I	mg/Kg-dry	1	8/10/2014
Benzo(g,h,i)perylene	2.3	0.038	I	mg/Kg-dry	1	8/10/2014
Benzo(k)fluoranthene	3.4	0.038	I	mg/Kg-dry	1	8/10/2014
Benzoic acid	ND	0.95	I	mg/Kg-dry	1	8/10/2014
Benzyl alcohol	ND	0.20	I	mg/Kg-dry	1	8/10/2014
Bis(2-chloroethoxy)methane	ND	0.20	1	mg/Kg-dry	1	8/10/2014
Bis(2-chloroethyl)ether	ND	0.20	1	mg/Kg-dry	1	8/10/2014
Bis(2-ethylhexyl)phthalate	ND	0.95	1	mg/Kg-dry	1	8/10/2014
4-Bromophenyl phenyl ether	ND	0.20	1	mg/Kg-dry	1	8/10/2014
Butyl benzyl phthalate	ND	0.20	1	mg/Kg-dry	1	8/10/2014
Carbazole	0.47	0.20	1	mg/Kg-dry	1	8/10/2014
4-Chloroaniline	ND	0.20		mg/Kg-dry	1	8/10/2014
4-Chloro-3-methylphenol	ND	0.38		mg/Kg-dry	1	8/10/2014
2-Chloronaphthalene	ND	0.20		mg/Kg-dry	1	8/10/2014
2-Chlorophenol	ND	0.20		mg/Kg-dry	1	8/10/2014
4-Chlorophenyl phenyl ether	ND	0.20	İ	mg/Kg-dry	1	8/10/2014
Chrysene	3.6	0.038	İ	mg/Kg-dry	1	8/10/2014
Dibenz(a,h)anthracene	1.0	0.038	1	mg/Kg-dry	1	8/10/2014
Dibenzofuran	0.21	0.20		mg/Kg-dry	1	8/10/2014
1,2-Dichlorobenzene	ND	0.20	1	mg/Kg-dry	1	8/10/2014
1,3-Dichlorobenzene	ND	0.20		mg/Kg-dry	1	8/10/2014
1,4-Dichlorobenzene	ND	0.20	1	mg/Kg-dry	1	8/10/2014
3,3´-Dichlorobenzidine	ND	0.20	1	mg/Kg-dry	1	8/10/2014
2,4-Dichlorophenol	ND	0.20	1	mg/Kg-dry	1	8/10/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Client Sample ID: TP-7

Date Reported: August 11, 2014

Date Printed:

Work Order:

ANALYTICAL RESULTS

Client: Tetra Tech EM Inc.

14080033 Revision 0

August 11, 2014

Project: TPMHC, Tinley Park

Collection Date: 7/31/2014 1:40:00 PM

Matrix: Soil

Lab ID: 14080033-008

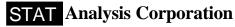
Analyses	Result	RL (ualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW35	50B) Prep	Date: 8/6/2014	Analyst: DM
Diethyl phthalate	ND	0.20	mg/Kg-dry	1	8/10/2014
2,4-Dimethylphenol	ND	0.20	mg/Kg-dry	1	8/10/2014
Dimethyl phthalate	ND	0.20	mg/Kg-dry	1	8/10/2014
4,6-Dinitro-2-methylphenol	ND	0.38	mg/Kg-dry	1	8/10/2014
2,4-Dinitrophenol	ND	0.95	mg/Kg-dry	1	8/10/2014
2,4-Dinitrotoluene	ND	0.038	mg/Kg-dry	1	8/10/2014
2,6-Dinitrotoluene	ND	0.038	mg/Kg-dry	1	8/10/2014
Di-n-butyl phthalate	ND	0.20	mg/Kg-dry	1	8/10/2014
Di-n-octyl phthalate	ND	0.20	mg/Kg-dry	1	8/10/2014
Fluoranthene	8.0	0.19	mg/Kg-dry	5	8/11/2014
Fluorene	0.32	0.038	mg/Kg-dry	1	8/10/2014
Hexachlorobenzene	ND	0.20	mg/Kg-dry	1	8/10/2014
Hexachlorobutadiene	ND	0.20	mg/Kg-dry	1	8/10/2014
Hexachlorocyclopentadiene	ND	0.20	mg/Kg-dry	1	8/10/2014
Hexachloroethane	ND	0.20	mg/Kg-dry	1	8/10/2014
Indeno(1,2,3-cd)pyrene	2.1	0.038	mg/Kg-dry	1	8/10/2014
Isophorone	ND	0.20	mg/Kg-dry	1	8/10/2014
2-Methylnaphthalene	ND	0.20	mg/Kg-dry	1	8/10/2014
2-Methylphenol	ND	0.20	mg/Kg-dry	1	8/10/2014
4-Methylphenol	ND	0.20	mg/Kg-dry	1	8/10/2014
Naphthalene	ND	0.038	mg/Kg-dry	1	8/10/2014
2-Nitroaniline	ND	0.20	mg/Kg-dry	1	8/10/2014
3-Nitroaniline	ND	0.20	mg/Kg-dry	1	8/10/2014
4-Nitroaniline	ND	0.20	mg/Kg-dry	1	8/10/2014
2-Nitrophenol	ND	0.20	mg/Kg-dry	1	8/10/2014
4-Nitrophenol	ND	0.38	mg/Kg-dry	1	8/10/2014
Nitrobenzene	ND	0.038	mg/Kg-dry	1	8/10/2014
N-Nitrosodi-n-propylamine	ND	0.038	mg/Kg-dry	1	8/10/2014
N-Nitrosodimethylamine	ND	0.20	mg/Kg-dry	1	8/10/2014
N-Nitrosodiphenylamine	ND	0.038	mg/Kg-dry	1	8/10/2014
2, 2'-oxybis(1-Chloropropane)	ND	0.20	mg/Kg-dry	1	8/10/2014
Pentachlorophenol	ND	0.077	mg/Kg-dry	1	8/10/2014
Phenanthrene	5.0	0.19	mg/Kg-dry	5	8/11/2014
Phenol	ND	0.20	mg/Kg-dry	1	8/10/2014
Pyrene	6.5	0.19	mg/Kg-dry	5	8/11/2014
Pyridine	ND	0.77	mg/Kg-dry	1	8/10/2014
1,2,4-Trichlorobenzene	ND	0.20	mg/Kg-dry	1	8/10/2014
2,4,5-Trichlorophenol	ND	0.20	mg/Kg-dry	1	8/10/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time


* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: August 11, 2014

ANALYTICAL RESULTS

Date Printed: August 11, 2014

Client: Tetra Tech EM Inc.

Work Order: 14080033 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14080033-008

Client Sample ID: TP-7

Collection Date: 7/31/2014 1:40:00 PM

Matrix: Soil

Analyses	Result	RL Qualifi	er Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS		(SW3550B)	•	Date: 8/6/2014	Analyst: DM
2,4,6-Trichlorophenol	ND	0.20	mg/Kg-dry	1	8/10/2014
Cyanide, Total	SW9012A		Prep	Date: 8/5/2014	Analyst: YZ
Cyanide	ND	0.29	mg/Kg-dry	1	8/6/2014
pH (25 °C)	SW9045C		Prep	Date: 8/7/2014	Analyst: RW
рН	8.2		pH Units	1	8/7/2014
Percent Moisture	D2974		Prep	Date: 8/4/2014	Analyst: RW
Percent Moisture	13.1	0.2 *	wt%	1	8/5/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

STAT Analysis Corporation

2242 W. Harrison Suite 200, Chicago, Illinois 60612 Phone: (312) 733-0551 Fax: (312) 733-2386

e-mail address: STATinfo@STATAnalysis.com AIHA, NVLAP and NELAP accredited

857919 Page: 1 of						True Amount	I um Around:	Results Needed	am/pm	Remarks Lab No.:		200	MS/MSD GOT		Ms/MsD 005		\$ 50°	200	CAL						Laboratory Work Order No.:	2500204/	Received on Ice: Yes No	55 250 1
CHAIN OF CUSTODY RECORD N ⁰ .	P.O. No.:		Ouote No.:						TO THE PARTY OF TH		XXXXXX		XXXXX		× × × × × ×	X X X	× × × ×	X							Comments:			Preservation Code: A = None B = HNO,
AIIIA, MLA		Client Tracking No.:				Phone: 312-201-7474		e-mail: Tom. Hahne @ tetrafech, com	Date Taken Time ix on no of	Taken M. C.C.C.		1005	1105 5 X	7/3//14 (105 s X A		1 X X	1305	1340 S X A							Date/Time: 8/1/14 1/14	1 2 1/110	Date/Time:	Date/Time:
STATE OF STA	Company: Teta Tech	Project Number:	Project Name: TPMHC	Project Location: Tinky Park	Sampler(s): (R. AK, SD	Som H		QC Level: 1 2 3 4	Client Sample Number/Description: Date	4				9			TP-6 713		do						Relinquished by: (Signature)	Relinquished by: (Signature)	Received by: (Signature)	Relinquished by: (Signature)

Sample Receipt Checklist

Client Name TETRA SAINT LOUIS		Date and Tim	ne Received:	8/1/2014 4:45:00 PM
Work Order Number 14080033	^ /	Received by:	DO	
Checklist completed by: Signature Date	1/14	Reviewed by:	4 C	6/11/14 Date
Matrix: Carrier name	Client Delivered			
Shipping container/cooler in good condition?	Yes 🗸	No 🗌	Not Present	
Custody seals intact on shippping container/cooler?	Yes	No 🗌	Not Present	
Custody seals intact on sample bottles?	Yes	No 🗌	Not Present	
Chain of custody present?	Yes 🗸	No 🗌		
Chain of custody signed when relinquished and received?	Yes 🗸	No 🗌		
Chain of custody agrees with sample labels/containers?	Yes 🗸	No 🗌		
Samples in proper container/bottle?	Yes 🗸	No 🗌		
Sample containers intact?	Yes 🗸	No 🗌		
Sufficient sample volume for indicated test?	Yes 🗸	No 🗌		
All samples received within holding time?	Yes 🗸	No 🗌		
Container or Temp Blank temperature in compliance?	Yes 🗸	No 🗌	Temperature	5.3 °C
Water - VOA vials have zero headspace? No VOA vials subm	itted	Yes	No 🗐	
Water - Samples pH checked?	Yes	No 🔳	Checked by:	
Water - Samples properly preserved?	Yes	No 🗐	pH Adjusted?	
Any No response must be detailed in the comments section below.				
Comments:				
Client / Person contacted: Date contacted:		Contac	cted by:	
Response:				

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

August 11, 2014

Tetra Tech EM Inc. 1 South Wacker Drive Chicago, IL 60606

Telephone: (312) 946-6474 Fax: (312) 938-0118

Analytical Report for STAT Work Order: 14080039 Revision 0

RE: TPMHC, Tinley Park

Dear Tom Hahne:

STAT Analysis received 17 samples for the referenced project on 8/1/2014 4:45:00 PM. The analytical results are presented in the following report.

All analyses were performed in accordance with the requirements of 35 IAC Part 186 / NELAC standards. Analyses were performed in accordance with methods as referenced on the analytical report. Those analytical results expressed on a dry weight basis are also noted on the analytical report.

All analyses were performed within established holding time criteria, and all Quality Control criteria met EPA or laboratory specifications except when noted in the Case Narrative or Analytical Report. If required, an estimate of uncertainty for the analyses can be provided. A listing of accredited methods/parameters can also be provided.

Thank you for the opportunity to serve you and I look forward to working with you in the future. If you have any questions regarding the enclosed materials, please contact me at (312) 733-0551.

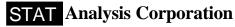
Sincerely,

Frank Capoccia

Project Manager

The information contained in this report and any attachments is confidential information intended only for the use of the individual or entities named above. The results of this report relate only to the samples tested. If you have received this report in error, please notify us immediately by phone. This report shall not be reproduced, except in its entirety, unless written approval has been obtained from the laboratory. This analytical report shall become property of the Customer upon payment in full. Otherwise, STAT will be under no obligation to support, defend or discuss the analytical report.

Date: August 11, 2014


Client: Tetra Tech EM Inc.

Project: TPMHC, Tinley Park

Work Order: 14080039 Revision 0

Work Order Sample Summary

Lab Sample ID	Client Sample ID	Tag Number	Collection Date	Date Received
14080039-001A	Cottage -T-SS- 1		7/31/2014 8:13:00 AM	8/1/2014
	Cottage -T-SS- 1 -D		7/31/2014 8:13:00 AM	8/1/2014
14080039-003A	Pine -T-SS- 1		7/31/2014 2:47:00 PM	8/1/2014
14080039-004A	LP-1		7/31/2014 9:30:00 AM	8/1/2014
14080039-005A	HDC-AST-SB-1		7/31/2014 11:25:00 AM	8/1/2014
14080039-005B	HDC-AST-SB-1		7/31/2014 11:25:00 AM	8/1/2014
14080039-006A	HDC-AST-SB-1-D		7/31/2014 11:25:00 AM	8/1/2014
14080039-006B	HDC-AST-SB-1-D		7/31/2014 11:25:00 AM	8/1/2014
14080039-007A	HDC-AST-SB-2		7/31/2014 11:55:00 AM	8/1/2014
14080039-007B	HDC-AST-SB-2		7/31/2014 11:55:00 AM	8/1/2014
14080039-008A	HDC-AST-SB-3		7/31/2014 1:20:00 PM	8/1/2014
14080039-008B	HDC-AST-SB-3		7/31/2014 1:20:00 PM	8/1/2014
14080039-009A	HDC-AST-SB-4		7/31/2014 1:45:00 PM	8/1/2014
14080039-009B	HDC-AST-SB-4		7/31/2014 1:45:00 PM	8/1/2014
14080039-010A	HDC-AST-SB-5		7/31/2014 2:10:00 PM	8/1/2014
14080039-010B	HDC-AST-SB-5		7/31/2014 2:10:00 PM	8/1/2014
14080039-011A	.PP -T-SS- 1		7/31/2014 9:20:00 AM	8/1/2014
14080039-012A	PP -SB-1A		7/31/2014 10:15:00 AM	8/1/2014
14080039-012B	PP -SB-1A		7/31/2014 10:15:00 AM	8/1/2014
14080039-013A	PP -SB- 2A		7/31/2014 10:44:00 AM	8/1/2014
14080039-013B	PP -SB- 2A		7/31/2014 10:44:00 AM	8/1/2014
14080039-014A	Oak -UST-SB- 1		8/1/2014 9:45:00 AM	8/1/2014
14080039-014B	Oak -UST-SB- 1		8/1/2014 9:45:00 AM	8/1/2014
14080039-015A	Pine -UST-SB- 1		8/1/2014 10:30:00 AM	8/1/2014
14080039-015B	Pine -UST-SB- 1		8/1/2014 10:30:00 AM	8/1/2014
14080039-016A	Maple -UST-SB- 1		8/1/2014 1:45:00 PM	8/1/2014
14080039-016B	Maple -UST-SB- 1		8/1/2014 1:45:00 PM	8/1/2014
14080039-017A	WTP -SB- 01		8/1/2014 2:00:00 PM	8/1/2014
14080039-017B	WTP -SB- 01		8/1/2014 2:00:00 PM	8/1/2014

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: August 11, 2014

ANALYTICAL RESULTS

Date Printed: August 11, 2014

Client: Tetra Tech EM Inc.

Work Order: 14080039 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14080039-001

Client Sample ID: Cottage -T-SS- 1

Collection Date: 7/31/2014 8:13:00 AM

Matrix: Soil

Analyses	Result	RL Qualis	fier Units	DF	Date Analyzed
PCBs	SW8082	(SW3550B)	Prep	Date: 8/7/2014	Analyst: GVC
Aroclor 1016	ND	0.10	mg/Kg-dry	1	8/7/2014
Aroclor 1221	ND	0.10	mg/Kg-dry	1	8/7/2014
Aroclor 1232	ND	0.10	mg/Kg-dry	1	8/7/2014
Aroclor 1242	ND	0.10	mg/Kg-dry	1	8/7/2014
Aroclor 1248	ND	0.10	mg/Kg-dry	1	8/7/2014
Aroclor 1254	ND	0.10	mg/Kg-dry	1	8/7/2014
Aroclor 1260	ND	0.10	mg/Kg-dry	1	8/7/2014
Percent Moisture	D2974		Prep	Date: 8/4/2014	Analyst: RW
Percent Moisture	24.2	0.2 *	wt%	1	8/5/2014

ND - Not Detected at the Reporting Limit

 \boldsymbol{J} - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: August 11, 2014

ANALYTICAL RESULTS

Date Printed: August 11, 2014

Client: Tetra Tech EM Inc.

Work Order: 14080039 Revision 0

Project: TPMHC, Tinley Park

Collection Date: 7/31/2014 8:13:00 AM

Client Sample ID: Cottage -T-SS-1-D

Matrix: Soil

Lab ID: 14080039-002

Analyses	Result	RL Quali	fier Units	DF	Date Analyzed
PCBs	SW8082	(SW3550B)	Prep	Date: 8/7/2014	Analyst: GVC
Aroclor 1016	ND	0.12	mg/Kg-dry	1	8/7/2014
Aroclor 1221	ND	0.12	mg/Kg-dry	1	8/7/2014
Aroclor 1232	ND	0.12	mg/Kg-dry	1	8/7/2014
Aroclor 1242	ND	0.12	mg/Kg-dry	1	8/7/2014
Aroclor 1248	ND	0.12	mg/Kg-dry	1	8/7/2014
Aroclor 1254	ND	0.12	mg/Kg-dry	1	8/7/2014
Aroclor 1260	ND	0.12	mg/Kg-dry	1	8/7/2014
Percent Moisture	D2974		Prep	Date: 8/4/2014	Analyst: RW
Percent Moisture	31.9	0.2 *	wt%	1	8/5/2014

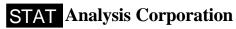
ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter


Qualifiers:

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

ANALYTICAL RESULTS

Date Printed: August 11, 2014

Client: Tetra Tech EM Inc.

Work Order: 14080039 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14080039-003

Client Sample ID: Pine -T-SS- 1

Collection Date: 7/31/2014 2:47:00 PM

Matrix: Soil

Analyses	Result	RL Quali	fier Units	DF	Date Analyzed
PCBs	SW8082	(SW3550B)	Prep	Date: 8/7/2014	Analyst: GVC
Aroclor 1016	ND	0.088	mg/Kg-dry	1	8/8/2014
Aroclor 1221	ND	0.088	mg/Kg-dry	1	8/8/2014
Aroclor 1232	ND	0.088	mg/Kg-dry	1	8/8/2014
Aroclor 1242	ND	0.088	mg/Kg-dry	1	8/8/2014
Aroclor 1248	ND	0.088	mg/Kg-dry	1	8/8/2014
Aroclor 1254	0.17	0.088	mg/Kg-dry	1	8/8/2014
Aroclor 1260	0.16	0.088	mg/Kg-dry	1	8/8/2014
Percent Moisture	D2974		Prep	Date: 8/4/2014	Analyst: RW
Percent Moisture	9.7	0.2 *	wt%	1	8/5/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

ANALYTICAL RESULTS

Date Printed: August 11, 2014

Client: Tetra Tech EM Inc.

Work Order: 14080039 Revision 0

TPMHC, Tinley Park **Project:**

Lab ID: 14080039-004 Client Sample ID: LP-1

Collection Date: 7/31/2014 9:30:00 AM

Matrix: Soil

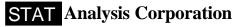
Analyses	Result	RL Qua	lifier Units	DF	Date Analyzed
TCLP Mercury	SW13	311/7470A	Prep	Date: 8/6/2014	Analyst: LB
Mercury	ND	0.00020	mg/L	1	8/6/2014
Mercury	SW74	171A	Prep l	Date: 8/6/2014	Analyst: LB
Mercury	0.35	0.033	mg/Kg-dry	1	8/6/2014
Metals by ICP/MS	SW66	020 (SW3050B)	Prep l	Date: 8/5/2014	Analyst: JG
Aluminum	5200	310	mg/Kg-dry	100	8/6/2014
Antimony	ND	3.1	mg/Kg-dry	10	8/6/2014
Arsenic	1.9	1.5	mg/Kg-dry	10	8/6/2014
Barium	54	1.5	mg/Kg-dry	10	8/6/2014
Beryllium	ND	0.76	mg/Kg-dry	10	8/6/2014
Cadmium	ND	0.76	mg/Kg-dry	10	8/6/2014
Calcium	430000	920	mg/Kg-dry	100	8/6/2014
Chromium	3.6	1.5	mg/Kg-dry	10	8/6/2014
Cobalt	ND	1.5	mg/Kg-dry	10	8/6/2014
Copper	ND	3.8	mg/Kg-dry	10	8/6/2014
Iron	6000	460	mg/Kg-dry	100	8/6/2014
Lead	14	0.76	mg/Kg-dry	10	8/6/2014
Magnesium	37000	460	mg/Kg-dry	100	8/6/2014
Manganese	62	1.5	mg/Kg-dry	10	8/6/2014
Nickel	8.0	1.5	mg/Kg-dry	10	8/6/2014
Potassium	90	46	mg/Kg-dry	10	8/6/2014
Selenium	ND	1.5	mg/Kg-dry	10	8/6/2014
Silver	ND	1.5	mg/Kg-dry	10	8/6/2014
Sodium	560	92	mg/Kg-dry	10	8/6/2014
Thallium	ND	1.5	mg/Kg-dry	10	8/6/2014
Vanadium	4.2	1.5	mg/Kg-dry	10	8/6/2014
Zinc	18	7.6	mg/Kg-dry	10	8/6/2014
TCLP Metals by ICP/MS	SW13	311/6020 (SW30	05A) Prep l	Date: 8/6/2014	Analyst: JG
Arsenic	ND	0.010	mg/L	5	8/7/2014
Barium	0.48	0.050	mg/L	5	8/7/2014
Cadmium	ND	0.0050	mg/L	5	8/7/2014
Chromium	ND	0.010	mg/L	5	8/7/2014
Lead	ND	0.0050	mg/L	5	8/7/2014
Selenium	ND	0.010	mg/L	5	8/7/2014
Silver	ND	0.010	mg/L	5	8/7/2014
Cyanide, Reactive	SW7.	3.3.2	Prep	Date: 8/7/2014	Analyst: YZ
Reactive Cyanide	ND	1.0	mg/Kg	1	8/7/2014
•			5 5		

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time


* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

ANALYTICAL RESULTS

Date Printed: August 11, 2014

Client: Tetra Tech EM Inc.

Work Order: 14080039 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14080039-004

Client Sample ID: LP-1

Collection Date: 7/31/2014 9:30:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Cyanide, Total	SW9012A			Prep	Date: 8/6/2014	Analyst: YZ
Cyanide	ND	0.45		mg/Kg-dry	1	8/7/2014
Flash Point (Open-Cup)	SW1010(N	/ I)		Prep	Date: 8/5/2014	Analyst: RW
Flashpoint	No flash up to 212		*	°F	1	8/5/2014
Paint Filter	SW9095A			Prep	Date: 8/5/2014	Analyst: RW
Paint Filter	Pass			Pass/Fail	1	8/5/2014
pH (25 °C)	SW9045C			Prep	Date: 8/7/2014	Analyst: RW
рН	9.3			pH Units	1	8/7/2014
Percent Moisture	D2974			Prep	Date: 8/4/2014	Analyst: RW
Percent Moisture	44.7	0.2	*	wt%	1	8/5/2014
Sulfide, Reactive	SW7.3.4.2			Prep	Date: 8/7/2014	Analyst: YZ
Reactive Sulfide	ND	10		mg/Kg	1	8/7/2014

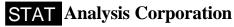
ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter


Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

ANALYTICAL RESULTS

Date Printed: August 11, 2014

Client: Tetra Tech EM Inc. Client Sample ID: HDC-AST-SB-1

Work Order: 14080039 Revision 0 **Collection Date**: 7/31/2014 11:25:00 AM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14080039-005

Analyses	esult	RL Qualif	fier Units	DF	Date Analyzed
Polynuclear Aromatic Hydrocarbons by GC/MS	SW8	3270C (SW3550B)	Prep	Date: 8/6/2014	Analyst: DM
Acenaphthene	ND	0.042	mg/Kg-dry	1	8/8/2014
Acenaphthylene	ND	0.042	mg/Kg-dry	1	8/8/2014
Anthracene	ND	0.042	mg/Kg-dry	1	8/8/2014
Benz(a)anthracene	ND	0.042	mg/Kg-dry	1	8/8/2014
Benzo(a)pyrene	ND	0.042	mg/Kg-dry	1	8/8/2014
Benzo(b)fluoranthene	ND	0.042	mg/Kg-dry	1	8/8/2014
Benzo(g,h,i)perylene	ND	0.042	mg/Kg-dry	1	8/8/2014
Benzo(k)fluoranthene	ND	0.042	mg/Kg-dry	1	8/8/2014
Chrysene	ND	0.042	mg/Kg-dry	1	8/8/2014
Dibenz(a,h)anthracene	ND	0.042	mg/Kg-dry	1	8/8/2014
Fluoranthene	ND	0.042	mg/Kg-dry	1	8/8/2014
Fluorene	ND	0.042	mg/Kg-dry	1	8/8/2014
Indeno(1,2,3-cd)pyrene	ND	0.042	mg/Kg-dry	1	8/8/2014
Naphthalene	ND	0.042	mg/Kg-dry	1	8/8/2014
Phenanthrene	ND	0.042	mg/Kg-dry	1	8/8/2014
Pyrene	ND	0.042	mg/Kg-dry	1	8/8/2014
BTEX by GC/MS	SW5	6035/8260B	Prep	Date: 8/4/2014	Analyst: ERP
Benzene	ND	0.0048	mg/Kg-dry	1	8/7/2014
Ethylbenzene	ND	0.0048	mg/Kg-dry	1	8/7/2014
Toluene	ND	0.0048	mg/Kg-dry	1	8/7/2014
Xylenes, Total	ND	0.014	mg/Kg-dry	1	8/7/2014
Percent Moisture	D297	74	Prep	Date: 8/4/2014	Analyst: RW
Percent Moisture	20.9	0.2 *	wt%	1	8/5/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

ANALYTICAL RESULTS

Date Printed: August 11, 2014

Client: Tetra Tech EM Inc.

Work Order: 14080039 Revision 0

TPMHC, Tinley Park

Collection Date: 7/31/2014 11:25:00 AM

Client Sample ID: HDC-AST-SB-1-D

Matrix: Soil

Lab ID: 14080039-006

Project:

Analyses	Result	RL Qualif	ier Units	DF	Date Analyzed
Polynuclear Aromatic Hydrocarbons by GC/MS	S SW8	270C (SW3550B)	Prep	Date: 8/6/2014	Analyst: DM
Acenaphthene	ND	0.041	mg/Kg-dry	1	8/8/2014
Acenaphthylene	ND	0.041	mg/Kg-dry	1	8/8/2014
Anthracene	ND	0.041	mg/Kg-dry	1	8/8/2014
Benz(a)anthracene	ND	0.041	mg/Kg-dry	1	8/8/2014
Benzo(a)pyrene	ND	0.041	mg/Kg-dry	1	8/8/2014
Benzo(b)fluoranthene	ND	0.041	mg/Kg-dry	1	8/8/2014
Benzo(g,h,i)perylene	ND	0.041	mg/Kg-dry	1	8/8/2014
Benzo(k)fluoranthene	ND	0.041	mg/Kg-dry	1	8/8/2014
Chrysene	ND	0.041	mg/Kg-dry	1	8/8/2014
Dibenz(a,h)anthracene	ND	0.041	mg/Kg-dry	1	8/8/2014
Fluoranthene	ND	0.041	mg/Kg-dry	1	8/8/2014
Fluorene	ND	0.041	mg/Kg-dry	1	8/8/2014
Indeno(1,2,3-cd)pyrene	ND	0.041	mg/Kg-dry	1	8/8/2014
Naphthalene	ND	0.041	mg/Kg-dry	1	8/8/2014
Phenanthrene	ND	0.041	mg/Kg-dry	1	8/8/2014
Pyrene	ND	0.041	mg/Kg-dry	1	8/8/2014
BTEX by GC/MS	SW5	035/8260B	Prep	Date: 8/4/2014	Analyst: ERP
Benzene	ND	0.0074	mg/Kg-dry	1	8/7/2014
Ethylbenzene	ND	0.0074	mg/Kg-dry	1	8/7/2014
Toluene	ND	0.0074	mg/Kg-dry	1	8/7/2014
Xylenes, Total	ND	0.022	mg/Kg-dry	1	8/7/2014
Percent Moisture	D297	' 4	Prep	Date: 8/4/2014	Analyst: RW
Percent Moisture	20.0	0.2 *	wt%	1	8/5/2014

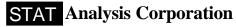
ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter


Qualifiers:

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

ANALYTICAL RESULTS

Date Printed: August 11, 2014

Client: Tetra Tech EM Inc. Client Sample ID: HDC-AST-SB-2

Work Order: 14080039 Revision 0 **Collection Date**: 7/31/2014 11:55:00 AM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14080039-007

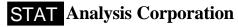
Analyses	Result	RL Quali	ifier Units	DF	Date Analyzed
Polynuclear Aromatic Hydrocarbons by GC/MS	SW8:	270C (SW3550B)	Prep	Date: 8/6/2014	Analyst: DM
Acenaphthene	ND ND	0.039	mg/Kg-dry	1	8/10/2014
Acenaphthylene	ND	0.039	mg/Kg-dry	1	8/10/2014
Anthracene	ND	0.039	mg/Kg-dry	1	8/10/2014
Benz(a)anthracene	ND	0.039	mg/Kg-dry	1	8/10/2014
Benzo(a)pyrene	ND	0.039	mg/Kg-dry	1	8/10/2014
Benzo(b)fluoranthene	ND	0.039	mg/Kg-dry	1	8/10/2014
Benzo(g,h,i)perylene	ND	0.039	mg/Kg-dry	1	8/10/2014
Benzo(k)fluoranthene	ND	0.039	mg/Kg-dry	1	8/10/2014
Chrysene	ND	0.039	mg/Kg-dry	1	8/10/2014
Dibenz(a,h)anthracene	ND	0.039	mg/Kg-dry	1	8/10/2014
Fluoranthene	ND	0.039	mg/Kg-dry	1	8/10/2014
Fluorene	ND	0.039	mg/Kg-dry	1	8/10/2014
Indeno(1,2,3-cd)pyrene	ND	0.039	mg/Kg-dry	1	8/10/2014
Naphthalene	ND	0.039	mg/Kg-dry	1	8/10/2014
Phenanthrene	ND	0.039	mg/Kg-dry	1	8/10/2014
Pyrene	ND	0.039	mg/Kg-dry	1	8/10/2014
BTEX by GC/MS	SW5	035/8260B	Prep	Date: 8/4/2014	Analyst: ERP
Benzene	ND	0.0042	mg/Kg-dry	1	8/7/2014
Ethylbenzene	ND	0.0042	mg/Kg-dry	1	8/7/2014
Toluene	ND	0.0042	mg/Kg-dry	1	8/7/2014
Xylenes, Total	ND	0.013	mg/Kg-dry	1	8/7/2014
Percent Moisture	D297	' 4	Prep	Date: 8/4/2014	Analyst: RW
Percent Moisture	14.5	0.2	* wt%	1	8/5/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time


* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

ANALYTICAL RESULTS

August 11, 2014

Date Printed:

Client: Tetra Tech EM Inc. Client Sample ID: HDC-AST-SB-3

Work Order: 14080039 Revision 0 **Collection Date**: 7/31/2014 1:20:00 PM

TPMHC, Tinley Park Project: Matrix: Soil Lab ID: 14080039-008

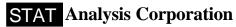
Analyses	Result	RL Quali	fier Units	DF	Date Analyzed
Polynuclear Aromatic Hydrocarbons by GC/MS	SW82	70C (SW3550B)	Prep	Date: 8/7/2014	Analyst: DM
Acenaphthene	ND	0.038	mg/Kg-dry	1	8/10/2014
Acenaphthylene	ND	0.038	mg/Kg-dry	1	8/10/2014
Anthracene	ND	0.038	mg/Kg-dry	1	8/10/2014
Benz(a)anthracene	ND	0.038	mg/Kg-dry	1	8/10/2014
Benzo(a)pyrene	ND	0.038	mg/Kg-dry	1	8/10/2014
Benzo(b)fluoranthene	ND	0.038	mg/Kg-dry	1	8/10/2014
Benzo(g,h,i)perylene	ND	0.038	mg/Kg-dry	1	8/10/2014
Benzo(k)fluoranthene	ND	0.038	mg/Kg-dry	1	8/10/2014
Chrysene	ND	0.038	mg/Kg-dry	1	8/10/2014
Dibenz(a,h)anthracene	ND	0.038	mg/Kg-dry	1	8/10/2014
Fluoranthene	ND	0.038	mg/Kg-dry	1	8/10/2014
Fluorene	ND	0.038	mg/Kg-dry	1	8/10/2014
Indeno(1,2,3-cd)pyrene	ND	0.038	mg/Kg-dry	1	8/10/2014
Naphthalene	ND	0.038	mg/Kg-dry	1	8/10/2014
Phenanthrene	ND	0.038	mg/Kg-dry	1	8/10/2014
Pyrene	ND	0.038	mg/Kg-dry	1	8/10/2014
BTEX by GC/MS	SW50	35/8260B	Prep	Date: 8/4/2014	Analyst: ERP
Benzene	0.039	0.0038	mg/Kg-dry	1	8/7/2014
Ethylbenzene	ND	0.0038	mg/Kg-dry	1	8/7/2014
Toluene 0	.0070	0.0038	mg/Kg-dry	1	8/7/2014
Xylenes, Total	ND	0.011	mg/Kg-dry	1	8/7/2014
Percent Moisture	D2974	4	Prep	Date: 8/4/2014	Analyst: RW
Percent Moisture	14.4	0.2 *	wt%	1	8/5/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time


* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

ANALYTICAL RESULTS

Date Printed: August 11, 2014

Client: Tetra Tech EM Inc.

Work Order: 14080039 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14080039-009

Client Sample ID: HDC-AST-SB-4

Collection Date: 7/31/2014 1:45:00 PM

Matrix: Soil

Analyses	Result	RL Qual	ifier Units	DF	Date Analyzed
Polynuclear Aromatic Hydrocarbons by GC/MS	s swa	270C (SW3550B) Prep	Date: 8/7/2014	Analyst: DM
Acenaphthene	ND	0.041	mg/Kg-dry	1	8/10/2014
Acenaphthylene	ND	0.041	mg/Kg-dry	1	8/10/2014
Anthracene	ND	0.041	mg/Kg-dry	1	8/10/2014
Benz(a)anthracene	ND	0.041	mg/Kg-dry	1	8/10/2014
Benzo(a)pyrene	ND	0.041	mg/Kg-dry	1	8/10/2014
Benzo(b)fluoranthene	ND	0.041	mg/Kg-dry	1	8/10/2014
Benzo(g,h,i)perylene	ND	0.041	mg/Kg-dry	1	8/10/2014
Benzo(k)fluoranthene	ND	0.041	mg/Kg-dry	1	8/10/2014
Chrysene	ND	0.041	mg/Kg-dry	1	8/10/2014
Dibenz(a,h)anthracene	ND	0.041	mg/Kg-dry	1	8/10/2014
Fluoranthene	ND	0.041	mg/Kg-dry	1	8/10/2014
Fluorene	ND	0.041	mg/Kg-dry	1	8/10/2014
Indeno(1,2,3-cd)pyrene	ND	0.041	mg/Kg-dry	1	8/10/2014
Naphthalene	ND	0.041	mg/Kg-dry	1	8/10/2014
Phenanthrene	ND	0.041	mg/Kg-dry	1	8/10/2014
Pyrene	ND	0.041	mg/Kg-dry	1	8/10/2014
BTEX by GC/MS	SW5	035/8260B	Prep	Date: 8/4/2014	Analyst: ERP
Benzene	ND	0.0046	mg/Kg-dry	1	8/7/2014
Ethylbenzene	ND	0.0046	mg/Kg-dry	1	8/7/2014
Toluene	ND	0.0046	mg/Kg-dry	1	8/7/2014
Xylenes, Total	ND	0.014	mg/Kg-dry	1	8/7/2014
Percent Moisture	D297	' 4	Prep	Date: 8/4/2014	Analyst: RW
Percent Moisture	19.8	0.2	* wt%	1	8/5/2014

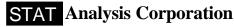
ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter


Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accorditations: IEPA ELAP 100445-OPELAP II 300001-AIHA LAP II C 101160:NVI

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

ANALYTICAL RESULTS

Date Reported: August 11, 2014 **Date Printed:** August 11, 2014

Client: Tetra Tech EM Inc. Client Sample ID: HDC-AST-SB-5

Work Order: 14080039 Revision 0 **Collection Date**: 7/31/2014 2:10:00 PM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14080039-010

Analyses	Result	RL Qu	alifier Units	DF	Date Analyzed
Polynuclear Aromatic Hydrocarbons by GC/MS	SW82	70C (SW3550	OB) Prep	Date: 8/7/2014	Analyst: DM
Acenaphthene	ND	0.040	mg/Kg-dry	1	8/8/2014
Acenaphthylene	ND	0.040	mg/Kg-dry	1	8/8/2014
Anthracene	ND	0.040	mg/Kg-dry	1	8/8/2014
Benz(a)anthracene	ND	0.040	mg/Kg-dry	1	8/8/2014
Benzo(a)pyrene	ND	0.040	mg/Kg-dry	1	8/8/2014
Benzo(b)fluoranthene	ND	0.040	mg/Kg-dry	1	8/8/2014
Benzo(g,h,i)perylene	ND	0.040	mg/Kg-dry	1	8/8/2014
Benzo(k)fluoranthene	ND	0.040	mg/Kg-dry	1	8/8/2014
Chrysene	ND	0.040	mg/Kg-dry	1	8/8/2014
Dibenz(a,h)anthracene	ND	0.040	mg/Kg-dry	1	8/8/2014
Fluoranthene	ND	0.040	mg/Kg-dry	1	8/8/2014
Fluorene	ND	0.040	mg/Kg-dry	1	8/8/2014
Indeno(1,2,3-cd)pyrene	ND	0.040	mg/Kg-dry	1	8/8/2014
Naphthalene	ND	0.040	mg/Kg-dry	1	8/8/2014
Phenanthrene	ND	0.040	mg/Kg-dry	1	8/8/2014
Pyrene	ND	0.040	mg/Kg-dry	1	8/8/2014
BTEX by GC/MS	SW503	35/8260B	Prep	Date: 8/4/2014	Analyst: ERP
Benzene	ND	0.0043	mg/Kg-dry	1	8/7/2014
Ethylbenzene	ND	0.0043	mg/Kg-dry	1	8/7/2014
Toluene	ND	0.0043	mg/Kg-dry	1	8/7/2014
Xylenes, Total	ND	0.013	mg/Kg-dry	1	8/7/2014
Percent Moisture	D2974	ļ	Prep	Date: 8/4/2014	Analyst: RW
Percent Moisture	17.6	0.2	* wt%	1	8/5/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

ANALYTICAL RESULTS

Date Printed: August 11, 2014

Client: Tetra Tech EM Inc.

Work Order: 14080039 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14080039-011

Client Sample ID: PP-T-SS-1

Collection Date: 7/31/2014 9:20:00 AM

Matrix: Soil

Analyses	Result	RL Quali	fier Units	DF	Date Analyzed
PCBs	SW8082	(SW3550B)	Prep	Date: 8/7/2014	Analyst: GVC
Aroclor 1016	ND	0.097	mg/Kg-dry	1	8/7/2014
Aroclor 1221	ND	0.097	mg/Kg-dry	1	8/7/2014
Aroclor 1232	ND	0.097	mg/Kg-dry	1	8/7/2014
Aroclor 1242	ND	0.097	mg/Kg-dry	1	8/7/2014
Aroclor 1248	ND	0.097	mg/Kg-dry	1	8/7/2014
Aroclor 1254	ND	0.097	mg/Kg-dry	1	8/7/2014
Aroclor 1260	ND	0.097	mg/Kg-dry	1	8/7/2014
Percent Moisture	D2974		Prep	Date: 8/4/2014	Analyst: RW
Percent Moisture	17.7	0.2 *	wt%	1	8/5/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

ANALYTICAL RESULTS

Date Printed: August 11, 2014

Client: Tetra Tech EM Inc.

Work Order: 14080039 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14080039-012

Client Sample ID: PP -SB-1A

Collection Date: 7/31/2014 10:15:00 AM

Matrix: Soil

Analyses	Result	RL (Qualifier	Units	DF	Date Analyzed
TCLP Mercury	_	311/7470A		•	Date: 8/6/2014	Analyst: LB
Mercury	ND	0.00020		mg/L	1	8/6/2014
Mercury	SW74	471A		Prep	Date: 8/6/2014	Analyst: LB
Mercury	0.023	0.022	m	g/Kg-dry	1	8/6/2014
Metals by ICP/MS	SW6	020 (SW305	50B)	Prep	Date: 8/5/2014	Analyst: JG
Aluminum	8100	240	•	g/Kg-dry	100	8/7/2014
Antimony	ND	2.4	m	g/Kg-dry	10	8/6/2014
Arsenic	11	1.2	m	g/Kg-dry	10	8/6/2014
Barium	48	1.2	m	g/Kg-dry	10	8/6/2014
Beryllium	0.89	0.59	m	g/Kg-dry	10	8/6/2014
Cadmium	ND	0.59	m	g/Kg-dry	10	8/6/2014
Calcium	41000	710	m	g/Kg-dry	100	8/7/2014
Chromium	13	1.2	m	g/Kg-dry	10	8/6/2014
Cobalt	15	1.2	m	g/Kg-dry	10	8/6/2014
Copper	32	3.0	m	g/Kg-dry	10	8/6/2014
Iron	23000	360	m	g/Kg-dry	100	8/7/2014
Lead	21	0.59	m	g/Kg-dry	10	8/6/2014
Magnesium	26000	360	m	g/Kg-dry	100	8/7/2014
Manganese	690	1.2	m	g/Kg-dry	10	8/6/2014
Nickel	42	1.2	m	g/Kg-dry	10	8/6/2014
Potassium	1400	36	m	g/Kg-dry	10	8/6/2014
Selenium	ND	1.2	m	g/Kg-dry	10	8/6/2014
Silver	ND	1.2	m	g/Kg-dry	10	8/6/2014
Sodium	72	71	m	g/Kg-dry	10	8/6/2014
Thallium	ND	1.2	m	g/Kg-dry	10	8/6/2014
Vanadium	18	1.2	m	g/Kg-dry	10	8/6/2014
Zinc	61	5.9	m	g/Kg-dry	10	8/6/2014
TCLP Metals by ICP/MS	SW1	311/6020 (SV	W3005A)	Prep	Date: 8/6/2014	Analyst: JG
Arsenic	ND	0.010	,	mg/L	5	8/7/2014
Barium	0.48	0.050		mg/L	5	8/7/2014
Cadmium	ND	0.0050		mg/L	5	8/7/2014
Chromium	ND	0.010		mg/L	5	8/7/2014
Lead	ND	0.0050		mg/L	5	8/7/2014
Selenium	ND	0.010		mg/L	5	8/7/2014
Silver	ND	0.010		mg/L	5	8/7/2014
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW35	550B)	Prep	Date: 8/7/2014	Analyst: DM
Acenaphthene	ND	0.038	-	g/Kg-dry	1	8/8/2014
•				5 5 7		

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

Date Printed:

ANALYTICAL RESULTS

Client Sample ID: PP-SB-1A

Collection Date: 7/31/2014 10:15:00 AM

Client: Tetra Tech EM Inc.

Work Order: 14080039 Revision 0

August 11, 2014

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14080039-012

Analyses	Result	RL (Qualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	70C (SW35	50B) Prep [Date: 8/7/2014	Analyst: DM
Acenaphthylene	ND	0.038	mg/Kg-dry	1	8/8/2014
Aniline	ND	0.38	mg/Kg-dry	1	8/8/2014
Anthracene	ND	0.038	mg/Kg-dry	1	8/8/2014
Benz(a)anthracene	ND	0.038	mg/Kg-dry	1	8/8/2014
Benzidine	ND	0.38	mg/Kg-dry	1	8/8/2014
Benzo(a)pyrene	ND	0.038	mg/Kg-dry	1	8/8/2014
Benzo(b)fluoranthene	ND	0.038	mg/Kg-dry	1	8/8/2014
Benzo(g,h,i)perylene	ND	0.038	mg/Kg-dry	1	8/8/2014
Benzo(k)fluoranthene	ND	0.038	mg/Kg-dry	1	8/8/2014
Benzoic acid	ND	0.95	mg/Kg-dry	1	8/8/2014
Benzyl alcohol	ND	0.19	mg/Kg-dry	1	8/8/2014
Bis(2-chloroethoxy)methane	ND	0.19	mg/Kg-dry	1	8/8/2014
Bis(2-chloroethyl)ether	ND	0.19	mg/Kg-dry	1	8/8/2014
Bis(2-ethylhexyl)phthalate	ND	0.95	mg/Kg-dry	1	8/8/2014
4-Bromophenyl phenyl ether	ND	0.19	mg/Kg-dry	1	8/8/2014
Butyl benzyl phthalate	ND	0.19	mg/Kg-dry	1	8/8/2014
Carbazole	ND	0.19	mg/Kg-dry	1	8/8/2014
4-Chloroaniline	ND	0.19	mg/Kg-dry	1	8/8/2014
4-Chloro-3-methylphenol	ND	0.38	mg/Kg-dry	1	8/8/2014
2-Chloronaphthalene	ND	0.19	mg/Kg-dry	1	8/8/2014
2-Chlorophenol	ND	0.19	mg/Kg-dry	1	8/8/2014
4-Chlorophenyl phenyl ether	ND	0.19	mg/Kg-dry	1	8/8/2014
Chrysene	ND	0.038	mg/Kg-dry	1	8/8/2014
Dibenz(a,h)anthracene	ND	0.038	mg/Kg-dry	1	8/8/2014
Dibenzofuran	ND	0.19	mg/Kg-dry	1	8/8/2014
1,2-Dichlorobenzene	ND	0.19	mg/Kg-dry	1	8/8/2014
1,3-Dichlorobenzene	ND	0.19	mg/Kg-dry	1	8/8/2014
1,4-Dichlorobenzene	ND	0.19	mg/Kg-dry	1	8/8/2014
3,3´-Dichlorobenzidine	ND	0.19	mg/Kg-dry	1	8/8/2014
2,4-Dichlorophenol	ND	0.19	mg/Kg-dry	1	8/8/2014
Diethyl phthalate	ND	0.19	mg/Kg-dry	1	8/8/2014
2,4-Dimethylphenol	ND	0.19	mg/Kg-dry	1	8/8/2014
Dimethyl phthalate	ND	0.19	mg/Kg-dry	1	8/8/2014
4,6-Dinitro-2-methylphenol	ND	0.38	mg/Kg-dry	1	8/8/2014
2,4-Dinitrophenol	ND	0.95	mg/Kg-dry	1	8/8/2014
2,4-Dinitrotoluene	ND	0.038	mg/Kg-dry	1	8/8/2014
2,6-Dinitrotoluene	ND	0.038	mg/Kg-dry	1	8/8/2014
Di-n-butyl phthalate	ND	0.19	mg/Kg-dry	1	8/8/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

Date Printed:

ANALYTICAL RESULTS

Client: Tetra Tech EM Inc.

August 11, 2014

Work Order: 14080039 Revision 0

Project: TPMHC, Tinley Park

Collection Date: 7/31/2014 10:15:00 AM

Lab ID: 14080039-012 Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW35	50B) Prep	Date: 8/7/2014	Analyst: DM
Di-n-octyl phthalate	ND	0.19	mg/Kg-dry	1	8/8/2014
Fluoranthene	ND	0.038	mg/Kg-dry	1	8/8/2014
Fluorene	ND	0.038	mg/Kg-dry	1	8/8/2014
Hexachlorobenzene	ND	0.19	mg/Kg-dry	1	8/8/2014
Hexachlorobutadiene	ND	0.19	mg/Kg-dry	1	8/8/2014
Hexachlorocyclopentadiene	ND	0.19	mg/Kg-dry	1	8/8/2014
Hexachloroethane	ND	0.19	mg/Kg-dry	1	8/8/2014
Indeno(1,2,3-cd)pyrene	ND	0.038	mg/Kg-dry	1	8/8/2014
Isophorone	ND	0.19	mg/Kg-dry	1	8/8/2014
2-Methylnaphthalene	ND	0.19	mg/Kg-dry	1	8/8/2014
2-Methylphenol	ND	0.19	mg/Kg-dry	1	8/8/2014
4-Methylphenol	ND	0.19	mg/Kg-dry	1	8/8/2014
Naphthalene	ND	0.038	mg/Kg-dry	1	8/8/2014
2-Nitroaniline	ND	0.19	mg/Kg-dry	1	8/8/2014
3-Nitroaniline	ND	0.19	mg/Kg-dry	1	8/8/2014
4-Nitroaniline	ND	0.19	mg/Kg-dry	1	8/8/2014
2-Nitrophenol	ND	0.19	mg/Kg-dry	1	8/8/2014
4-Nitrophenol	ND	0.38	mg/Kg-dry	1	8/8/2014
Nitrobenzene	ND	0.038	mg/Kg-dry	1	8/8/2014
N-Nitrosodi-n-propylamine	ND	0.038	mg/Kg-dry	1	8/8/2014
N-Nitrosodimethylamine	ND	0.19	mg/Kg-dry	1	8/8/2014
N-Nitrosodiphenylamine	ND	0.038	mg/Kg-dry	1	8/8/2014
2, 2'-oxybis(1-Chloropropane)	ND	0.19	mg/Kg-dry	1	8/8/2014
Pentachlorophenol	ND	0.077	mg/Kg-dry	1	8/8/2014
Phenanthrene	ND	0.038	mg/Kg-dry	1	8/8/2014
Phenol	ND	0.19	mg/Kg-dry	1	8/8/2014
Pyrene	ND	0.038	mg/Kg-dry	1	8/8/2014
Pyridine	ND	0.77	mg/Kg-dry	1	8/8/2014
1,2,4-Trichlorobenzene	ND	0.19	mg/Kg-dry	1	8/8/2014
2,4,5-Trichlorophenol	ND	0.19	mg/Kg-dry	1	8/8/2014
2,4,6-Trichlorophenol	ND	0.19	mg/Kg-dry	1	8/8/2014
Volatile Organic Compounds by GC/MS	SW50	035/8260B	Prep	Date: 8/4/2014	Analyst: ERP
Acetone	ND	0.065	mg/Kg-dry	1	8/7/2014
Benzene	ND	0.0043	mg/Kg-dry	1	8/7/2014
Bromodichloromethane	ND	0.0043	mg/Kg-dry	1	8/7/2014
Bromoform	ND	0.0043	mg/Kg-dry	1	8/7/2014
Bromomethane	ND	0.0087	mg/Kg-dry	1	8/7/2014
2-Butanone	ND	0.065	mg/Kg-dry	1	8/7/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

August 11, 2014

Date Printed:

ANALYTICAL RESULTS

Client: Tetra Tech EM Inc. Client Sample ID: PP -SB-1A

Work Order: 14080039 Revision 0 **Collection Date**: 7/31/2014 10:15:00 AM

Project: TPMHC, Tinley Park Matrix: Soil

Lab ID: 14080039-012

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW50)35/8260B	Prep	Date: 8/4/2014	Analyst: ERP
Carbon disulfide	ND	0.043	mg/Kg-dry	1	8/7/2014
Carbon tetrachloride	ND	0.0043	mg/Kg-dry	1	8/7/2014
Chlorobenzene	ND	0.0043	mg/Kg-dry	1	8/7/2014
Chloroethane	ND	0.0087	mg/Kg-dry	1	8/7/2014
Chloroform	ND	0.0043	mg/Kg-dry	1	8/7/2014
Chloromethane	ND	0.0087	mg/Kg-dry	1	8/7/2014
Dibromochloromethane	ND	0.0043	mg/Kg-dry	1	8/7/2014
1,1-Dichloroethane	ND	0.0043	mg/Kg-dry	1	8/7/2014
1,2-Dichloroethane	ND	0.0043	mg/Kg-dry	1	8/7/2014
1,1-Dichloroethene	ND	0.0043	mg/Kg-dry	1	8/7/2014
cis-1,2-Dichloroethene	ND	0.0043	mg/Kg-dry	1	8/7/2014
trans-1,2-Dichloroethene	ND	0.0043	mg/Kg-dry	1	8/7/2014
1,2-Dichloropropane	ND	0.0043	mg/Kg-dry	1	8/7/2014
cis-1,3-Dichloropropene	ND	0.0017	mg/Kg-dry	1	8/7/2014
trans-1,3-Dichloropropene	ND	0.0017	mg/Kg-dry	1	8/7/2014
Ethylbenzene	ND	0.0043	mg/Kg-dry	1	8/7/2014
2-Hexanone	ND	0.017	mg/Kg-dry	1	8/7/2014
4-Methyl-2-pentanone	ND	0.017	mg/Kg-dry	1	8/7/2014
Methylene chloride	ND	0.0087	mg/Kg-dry	1	8/7/2014
Methyl tert-butyl ether	ND	0.0043	mg/Kg-dry	1	8/7/2014
Styrene	ND	0.0043	mg/Kg-dry	1	8/7/2014
1,1,2,2-Tetrachloroethane	ND	0.0043	mg/Kg-dry	1	8/7/2014
Tetrachloroethene	ND	0.0043	mg/Kg-dry	1	8/7/2014
Toluene	ND	0.0043	mg/Kg-dry	1	8/7/2014
1,1,1-Trichloroethane	ND	0.0043	mg/Kg-dry	1	8/7/2014
1,1,2-Trichloroethane	ND	0.0043	mg/Kg-dry	1	8/7/2014
Trichloroethene	ND	0.0043	mg/Kg-dry	1	8/7/2014
Vinyl chloride	ND	0.0043	mg/Kg-dry	1	8/7/2014
Xylenes, Total	ND	0.013	mg/Kg-dry	1	8/7/2014
Cyanide, Total	SW90)12A	Prep	Date: 8/6/2014	Analyst: YZ
Cyanide	ND	0.29	mg/Kg-dry	1	8/7/2014
pH (25 °C)	SW90	045C	Prep	Date: 8/7/2014	Analyst: RW
рН	8.3		pH Units	1	8/7/2014
Percent Moisture	D297	4	Prep	Date: 8/4/2014	Analyst: RW
Percent Moisture	13.4	0.2	* wt%	1	8/5/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

ANALYTICAL RESULTS

Date Printed: August 11, 2014

Client: Tetra Tech EM Inc.

Work Order: 14080039 Revision 0

TPMHC, Tinley Park **Project:**

Lab ID: 14080039-013 Client Sample ID: PP-SB-2A

Collection Date: 7/31/2014 10:44:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF	Date Analyzed
TCLP Mercury	SW1	311/7470A	Prep I	Date: 8/6/2014	Analyst: LB
Mercury	ND	0.00020	mg/L	1	8/6/2014
Mercury	SW7	471A	Prep I	Date: 8/6/2014	Analyst: LB
Mercury	0.025	0.021	mg/Kg-dry	1	8/6/2014
Metals by ICP/MS	SW6	6020 (SW3050	DB) Prep I	Date: 8/5/2014	Analyst: JG
Aluminum	11000	240	mg/Kg-dry	100	8/7/2014
Antimony	ND	2.4	mg/Kg-dry	10	8/6/2014
Arsenic	11	1.2	mg/Kg-dry	10	8/6/2014
Barium	66	1.2	mg/Kg-dry	10	8/6/2014
Beryllium	1.0	0.60	mg/Kg-dry	10	8/6/2014
Cadmium	ND	0.60	mg/Kg-dry	10	8/6/2014
Calcium	32000	720	mg/Kg-dry	100	8/7/2014
Chromium	20	1.2	mg/Kg-dry	10	8/6/2014
Cobalt	13	1.2	mg/Kg-dry	10	8/6/2014
Copper	29	3.0	mg/Kg-dry	10	8/6/2014
Iron	26000	360	mg/Kg-dry	100	8/7/2014
Lead	26	0.60	mg/Kg-dry	10	8/6/2014
Magnesium	18000	360	mg/Kg-dry	100	8/7/2014
Manganese	400	1.2	mg/Kg-dry	10	8/6/2014
Nickel	33	1.2	mg/Kg-dry	10	8/6/2014
Potassium	1600	36	mg/Kg-dry	10	8/6/2014
Selenium	ND	1.2	mg/Kg-dry	10	8/6/2014
Silver	ND	1.2	mg/Kg-dry	10	8/6/2014
Sodium	73	72	mg/Kg-dry	10	8/6/2014
Thallium	ND	1.2	mg/Kg-dry	10	8/6/2014
Vanadium	23	1.2	mg/Kg-dry	10	8/6/2014
Zinc	100	6.0	mg/Kg-dry	10	8/6/2014
TCLP Metals by ICP/MS	SW1	1311/6020 (SW	V3005A) Prep i	Date: 8/6/2014	Analyst: JG
Arsenic	ND	0.010	mg/L	5	8/7/2014
Barium	0.58	0.050	mg/L	5	8/7/2014
Cadmium	ND	0.0050	mg/L	5	8/7/2014
Chromium	ND	0.010	mg/L	5	8/7/2014
Lead	ND	0.0050	mg/L	5	8/7/2014
Selenium	ND	0.010	mg/L	5	8/7/2014
Silver	ND	0.010	mg/L	5	8/7/2014
Semivolatile Organic Compounds by GC/MS	SW8	3270C (SW35	50B) Prep I	Date: 8/7/2014	Analyst: DM
Acenaphthene	ND	0.038	mg/Kg-dry	1	8/8/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

August 11, 2014

ANALYTICAL RESULTS

Date Printed:

Client: Tetra Tech EM Inc.

Client Sample ID: PP -SB- 2A

Work Order: 14080039 Revision 0 **Collection Date**: 7/31/2014 10:44:00 AM

Project: TPMHC, Tinley Park
Lab ID: 14080039-013

Matrix: Soil

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW3	3550B) Prep	Date: 8/7/2014	Analyst: DM
Acenaphthylene	ND	0.038	mg/Kg-dry	1	8/8/2014
Aniline	ND	0.38	mg/Kg-dry	1	8/8/2014
Anthracene	ND	0.038	mg/Kg-dry	1	8/8/2014
Benz(a)anthracene	0.090	0.038	mg/Kg-dry	1	8/8/2014
Benzidine	ND	0.38	mg/Kg-dry	1	8/8/2014
Benzo(a)pyrene	0.088	0.038	mg/Kg-dry	1	8/8/2014
Benzo(b)fluoranthene	0.11	0.038	mg/Kg-dry	1	8/8/2014
Benzo(g,h,i)perylene	0.12	0.038	mg/Kg-dry	1	8/8/2014
Benzo(k)fluoranthene	0.079	0.038	mg/Kg-dry	1	8/8/2014
Benzoic acid	ND	0.95	mg/Kg-dry	1	8/8/2014
Benzyl alcohol	ND	0.19	mg/Kg-dry	1	8/8/2014
Bis(2-chloroethoxy)methane	ND	0.19	mg/Kg-dry	1	8/8/2014
Bis(2-chloroethyl)ether	ND	0.19	mg/Kg-dry	1	8/8/2014
Bis(2-ethylhexyl)phthalate	ND	0.95	mg/Kg-dry	1	8/8/2014
4-Bromophenyl phenyl ether	ND	0.19	mg/Kg-dry	1	8/8/2014
Butyl benzyl phthalate	ND	0.19	mg/Kg-dry	1	8/8/2014
Carbazole	ND	0.19	mg/Kg-dry	1	8/8/2014
4-Chloroaniline	ND	0.19	mg/Kg-dry	1	8/8/2014
4-Chloro-3-methylphenol	ND	0.38	mg/Kg-dry	1	8/8/2014
2-Chloronaphthalene	ND	0.19	mg/Kg-dry	1	8/8/2014
2-Chlorophenol	ND	0.19	mg/Kg-dry	1	8/8/2014
4-Chlorophenyl phenyl ether	ND	0.19	mg/Kg-dry	1	8/8/2014
Chrysene	0.14	0.038	mg/Kg-dry	1	8/8/2014
Dibenz(a,h)anthracene	ND	0.038	mg/Kg-dry	1	8/8/2014
Dibenzofuran	ND	0.19	mg/Kg-dry	1	8/8/2014
1,2-Dichlorobenzene	ND	0.19	mg/Kg-dry	1	8/8/2014
1,3-Dichlorobenzene	ND	0.19	mg/Kg-dry	1	8/8/2014
1,4-Dichlorobenzene	ND	0.19	mg/Kg-dry	1	8/8/2014
3,3´-Dichlorobenzidine	ND	0.19	mg/Kg-dry	1	8/8/2014
2,4-Dichlorophenol	ND	0.19	mg/Kg-dry	1	8/8/2014
Diethyl phthalate	ND	0.19	mg/Kg-dry	1	8/8/2014
2,4-Dimethylphenol	ND	0.19	mg/Kg-dry	1	8/8/2014
Dimethyl phthalate	ND	0.19	mg/Kg-dry	1	8/8/2014
4,6-Dinitro-2-methylphenol	ND	0.38	mg/Kg-dry	1	8/8/2014
2,4-Dinitrophenol	ND	0.95	mg/Kg-dry	1	8/8/2014
2,4-Dinitrotoluene	ND	0.038	mg/Kg-dry	1	8/8/2014
2,6-Dinitrotoluene	ND	0.038	mg/Kg-dry	1	8/8/2014
Di-n-butyl phthalate	ND	0.19	mg/Kg-dry	1	8/8/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

Date Printed:

ANALYTICAL RESULTS

August 11, 2014

Client: Tetra Tech EM Inc.

Work Order: 14080039 Revision 0

Client Sample ID: PP -SB- 2A

Project: TPMHC, Tinley Park

Collection Date: 7/31/2014 10:44:00 AM

Lab ID: 14080039-013 Matrix: Soil

Analyses	Result	RL Qu	alifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW3550	B) Prep	Date: 8/7/2014	Analyst: DM
Di-n-octyl phthalate	ND	0.19	mg/Kg-dry	1	8/8/2014
Fluoranthene	0.14	0.038	mg/Kg-dry	1	8/8/2014
Fluorene	ND	0.038	mg/Kg-dry	1	8/8/2014
Hexachlorobenzene	ND	0.19	mg/Kg-dry	1	8/8/2014
Hexachlorobutadiene	ND	0.19	mg/Kg-dry	1	8/8/2014
Hexachlorocyclopentadiene	ND	0.19	mg/Kg-dry	1	8/8/2014
Hexachloroethane	ND	0.19	mg/Kg-dry	1	8/8/2014
Indeno(1,2,3-cd)pyrene	0.067	0.038	mg/Kg-dry	1	8/8/2014
Isophorone	ND	0.19	mg/Kg-dry	1	8/8/2014
2-Methylnaphthalene	ND	0.19	mg/Kg-dry	1	8/8/2014
2-Methylphenol	ND	0.19	mg/Kg-dry	1	8/8/2014
4-Methylphenol	ND	0.19	mg/Kg-dry	1	8/8/2014
Naphthalene	ND	0.038	mg/Kg-dry	1	8/8/2014
2-Nitroaniline	ND	0.19	mg/Kg-dry	1	8/8/2014
3-Nitroaniline	ND	0.19	mg/Kg-dry	1	8/8/2014
4-Nitroaniline	ND	0.19	mg/Kg-dry	1	8/8/2014
2-Nitrophenol	ND	0.19	mg/Kg-dry	1	8/8/2014
4-Nitrophenol	ND	0.38	mg/Kg-dry	1	8/8/2014
Nitrobenzene	ND	0.038	mg/Kg-dry	1	8/8/2014
N-Nitrosodi-n-propylamine	ND	0.038	mg/Kg-dry	1	8/8/2014
N-Nitrosodimethylamine	ND	0.19	mg/Kg-dry	1	8/8/2014
N-Nitrosodiphenylamine	ND	0.038	mg/Kg-dry	1	8/8/2014
2, 2'-oxybis(1-Chloropropane)	ND	0.19	mg/Kg-dry	1	8/8/2014
Pentachlorophenol	ND	0.077	mg/Kg-dry	1	8/8/2014
Phenanthrene	0.038	0.038	mg/Kg-dry	1	8/8/2014
Phenol	ND	0.19	mg/Kg-dry	1	8/8/2014
Pyrene	0.13	0.038	mg/Kg-dry	1	8/8/2014
Pyridine	ND	0.77	mg/Kg-dry	1	8/8/2014
1,2,4-Trichlorobenzene	ND	0.19	mg/Kg-dry	1	8/8/2014
2,4,5-Trichlorophenol	ND	0.19	mg/Kg-dry	1	8/8/2014
2,4,6-Trichlorophenol	ND	0.19	mg/Kg-dry	1	8/8/2014
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep l	Date: 8/4/2014	Analyst: ERP
Acetone	ND	0.079	mg/Kg-dry	1	8/7/2014
Benzene	ND	0.0053	mg/Kg-dry	1	8/7/2014
Bromodichloromethane	ND	0.0053	mg/Kg-dry	1	8/7/2014
Bromoform	ND	0.0053	mg/Kg-dry	1	8/7/2014
Bromomethane	ND	0.011	mg/Kg-dry	1	8/7/2014
2-Butanone	ND	0.079	mg/Kg-dry	1	8/7/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014 **Date Printed:** August 11, 2014

ANALYTICAL RESULTS

Client: Tetra Tech EM Inc.

Work Order: 14080039 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14080039-013

Client Sample ID: PP -SB- 2A

Collection Date: 7/31/2014 10:44:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW50	35/8260B	Prep I	Date: 8/4/2014	Analyst: ERP
Carbon disulfide	ND	0.053	mg/Kg-dry	1	8/7/2014
Carbon tetrachloride	ND	0.0053	mg/Kg-dry	1	8/7/2014
Chlorobenzene	ND	0.0053	mg/Kg-dry	1	8/7/2014
Chloroethane	ND	0.011	mg/Kg-dry	1	8/7/2014
Chloroform	ND	0.0053	mg/Kg-dry	1	8/7/2014
Chloromethane	ND	0.011	mg/Kg-dry	1	8/7/2014
Dibromochloromethane	ND	0.0053	mg/Kg-dry	1	8/7/2014
1,1-Dichloroethane	ND	0.0053	mg/Kg-dry	1	8/7/2014
1,2-Dichloroethane	ND	0.0053	mg/Kg-dry	1	8/7/2014
1,1-Dichloroethene	ND	0.0053	mg/Kg-dry	1	8/7/2014
cis-1,2-Dichloroethene	ND	0.0053	mg/Kg-dry	1	8/7/2014
trans-1,2-Dichloroethene	ND	0.0053	mg/Kg-dry	1	8/7/2014
1,2-Dichloropropane	ND	0.0053	mg/Kg-dry	1	8/7/2014
cis-1,3-Dichloropropene	ND	0.0021	mg/Kg-dry	1	8/7/2014
trans-1,3-Dichloropropene	ND	0.0021	mg/Kg-dry	1	8/7/2014
Ethylbenzene	ND	0.0053	mg/Kg-dry	1	8/7/2014
2-Hexanone	ND	0.021	mg/Kg-dry	1	8/7/2014
4-Methyl-2-pentanone	ND	0.021	mg/Kg-dry	1	8/7/2014
Methylene chloride	ND	0.011	mg/Kg-dry	1	8/7/2014
Methyl tert-butyl ether	ND	0.0053	mg/Kg-dry	1	8/7/2014
Styrene	ND	0.0053	mg/Kg-dry	1	8/7/2014
1,1,2,2-Tetrachloroethane	ND	0.0053	mg/Kg-dry	1	8/7/2014
Tetrachloroethene	ND	0.0053	mg/Kg-dry	1	8/7/2014
Toluene	ND	0.0053	mg/Kg-dry	1	8/7/2014
1,1,1-Trichloroethane	ND	0.0053	mg/Kg-dry	1	8/7/2014
1,1,2-Trichloroethane	ND	0.0053	mg/Kg-dry	1	8/7/2014
Trichloroethene	ND	0.0053	mg/Kg-dry	1	8/7/2014
Vinyl chloride	ND	0.0053	mg/Kg-dry	1	8/7/2014
Xylenes, Total	ND	0.016	mg/Kg-dry	1	8/7/2014
Cyanide, Total	SW90	12A	Prep I	Date: 8/6/2014	Analyst: YZ
Cyanide	ND	0.29	mg/Kg-dry	1	8/7/2014
pH (25 °C)	SW90	45C	Prep I	Date: 8/7/2014	Analyst: RW
pH	8.2		pH Units	1	8/7/2014
Percent Moisture	D297	4	Prep I	Date: 8/4/2014	Analyst: RW
Percent Moisture	12.7	0.2	* wt%	1	8/5/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014 **Date Printed:** August 11, 2014 **ANALYTICAL RESULTS**

Client: Tetra Tech EM Inc. Client Sample ID: Oak -UST-SB-1

Work Order: 14080039 Revision 0 **Collection Date**: 8/1/2014 9:45:00 AM TPMHC, Tinley Park **Project:**

Matrix: Soil Lab ID: 14080039-014

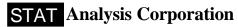
Analyses	Result	RL Qualif	ier Units	DF	Date Analyzed
Metals by ICP/MS	SW6	020 (SW3050B)	Prep I	Date: 8/5/2014	Analyst: JG
Lead	21	0.60	mg/Kg-dry	10	8/6/2014
Polynuclear Aromatic Hydrocarbons by GC/MS	S SW8	270C (SW3550B)	Prep I	Date: 8/7/2014	Analyst: DM
Acenaphthene	ND	0.039	mg/Kg-dry	1	8/8/2014
Acenaphthylene	ND	0.039	mg/Kg-dry	1	8/8/2014
Anthracene	ND	0.039	mg/Kg-dry	1	8/8/2014
Benz(a)anthracene	ND	0.039	mg/Kg-dry	1	8/8/2014
Benzo(a)pyrene	ND	0.039	mg/Kg-dry	1	8/8/2014
Benzo(b)fluoranthene	ND	0.039	mg/Kg-dry	1	8/8/2014
Benzo(g,h,i)perylene	ND	0.039	mg/Kg-dry	1	8/8/2014
Benzo(k)fluoranthene	ND	0.039	mg/Kg-dry	1	8/8/2014
Chrysene	ND	0.039	mg/Kg-dry	1	8/8/2014
Dibenz(a,h)anthracene	ND	0.039	mg/Kg-dry	1	8/8/2014
Fluoranthene	ND	0.039	mg/Kg-dry	1	8/8/2014
Fluorene	ND	0.039	mg/Kg-dry	1	8/8/2014
Indeno(1,2,3-cd)pyrene	ND	0.039	mg/Kg-dry	1	8/8/2014
Naphthalene	ND	0.039	mg/Kg-dry	1	8/8/2014
Phenanthrene	ND	0.039	mg/Kg-dry	1	8/8/2014
Pyrene	ND	0.039	mg/Kg-dry	1	8/8/2014
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep I	Date: 8/4/2014	Analyst: ERP
Acetone	ND	0.072	mg/Kg-dry	1	8/7/2014
Benzene	ND	0.0048	mg/Kg-dry	1	8/7/2014
Bromodichloromethane	ND	0.0048	mg/Kg-dry	1	8/7/2014
Bromoform	ND	0.0048	mg/Kg-dry	1	8/7/2014
Bromomethane	ND	0.0096	mg/Kg-dry	1	8/7/2014
2-Butanone	ND	0.072	mg/Kg-dry	1	8/7/2014
Carbon disulfide	ND	0.048	mg/Kg-dry	1	8/7/2014
Carbon tetrachloride	ND	0.0048	mg/Kg-dry	1	8/7/2014
Chlorobenzene	ND	0.0048	mg/Kg-dry	1	8/7/2014
Chloroethane	ND	0.0096	mg/Kg-dry	1	8/7/2014
Chloroform	ND	0.0048	mg/Kg-dry	1	8/7/2014
Chloromethane	ND	0.0096	mg/Kg-dry	1	8/7/2014
Dibromochloromethane	ND	0.0048	mg/Kg-dry	1	8/7/2014
1,1-Dichloroethane	ND	0.0048	mg/Kg-dry	1	8/7/2014
1.2-Dichloroethane	ND	0.0048	mg/Kg-dry	1	8/7/2014
1,1-Dichloroethene	ND	0.0048	mg/Kg-dry	1	8/7/2014
cis-1,2-Dichloroethene	ND	0.0048	mg/Kg-dry	1	8/7/2014
trans-1,2-Dichloroethene	ND	0.0048	mg/Kg-dry	1	8/7/2014
u au 13- 1 ,2-DIGI 1101 06 ti 161 16	טוט	0.0040	mg/rxg-ury	1	0///2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time


* - Non-accredited parameter

RL - $Reporting \, / \, Quantitation \, Limit for the analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accorditations JEPA ELAP 100445-OPELAP II 300001-AIHA LAP II C 101160-NVI

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

ANALYTICAL RESULTS

Date Reported: August 11, 2014 **Date Printed:** August 11, 2014

Client:

Tetra Tech EM Inc.

Client Sample ID: Oak -UST-SB-1

Work Order: 14080039 Revision 0 **Collection Date**: 8/1/2014 9:45:00 AM

Project: TPMHC, Tinley Park
Lab ID: 14080039-014

Matrix: Soil

Analyses Result RLQualifier Units DF **Date Analyzed Volatile Organic Compounds by GC/MS** SW5035/8260B Prep Date: 8/4/2014 Analyst: ERP ND mg/Kg-dry 8/7/2014 1,2-Dichloropropane 0.0048 1 mg/Kg-dry 8/7/2014 cis-1,3-Dichloropropene ND 0.0019 1 trans-1,3-Dichloropropene ND 1 8/7/2014 0.0019 mg/Kg-dry Ethylbenzene ND 0.0048 mg/Kg-dry 1 8/7/2014 2-Hexanone ND 0.019 mg/Kg-dry 1 8/7/2014 4-Methyl-2-pentanone ND 0.019 mg/Kg-dry 1 8/7/2014 Methylene chloride ND 0.0096 mg/Kg-dry 1 8/7/2014 Methyl tert-butyl ether ND 1 0.0048 mg/Kg-dry 8/7/2014 ND 8/7/2014 Styrene 0.0048 mg/Kg-dry ND 1,1,2,2-Tetrachloroethane 0.0048 mg/Kg-dry 1 8/7/2014 Tetrachloroethene ND 0.0048 mg/Kg-dry 1 8/7/2014 Toluene ND 1 0.0048 mg/Kg-dry 8/7/2014 1,1,1-Trichloroethane ND 0.0048 mg/Kg-dry 1 8/7/2014 1,1,2-Trichloroethane ND 0.0048 mg/Kg-dry 1 8/7/2014 Trichloroethene ND 0.0048 mg/Kg-dry 1 8/7/2014 Vinyl chloride ND 0.0048 mg/Kg-dry 1 8/7/2014 Xylenes, Total ND 0.014 8/7/2014 mg/Kg-dry 1 pH (25 °C) SW9045C Prep Date: 8/7/2014 Analyst: RW pH Units 8/7/2014 рΗ 7.7 D2974 **Percent Moisture** Prep Date: 8/4/2014 Analyst: RW Percent Moisture 16.1 0.2 wt% 8/5/2014

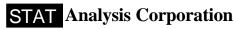
ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter


Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

August 11, 2014

ANALYTICAL RESULTS

Date Printed:

Client: Tetra Tech EM Inc.

Work Order: 14080039 Revision 0

Client Sample ID: Pine -UST-SB-1

Project: TPMHC, Tinley Park

Collection Date: 8/1/2014 10:30:00 AM

Lab ID: 14080039-015 Matrix: Soil

Analyses	Result	RL Qualifi	er Units	DF	Date Analyzed
Metals by ICP/MS	SWe	6020 (SW3050B)	Prep	Date: 8/5/2014	Analyst: JG
Lead	23	0.61	mg/Kg-dry	10	8/6/2014
Polynuclear Aromatic Hydrocarbons by GC/MS	SW8	3270C (SW3550B)	Prep	Date: 8/7/2014	Analyst: DM
Acenaphthene	ND	0.039	mg/Kg-dry	1	8/9/2014
Acenaphthylene	ND	0.039	mg/Kg-dry	1	8/9/2014
Anthracene	ND	0.039	mg/Kg-dry	1	8/9/2014
Benz(a)anthracene	ND	0.039	mg/Kg-dry	1	8/9/2014
Benzo(a)pyrene	ND	0.039	mg/Kg-dry	1	8/9/2014
Benzo(b)fluoranthene	ND	0.039	mg/Kg-dry	1	8/9/2014
Benzo(g,h,i)perylene	ND	0.039	mg/Kg-dry	1	8/9/2014
Benzo(k)fluoranthene	ND	0.039	mg/Kg-dry	1	8/9/2014
Chrysene	ND	0.039	mg/Kg-dry	1	8/9/2014
Dibenz(a,h)anthracene	ND	0.039	mg/Kg-dry	1	8/9/2014
Fluoranthene	ND	0.039	mg/Kg-dry	1	8/9/2014
Fluorene	ND	0.039	mg/Kg-dry	1	8/9/2014
Indeno(1,2,3-cd)pyrene	ND	0.039	mg/Kg-dry	1	8/9/2014
Naphthalene	ND	0.039	mg/Kg-dry	1	8/9/2014
Phenanthrene	ND	0.039	mg/Kg-dry	1	8/9/2014
Pyrene	ND	0.039	mg/Kg-dry	1	8/9/2014
BTEX by GC/MS	SWS	5035/8260B	Prep	Date:	Analyst: ERP
Benzene	ND	0.0060	mg/Kg-dry	1	8/7/2014
Ethylbenzene	ND	0.0060	mg/Kg-dry	1	8/7/2014
Toluene	ND	0.0060	mg/Kg-dry	1	8/7/2014
Xylenes, Total	ND	0.018	mg/Kg-dry	1	8/7/2014
pH (25 °C)	SWS	9045C	Prep	Date: 8/7/2014	Analyst: RW
pH	7.4		pH Units	1	8/7/2014
Percent Moisture	D29	74	Prep	Date: 8/4/2014	Analyst: RW
Percent Moisture	16.5	0.2 *	wt%	1	8/5/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

ANALYTICAL RESULTS

Date Printed: August 11, 2014

Client: Tetra Tech EM Inc.

Work Order: 14080039 Revision 0

Project: TPMHC, Tinley Park

Client Sample ID: Maple -UST-SB- 1

Collection Date: 8/1/2014 1:45:00 PM

Matrix: Soil

Lab ID: 14080039-016

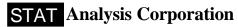
Analyses	Result	RL Quali	fier Units	DF	Date Analyzed
Metals by ICP/MS	SW60	020 (SW3050B)	Prep	Date: 8/5/2014	Analyst: JG
Lead	19	0.59	mg/Kg-dry	10	8/6/2014
Polynuclear Aromatic Hydrocarbons by GC/N	IS SW82	270C (SW3550B)	Prep	Date: 8/7/2014	Analyst: DM
Acenaphthene	ND	0.038	mg/Kg-dry	1	8/10/2014
Acenaphthylene	ND	0.038	mg/Kg-dry	1	8/10/2014
Anthracene	ND	0.038	mg/Kg-dry	1	8/10/2014
Benz(a)anthracene	ND	0.038	mg/Kg-dry	1	8/10/2014
Benzo(a)pyrene	ND	0.038	mg/Kg-dry	1	8/10/2014
Benzo(b)fluoranthene	ND	0.038	mg/Kg-dry	1	8/10/2014
Benzo(g,h,i)perylene	ND	0.038	mg/Kg-dry	1	8/10/2014
Benzo(k)fluoranthene	ND	0.038	mg/Kg-dry	1	8/10/2014
Chrysene	ND	0.038	mg/Kg-dry	1	8/10/2014
Dibenz(a,h)anthracene	ND	0.038	mg/Kg-dry	1	8/10/2014
Fluoranthene	ND	0.038	mg/Kg-dry	1	8/10/2014
Fluorene	ND	0.038	mg/Kg-dry	1	8/10/2014
Indeno(1,2,3-cd)pyrene	ND	0.038	mg/Kg-dry	1	8/10/2014
Naphthalene	ND	0.038	mg/Kg-dry	1	8/10/2014
Phenanthrene	ND	0.038	mg/Kg-dry	1	8/10/2014
Pyrene	ND	0.038	mg/Kg-dry	1	8/10/2014
BTEX by GC/MS	SW50	035/8260B	Prep	Date:	Analyst: ERP
Benzene	ND	0.0058	mg/Kg-dry	1	8/7/2014
Ethylbenzene	ND	0.0058	mg/Kg-dry	1	8/7/2014
Toluene	ND	0.0058	mg/Kg-dry	1	8/7/2014
Xylenes, Total	ND	0.017	mg/Kg-dry	1	8/7/2014
pH (25 °C)	SW90	045C	Prep	Date: 8/7/2014	Analyst: RW
pH	8.2		pH Units	1	8/7/2014
Percent Moisture	D297	4	Prep	Date: 8/4/2014	Analyst: RW
Percent Moisture	13.3	0.2	•	1	8/5/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time


* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: August 11, 2014

ANALYTICAL RESULTS

Date Printed: August 11, 2014

Client: Tetra Tech EM Inc.

Work Order: 14080039 Revision 0

Project: TPMHC, Tinley Park

Lab ID: 14080039-017

Client Sample ID: WTP -SB- 01

Collection Date: 8/1/2014 2:00:00 PM

Matrix: Soil

Analyses	Result	RL Qual	lifier Units	DF	Date Analyzed
Polynuclear Aromatic Hydrocarbons by GC/MS	S SW8	270C (SW3550B) Prep	Date: 8/7/2014	Analyst: DM
Acenaphthene	ND	0.040	mg/Kg-dry	1	8/9/2014
Acenaphthylene	ND	0.040	mg/Kg-dry	1	8/9/2014
Anthracene	ND	0.040	mg/Kg-dry	1	8/9/2014
Benz(a)anthracene	ND	0.040	mg/Kg-dry	1	8/9/2014
Benzo(a)pyrene	ND	0.040	mg/Kg-dry	1	8/9/2014
Benzo(b)fluoranthene	ND	0.040	mg/Kg-dry	1	8/9/2014
Benzo(g,h,i)perylene	ND	0.040	mg/Kg-dry	1	8/9/2014
Benzo(k)fluoranthene	ND	0.040	mg/Kg-dry	1	8/9/2014
Chrysene	ND	0.040	mg/Kg-dry	1	8/9/2014
Dibenz(a,h)anthracene	ND	0.040	mg/Kg-dry	1	8/9/2014
Fluoranthene	ND	0.040	mg/Kg-dry	1	8/9/2014
Fluorene	ND	0.040	mg/Kg-dry	1	8/9/2014
Indeno(1,2,3-cd)pyrene	ND	0.040	mg/Kg-dry	1	8/9/2014
Naphthalene	ND	0.040	mg/Kg-dry	1	8/9/2014
Phenanthrene	ND	0.040	mg/Kg-dry	1	8/9/2014
Pyrene	ND	0.040	mg/Kg-dry	1	8/9/2014
BTEX by GC/MS	SW5	035/8260B	Prep	Date:	Analyst: ERP
Benzene	ND	0.0062	mg/Kg-dry	1	8/7/2014
Ethylbenzene	ND	0.0062	mg/Kg-dry	1	8/7/2014
Toluene	ND	0.0062	mg/Kg-dry	1	8/7/2014
Xylenes, Total	ND	0.019	mg/Kg-dry	1	8/7/2014
Percent Moisture	D297	74	Prep	Date: 8/4/2014	Analyst: RW
Percent Moisture	19.0	0.2	* wt%	1	8/5/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

STAT Analysis Corporation 2242 W. Harrison Suite 2000, Chicago, Illinois 60612 Phone: (312) 733-0551 Fax: (312) 733-2386

AIHA, NVLAP and NELAP accredited e-mail address: STATinfo@STATAnalysis.com

e-man address; 51 A 1 mfog 51 A 1 Analysis.com	1 A 1 Analysis, con		AIHA, NV	Ar an	AP and NELAP accredited	P and NELAP accredited CHAIN OF CHETODY DECOND	4	<u>0</u> 1N		857990	000	, and the same	
Common to the				1	ALL OF	LEGY TECUE	Ļ				7	rage:	01
2						F.O. No.:							
Project Number:			Client Tracking No.:	cking	No.:			\					
Project Name: \(\bar{P} \mathcal{M} \rightarrow \)						Quote No.:							
Project Location: Inley Park						The state of the s							
Sampler(s): AK, TH, CR							\ 						\
Report To:	- Б	Phone:											Turn Around:
	. Fax:	 ;;							/		/;		
QC Level: 1 2 3 4	4	e-mail:					12			1			Results Needed:
Client Sample Number/Description:	Date Taken	Time Taken	xirtsM	.сотр. Стар	Preserv. Containers	of states			~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				am/pm
	7-31-14 08	0813 Soll			1	X			X			Neillains	CO C
(ottage - T-55-1-0)	1-14 08	1.08 5180	1.5		H	×							1 C C C
Pine55 -		<u> </u>	50;1	- V	3	×					M2//M	MsD	3 8
100		2			8	× ×		$\times \times \times$	(X)				90
HDC-ASI-S6-1	T	50	Soil	×	चेन	-	×			×			Č
了名1-20-1	_	<u>د</u> ۸ د	- 	×.	7		×			×			300
C. A.	1-31-14		Sort	×	*	6-	X			×	OSW/SW	ØS III	500
3	_	1330 50	-25	×	C		X			×			30
€!	寸		72	·×	2		X			×			,ීන
3	-+	+	15	×	7		×			X			900
17 - 75 - 1	_	$\overline{}$	100	<u> </u>		×							120
	7	T	Voil .	×	7	X X	X	<u> </u>					012
11-30-42	\neg	4		4	7	× × ×	X		. 2				510
Vak-451-515-1	$\stackrel{\sim}{}$	×45 ×25.	7.27	×.	<u> </u>	·	×	X		×	M5/M5	150 1	V10
Pin - USI - 50-1		\sim	7	×	2		×		\ \	\times	, and 1000	P / 4000	5,0
200		345 5	50/	×			Σ.		_	X	A	TY MA	370
STF-58-0	8-1-14	400	50.1	×	7		×			X			E10
					-								
Relinquished by: (Signature)	Sulley	1	Date/Time:	e: <i>O</i>	14 164	Comment					Laborato	Laboratory Work Order No.	er No.:
Received by: (Signature)	HE .		Date/Time:	i C	1/14/16	<u>-</u> ب	TCLP 16	sowe the lead bottleware for	SSS S	for	2	いろのとのでき	ちゃつ
Relinquished by: (Signature)			Date/Time:	:: ::		(4.800)	7	Possible frame, 11 LP analysis	g Q	45.4	1 1))
Received by: (Signature)			Date/Time:	::)		<u>ر</u>	Receiv	Received on Ice: Yes	
Relinquished by: (Signature)			Date/Time:	;;		Preservation Code:	A = None	$B = HNO_3$	C = NaOH	НО	F	I .company	0
Received by: (Signature)			Date/Time:	ä		$D = H_2SO_4 E = HCI$	1	F = 5035/EnCore	G = Other	ther		5.0	ر د

Sample Receipt Checklist

Client Name TETRA SAINT LOUIS Work Order Number 14080039			Date and Tir	me Received:	8/1/2014 4:45:00 PM
Checklist completed by:	Date	//4	Reviewed by	r: FC	6/11/14 Date
Matrix:	Carrier name <u>Clie</u>	ent Delivered			
Shipping container/cooler in good condition?	Yes	· 🗸	No 🗌	Not Present	
Custody seals intact on shippping container/cooler?	Yes		No 🗌	Not Present 🗸	
Custody seals intact on sample bottles?	Yes		No 🗌	Not Present ✓	
Chain of custody present?	Yes	✓	No 🗌		
Chain of custody signed when relinquished and receive	ed? Yes	V	No 🗌		
Chain of custody agrees with sample labels/containers	? Yes	✓	No 🗌		
Samples in proper container/bottle?	Yes	~	No 🗌		
Sample containers intact?	Yes	✓	No 🗌		
Sufficient sample volume for indicated test?	Yes	V	No 🗌		
All samples received within holding time?	Yes	✓	No 🗌		
Container or Temp Blank temperature in compliance?	Yes	✓	No 🗌	Temperature	5.3 °C
Water - VOA vials have zero headspace? No V	OA vials submitted	*	Yes 💹	No 🔳	
Water - Samples pH checked?	Yes		No 📓	Checked by:	
Water - Samples properly preserved?	Yes	*	No 📓	pH Adjusted?	
Any No response must be detailed in the comments see	ction below.				
Comments:					
Client / Person contacted: Date co	ontacted:		Contac	cted by:	
Response:					